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A CHARACTERIZATION OF ALGEBRAS
WITH POLYNOMIAL GROWTH OF THE CODIMENSIONS

A. GIAMBRUNO AND M. ZAICEV

(Communicated by Ken Goodearl)

Abstract. Let A be an associative algebras over a field of characteristic zero.
We prove that the codimensions of A are polynomially bounded if and only if

any finite dimensional algebra B with Id(A) = Id(B) has an explicit decom-
position into suitable subalgebras; we also give a decomposition of the n-th
cocharacter of A into suitable Sn-characters.

We give similar characterizations of finite dimensional algebras with invo-
lution whose ∗-codimension sequence is polynomially bounded. In this case
we exploit the representation theory of the hyperoctahedral group.

§1. Introduction

Let F be a field of characteristic zero and F 〈X〉 = F 〈x1, x2, . . . 〉 the free algebra
of countable rank over F . If A is a PI-algebra over F , that is, an algebra satisfying
a polynomial identity, we let Id(A) be the T-ideal of F 〈X〉 of identities of A. It
is well known that Id(A) is completely determined by the multilinear polynomials
it contains; if Vn = Span{xσ(1) · · ·xσ(n) | σ ∈ Sn} is the space of multilinear poly-
nomials in x1, . . . , xn, then the sequence cn(A) = dimF

Vn
Vn∩Id(A) , n = 1, 2, . . . , is

called the sequence of codimensions of A and it is an important numerical invariant
of Id(A).

It was proved by Regev in [R] that for any PI-algebra A, cn(A) is exponentially
bounded, i.e., there exist constants a, α > 0 such that cn(A) ≤ aαn for all n.

In this paper we study algebras A whose codimension sequence is polynomially
bounded i.e., such that for all n, cn(A) ≤ ant for some constants a, t. Kemer in
[K1] gave a characterization of such T-ideals in the language of the representation
theory of Sn. It also follows from [K2] that if cn(A) is polynomially bounded, then
Id(A) = Id(B) for a suitable finite dimensional algebra B.

For any finite dimensional algebra A over an algebraically closed field we shall
prove that A has polynomial growth of the codimensions if and only if A = A0⊕A1⊕
· · ·⊕Am where A0, A1, . . . , Am are F -algebras such that 1) for i = 1, . . . ,m, Ai =
Bi + Ji, where Bi ∼= F and Ji is a nilpotent ideal of Ai, 2) A0, J1, . . . , Jm are
nilpotent right ideals of A and 3) AiAk = 0 for all i, k ∈ {1, . . . ,m}, i 6= k and
BiA0 = 0.
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Another description of such algebras is given, as in Kemer’s paper [K1], in the
language of the cocharacters as follows. The symmetric group Sn acts on the left
on Vn by σf(x1, . . . , xn) = f(xσ(1), . . . , xσ(n)), σ ∈ Sn, f(x1, . . . , xn) ∈ Vn. This
action induces a structure of left Sn-module on Vn

Vn∩Id(A) and we write χn(A) for
its Sn-character; χn(A) is called the n-th cocharacter of A. Let χλ denote the
irreducible Sn-character associated to the partition λ = (λ1, . . . , λt) ` n and write
χn(A) =

∑
λ`nmλχλ where mλ ≥ 0 are the corresponding multiplicities. We shall

prove that if dimF A < ∞, A has polynomial growth of the codimensions if and
only if

χn(A) =
∑
λ`n

|λ|−λ1<q

mλχλ

where J is the Jacobson radical of A and Jq = 0.
In the second part of the paper we address ourself to similar questions in the

setting of algebras with involution. Let F 〈X, ∗〉 = F 〈x1, x
∗
1, x2, x

∗
2, . . . 〉 be the

free algebra with involution ∗ and Vn(∗) the space of multilinear ∗-polynomials in
x1, x

∗
1, . . . , xn, x

∗
n. For an algebra with involution A we let Id(A, ∗) be the ideal of

∗-identities of A; then the sequence of ∗-codimensions is

cn(A, ∗) = dimF
Vn(∗)

Vn(∗) ∩ Id(A, ∗) , n = 1, 2, . . . .

In the last section we characterize finite dimensional algebras A such that cn(A, ∗)
is polynomially bounded. Moreover by using the representation theory of the hy-
peroctahedral group Z2 ∼ Sn, we shall obtain a characterization of A in terms of
the ∗-cocharacter sequence of A.

§2. Algebras with polynomial growth of the codimensions

In this section we shall characterize algebras with polynomial growth of the
codimensions. The following reduction is due to Kemer.

Theorem 1. Let A be a PI-algebra. If for all n, cn(A) ≤ ant for some constants
a, t, then there exists a finite dimensional algebra B such that Id(A) = Id(B).

Proof. Let G be the Grassmann algebra of countable dimension over F . By [KR],
cn(G) = 2n−1, hence, for n large, cn(A) < cn(G). This implies that Id(A) 6⊆ Id(G)
and, by a theorem of Kemer [K2, Theorem 2.3] there exists a finite dimensional
algebra B such that Id(A) = Id(B).

We remark that cn(A) does not change upon extension of the ground field F . In
fact, if K is an extension field of F , then Id(A) ⊗F K = Id(A ⊗F K). Therefore
in studying properties of cn(A) we may as well assume that F is an algebraically
closed field.

Theorem 2. Let A be a finite dimensional algebra over an algebraically closed field
F . Then the sequence of codimensions {cn(A)}n≥1 is polynomially bounded if and
only if

1) A = A0⊕A1⊕· · ·⊕Am a vector space direct sum of F -algebras where for i =
1, . . . ,m, Ai = Bi+Ji, Bi ∼= F, Ji a nilpotent ideal of Ai and A0, J1, . . . , Jm
are nilpotent right ideals of A;

2) for all i, k ∈ {1, . . . ,m}, i 6= k, AiAk = 0 and BiA0 = 0.
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Proof. Let A = B + J be the Wedderburn-Malcev decomposition of A ([CR, The-
orem 72.19]) where B is a semisimple subalgebra of A and J = J(A) its Ja-
cobson radical. Write B = B1 ⊕ · · · ⊕ Bm with B1, . . . , Bm simple F -algebras.
Since cn(A) is polynomially bounded, by [GZ], BiJBk = 0 for all i 6= k and
dimF Bi = 1, i, k = 1, . . . ,m.

Let e = e1 + · · · + em be the decomposition of the unit element of B into
orthogonal central (in B) idempotents; thus eiB = Bi ∼= F. Define for all i =
1, . . . ,m, Ji = eiJ and J0 = {x ∈ J | Bx = 0}. It is easy to show that A =
B + J = (B1 + J1)⊕ · · · ⊕ (Bm + Jm)⊕ J0; let Ai = Bi + Ji and A0 = J0.

For i 6= k ∈ {1, . . . ,m}, AiAk = (Bi + Ji)(Bk + Jk) = 0 since eiek = 0 and
BiJBk = 0. Also, for i 6= 0, BiA0 = 0.

Viceversa, let A satisfy 1) and 2). From the relations AiAk = 0 and BiA0 = 0
it follows that J = A0 + J1 + · · · + Jm is a nilpotent two-sided ideal of A and
A = B1 ⊕ · · · ⊕ Bm ⊕ J where Bi ∼= F for all i. Since from the defining relations
AiAk = 0 and BiA0 = 0 it follows that BiJBk = 0 for all i 6= k, then cn(A) is
polynomially bounded by [GZ].

As an immediate consequence of the above result we get

Corollary 1. Let A be the algebra described in the previous theorem. Let J be the
Jacobson radical of A and, for i = 1, . . . ,m, let Ci = Ai ⊕A0. Then

Id(A) = Id(C1) ∩ . . . ∩ Id(Cm) ∩ Id(J).

Proof. Let f ∈ Id(C1) ∩ . . . ∩ Id(Cm) ∩ Id(J) and suppose that f 6∈ Id(A). We
may clearly assume that f is multilinear and let r1, . . . , rs ∈ A be such that
f(r1, . . . , rs) 6= 0.

If r1, . . . , rs ∈ J , then f 6∈ Id(J), a contradiction. Hence there exists ri 6∈ J ; by
linearity we may assume that ri ∈ Bk for some k. Recall that, for all l, BlA0 =
0, Jl is a right ideal of A and, in case l 6= k, AkAl = AlAk = 0. From an easy
calculation it follows that r1, . . . , ri−1, ri+1, . . . , rs ∈ Ak∪A0. But then f 6∈ Id(Ck),
a contradiction.

What can be said if F is not algebraically closed?
Let A be a finite dimensional algebra over a field F and write A = B + J, B =

B1 ⊕ · · · ⊕Bm with the Bi’s simple algebras. If F is the algebraic closure of F , we
write A = A⊗F F ; moreover, since J(A) = J(A)⊗F F (see [Ro, Theorem 2.5.36]),
we get that

A ∼= B1 ⊕ · · · ⊕Bm + J(A)

where Bi = Bi ⊗F F are semisimple algebras.
Let Z(Bi) be the center of Bi and ti = dimF Z(Bi). Then Bi ∼= Ci1 ⊕ · · · ⊕ Citi

where Ci1 ∼= · · · ∼= Cik are central simple algebras over F .
In case cn(A) = cn(A) is polynomially bounded, by [GZ], Cik ∼= F for all i, k

and CikJ(A)Cuv = 0 if (i, k) 6= (u, v). It follows that for all i = 1, . . . ,m, Bi is a
field extension of F of degree ti. Since charF = 0, we write Bi = F (ai), a simple
algebraic extension of F of degree ti. We have shown that if F is any field and A
is an F -algebra with polynomial growth of the codimensions, then

A ∼= F (a1)⊕ · · · ⊕ F (am) + J(A)

and for all i 6= k, F (ai)J(A)F (ak) = 0.
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We next give a characterization of polynomial growth in terms of the cocharacter
sequence of the algebra.

In the sequel for λ ` n we also write | λ |= n. We write χλ(1) = dλ for the degree
of the irreducible Sn-character χλ and, if Tλ is a tableau of shape λ, we let eTλ be
the corresponding essential idempotent of FSn. Notice that if λ = (λ1, λ2, . . . ) ` n,
then | λ | −λ1 denotes the number of boxes below the first row of the diagram of λ.

Theorem 3. Let A be a finite dimensional algebra over a field F . Then {cn(A)}n≥1

is polynomially bounded if and only if

χn(A) =
∑
λ`n

|λ|−λ1<q

mλχλ

where J(A)q = 0.

Proof. Note that the decomposition of χn(A) into irreducible components does not
change when extending the base field. Therefore, since J(A ⊗F F )q = 0, we may
assume, without lost of generality, that F is algebraically closed.

Suppose first that the codimensions of A are polynomially bounded. Let λ
be a partition of n such that | λ | −λ1 ≥ q and suppose by contradiction that
mλ 6= 0. Then there exists a tableau Tλ such that eTλ(x1, . . . , xn) 6∈ Id(A). Let
λ′ = (λ′1, . . . , λ′t) be the conjugate partition of λ. Then eTλ(x1, . . . , xn) is a lin-
ear combination of polynomials each alternating on t disjoint sets of λ′1, . . . , λ

′
t

variables, respectively. We shall reach a contradiction by proving that each such
polynomial f vanishes in A.

Fix a basis of A which is the union of bases of B1, . . . , Bm and J respectively.
Since BiBk = BiJBk = 0 for all i 6= k, in order to get a non-zero value of f we
must replace all the variables with elements of J and of one simple component,
say, Bi. Also, since dimBi = 1, we can substitute at most one element of Bi in
each alternating set. Hence we can substitute in all at most t = λ1 elements from
Bi. It follows that in order to get a non-zero value, we must substitute at least
| λ | −λ1 ≥ q elements from J . Since Jq = 0, we get that f ≡ 0 and with this
contradiction the proof of the first part of the theorem is complete.

Suppose now that χn(A) =
∑

λ`nmλχλ and mλ = 0 whenever | λ | −λ1 ≥ q.
By [BR] the multiplicities mλ are polynomially bounded; hence

cn(A) =
∑
λ`n

|λ|−λ1<q

mλdλ ≤ Cnt
∑
λ`n

|λ|−λ1<q

dλ

and the proof now follows from the hook formula for the degrees dλ.

The previous theorem says that A has polynomial growth of the codimensions
if and only if all the irreducible characters appearing with non-zero multiplicity in
χn(A) have associated diagram with at most q− 1 boxes below the first row where
Jq = 0.

§3. Finite dimensional algebras with involution

In this section we shall prove that if A is a finite dimensional algebra with involu-
tion ∗, then in the decomposition A = B+J we can choose B to be invariant under
∗. Beside its own interest, this result will be used in the next section. Throughout
we shall assume that charF 6= 2.
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Theorem 4. Let A be a finite dimensional algebra with involution ∗ over F and J
its Jacobson radical. Then J∗ = J and there exists a maximal semisimple subalgebra
B such that B = B∗ and A = B + J .

Proof. It is obvious that J∗ = J . Let A = B + J with B a semisimple subalgebra
of A and suppose first that J2 = 0.

Since B∗ is also a maximal semisimple subalgebra of A, by the Wedderburn-
Malcev theorem there exists y ∈ J such that B∗ = (1 − y)B(1 + y). For b ∈ B let
b ∈ B be such that b∗ = (1 − y)b(1 + y). Then b = b∗∗ = (1 + y∗)b

∗
(1 − y∗) =

(1 + y∗)(1 − y)b(1 + y)(1 − y∗), for a suitable b ∈ B. It follows that we can write
b = b + j for a suitable j ∈ J ; hence b − b ∈ B ∩ J = 0 and b = b follows. But
then, from the above, b = (1 + y∗)b

∗
(1 − y∗) = (1 + y∗)(1 − y)b(1 + y)(1 − y∗) =

(1−y+y∗)b(1+y−y∗) since J2 = 0.This says that y−y∗ commutes with b. Therefore
by writing y = y+y∗

2 + y−y∗
2 , we get b∗ = (1− y)b(1 + y) = (1− y+y∗

2 )b(1 + y+y∗

2 ).
We have proved that B∗ = (1 − s)B(1 + s) for a suitable symmetric element

s = s∗ ∈ J . At this stage it is easy to check that B′ = (1 − s
2 )B(1 + s

2 ) is the
desired invariant subalgebra of A.

Suppose now that Jn = 0, Jn−1 6= 0, n > 2. Set Jn−1 = I. Since I∗ = I, A/I
has an induced involution; also J(A/I) = J/I and J(A/I)n−1 = 0. Therefore, by
induction on n, A/I = B/I + J/I for a suitable semisimple subalgebra B/I =
(B/I)∗. It follows that we can write B = C+ I where C is a semisimple subalgebra
of B and, since B∗ = B, by the first part we may assume that C∗ = C. By counting
dimensions we get that C is a maximal semisimple subalgebra of A and A = C +J
is the desired decomposition.

Recall that an algebra with involutionA is ∗-simple if A has no proper ∗-invariant
ideals (i.e., ideals I such that I∗ = I). It is well known and easy to prove that if A is
∗-simple, then either A is simple or A ∼= A1⊕Aop

1 where A1 is a simple homomorphic
image of A and ∗ on A1 ⊕ Aop

1 is the exchange involution (a, b)∗ = (b, a) (see [Ro,
Proposition 2.13.24]).

Remark 1. If B is a semisimple algebra with involution and dimF B < ∞, then
B = B1 ⊕ · · · ⊕Bt where B1, . . . , Bt are ∗-simple algebras.

Proof. Let B = C1 ⊕ · · · ⊕ Cm be the decomposition of B into simple compo-
nents. Let e1, . . . , em be the corresponding orthogonal central idempotents. Let
i ∈ {1, . . . ,m}; if e∗i = ei, then Ci = C∗i = eiB is ∗-simple. If e∗i 6= ei, then e∗iB
is still a minimal ideal of B which implies that e∗i = ej for some j ∈ {1, . . . ,m}.
Hence Ci ⊕ Cj is ∗-simple.

§4. ∗-codimensions with polynomial growth

Throughout this section F will be a field of characteristic zero, and A an F -
algebra with involution ∗. Let A+ = {a ∈ A | a = a∗} and A− = {a ∈ A | a = −a∗}
be the sets of symmetric and skew elements of A respectively.

We consider F 〈X, ∗〉 = F 〈x1, x
∗
1, x2, x

∗
2, . . . 〉 the free algebra with involution ∗

of countable rank. Recall that f(x1, x
∗
1, . . . , xn, x

∗
n) ∈ F 〈X, ∗〉 is a ∗-polynomial

identity for A if f(a1, a
∗
1, . . . , an, a

∗
n) = 0 for all a1, . . . , an ∈ A. The set Id(A, ∗)

of all ∗-polynomial identities of A is a T-ideal of F 〈X, ∗〉, i.e., an ideal invariant
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under all endomorphisms of F 〈X, ∗〉 commuting with the involution. Let

Vn(∗) = SpanF {xa1
σ(1) · · ·x

an
σ(n) | σ ∈ Sn, ai ∈ {1, ∗}}

be the space of multilinear ∗-polynomials in x1, x
∗
1, . . . , xn, x

∗
n.

If we set si = xi + x∗i and ki = xi − x∗i , i = 1, 2, . . . , then, since charF 6= 2, we
can also write

Vn(∗) = SpanF {wσ(1) · · ·wσ(n) | σ ∈ Sn, wi = si or wi = ki, i = 1, . . . , n}.
Let Hn be the hyperoctahedral group. Recall that Hn = Z2 ∼ Sn is the wreath
product of Z2 = {1, ∗}, the multiplicative group of order 2, and Sn. We write the
elements of Hn as (a1, . . . , an;σ) where ai ∈ Z2, σ ∈ Sn. The action of Hn on Vn(∗)
defined in [GR] can be rewritten (see [DG]) as follows: for h = (a1, . . . , an;σ) ∈ Hn

define hsi = sσ(i), hki = k
aσ(i)

σ(i) = ±kσ(i) and then extend this action diagonally
to Vn(∗). Hence Vn(∗) becomes a left Hn-module and, since Vn(∗) ∩ Id(A, ∗) is a
subspace invariant under this action, we can view Vn(∗)/(Vn(∗) ∩ Id(A, ∗)) as an
Hn-module. Let χn(A, ∗) be its character.

The sequence cn(A, ∗) = χn(A, ∗)(1) = dimF
Vn(∗)

Vn(∗)∩Id(A,∗) , n = 1, 2, . . . , is called
the sequence of ∗-codimensions of A.

Recall that there is a one-to-one correspondence between irreducible Hn-char-
acters and pairs of partitions (λ, µ), where λ ` r, µ ` n− r, for all r = 0, 1, . . . , n.
If χλ,µ denotes the irreducible Hn-character corresponding to (λ, µ), then we can
write

χn(A, ∗) =
n∑
r=0

∑
λ`r

µ`n−r

mλ,µχλ,µ

where mλ,µ ≥ 0 are the corresponding multiplicities.
Now, for r = 0, . . . , n, we let

Vr,n−r = Span{wσ(1) · · ·wσ(n) | σ ∈ Sn, wi = si for i = 1, . . . , r and

wi = ki for i = r + 1, . . . , n}.
Thus Vr,n−r is the space of multilinear polynomials in s1, . . . , sr, kr+1, . . . , kn. It is
clear that in order to study Vn(∗)∩ Id(A, ∗) it is enough to study Vr,n−r ∩ Id(A, ∗)
for all r.

If we let Sr act on the symmetric variables s1, . . . , sr and Sn−r on the skew
variables kr+1, . . . , kn, we obtain an action of Sr × Sn−r on Vr,n−r and

Vr,n−r(A, ∗) =
Vr,n−r

Vr,n−r ∩ Id(A, ∗)
becomes a left Sr × Sn−r-module. Let ψr,n−r(A, ∗) be its character and

cr,n−r(A, ∗) = ψr,n−r(A, ∗)(1) = dimF Vr,n−r(A, ∗).
We write ψλ,µ for the irreducible Sr×Sn−r-character associated to the pair (λ, µ)

with λ ` r, µ ` n− r. The following result holds.

Theorem 5 ([DG, Theorem 1.3]). Let A be an algebra with involution; then, for
all n,

χn(A, ∗) =
n∑
r=0

∑
λ`r

µ`n−r

mλ,µχλ,µ, and ψr,n−r(A, ∗) =
∑
λ`r

µ`n−r

mλ,µψλ,µ.
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Moreover

cn(A, ∗) =
n∑
r=0

(
n
r

)
cr,n−r(A, ∗).

We next characterize finite dimensional algebras A with polynomial growth of
the ∗-codimensions.

Theorem 6. Let A be a finite dimensional algebra with involution over an al-
gebraically closed field F . Then the sequence of ∗-codimensions {cn(A, ∗)}n≥1 is
polynomially bounded if and only if

1) the sequence of codimensions {cn(A)}n≥1 is polynomially bounded;
2) A = B + J , where B is a maximal semisimple subalgebra of A and b = b∗ for

all b ∈ B.

Proof. By [GR, Lemma 4.4], for all n, cn(A) ≤ cn(A, ∗) ≤ αnt for some constants
α, t, and the sequence of codimensions is polynomially bounded. From [GZ] it
follows that A = B + J , where B = B1 ⊕ · · · ⊕Bm and Bi ∼= F, BiJBk = 0 for all
i 6= k. By Theorem 4 we may also assume that B∗ = B.

Suppose by contradiction that ∗ is not the identity map on B; then, by Remark
1, there exist Bi, Bk such that C = Bi ⊕ Bk ∼= F ⊕ F is ∗-simple with involution
(a, b)∗ = (b, a). Notice that, for all σ ∈ Sn and a1, . . . , an ∈ {1, ∗},

x
aσ(1)

σ(1) · · ·x
aσ(n)

σ(n) ≡ x
a1
1 · · ·xann (mod Id(C, ∗)).

Moreover the set {xa1
1 · · ·xann | ai ∈ {1, ∗}} is linearly independent modulo Id(C, ∗).

It follows that cn(C, ∗) = 2n. Since cn(C, ∗) ≤ cn(A, ∗) we get a contradiction.
Suppose now thatA = B+J, cn(A) is polynomially bounded and ∗ is the identity

on B. In this case, if a ∈ A, write a = b+ j, b ∈ B, j ∈ J. Then a− a∗ = j− j∗ ∈ J
and A− ⊆ J .

Notice that if f(x1, . . . , xn) ∈ Vn ∩ Id(A), then, for every r = 0, . . . , n,

f(s1, . . . , sr, kr+1, . . . , kn) ∈ Vr,n−r ∩ Id(A, ∗).

Hence cr,n−r(A, ∗) ≤ cn(A) ≤ αnt, for some α, t, for all r. Let Jq = 0. Since
A− ⊆ J, then, for all r ≤ n − q, Vr,n−r ∩ Id(A, ∗) = Vr,n−r and cr,n−r(A, ∗) = 0
follows. By Theorem 5 for all n we obtain

cn(A, ∗) =
n∑
r=0

(
n
r

)
cr,n−r(A, ∗) ≤ αnt

n∑
r=n−q+1

(
n
r

)

= αnt
q−1∑
r=0

(
n
r

)
≤ αnt+q

and cn(A, ∗) is polynomially bounded.

Next we want to get an analogue of Theorem 3 above by using the representation
theory of the hyperoctahedral group Hn. We write χλ,µ(1) = dλ,µ for the degree
of the irreducible Hn-character χλ,µ. Recall that if λ ` n, µ ` n − r, then dλ,µ =(
n
r

)
dλdµ (see [DG]).
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Theorem 7. Let A be a finite dimensional algebra with involution over a field F.
Then the sequence of ∗-codimensions {cn(A, ∗)}n≥1 is polynomially bounded if and
only if

χn(A, ∗) =
∑

|λ|+|µ|=n
n−λ1<q

mλ,µχλ,µ

where J(A)q = 0.

Proof. Since the decomposition of Vn(∗) into irreducible Hn-modules does not
change by extending the scalars, as in the proof of Theorem 3 we may assume
that F is algebraically closed.

Suppose that the ∗-codimensions of A are polynomially bounded and let λ =
(λ1, . . . , λt) ` r, µ ` n − r be such that n − λ1 ≥ q. Suppose by contradiction
that mλ,µ 6= 0; then there exist tableaux Tλ, Tµ such that eTλeTµ has a non-trivial
action on Vr,n−r(A, ∗). This says that there exists a non trivial polynomial f ∈
eTλeTµVr,n−r such that f = f(s1, . . . , sr, kr+1, . . . , kn) is not a ∗-identity of A.

We have that f is a linear combination of polynomials each alternating on t
disjoint sets of λ′1, . . . , λ

′
t symmetric variables respectively. Let g be one such

polynomial; it is clear that, in order to finish the proof, it is enough to show that
g ≡ 0 in A.

Since BiBk = BiJBk = 0 for all i 6= k, we get g ≡ 0 on A unless we substitute
for the symmetric variables elements from one simple component, say Bi, and
from J . Also, since dimBi = 1, only one element of Bi can be replaced for a
variable in each alternating set. Thus, since A− ⊆ J, in all we substitute at least
| λ | −λ1+ | µ |= n− λ1 ≥ q elements from J . Since Jq = 0 we get that g ≡ 0 also
in this case and the proof of the first part is complete.

Suppose now that χn(A, ∗) =
∑
|λ|+|µ|=n,n−λ1<q

mλ,µχλ,µ. By a result of Berele
([B, Theorem 15]) the multiplicities mλ,µ are polynomially bounded. By recalling
that if | λ | −λ1 is bounded by a constant, then dλ is polynomially bounded, we get

cn(A, ∗) =
∑

|λ|+|µ|=n
n−λ1<q

mλ,µdλ,µ ≤ αnt
n∑

r=n−q

∑
λ`r,µ`n−r
n−λ1<q

(
n
r

)
dλdµ

≤ α1n
t1

q∑
r=0

(
n
r

)
≤ α1n

t1nq+1.

The previous theorem says that a finite dimensional algebra with involution A
has polynomial growth of the ∗-codimensions if and only if all the irreducible Hn-
characters χλ,µ appearing with non-zero multiplicity in χn(A, ∗) are such that the
diagram of λ, without the first row, and the diagram of µ contain in all at most q
boxes.
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