A CHARACTERIZATION OF ALGEBRAS WITH POLYNOMIAL GROWTH OF THE CODIMENSIONS

A. GIAMBRUNO AND M. ZAICEV

(Communicated by Ken Goodearl)

Abstract

Let A be an associative algebras over a field of characteristic zero. We prove that the codimensions of A are polynomially bounded if and only if any finite dimensional algebra B with $\operatorname{Id}(A)=I d(B)$ has an explicit decomposition into suitable subalgebras; we also give a decomposition of the n-th cocharacter of A into suitable S_{n}-characters.

We give similar characterizations of finite dimensional algebras with involution whose $*$-codimension sequence is polynomially bounded. In this case we exploit the representation theory of the hyperoctahedral group.

§1. Introduction

Let F be a field of characteristic zero and $F\langle X\rangle=F\left\langle x_{1}, x_{2}, \ldots\right\rangle$ the free algebra of countable rank over F. If A is a PI-algebra over F, that is, an algebra satisfying a polynomial identity, we let $I d(A)$ be the T-ideal of $F\langle X\rangle$ of identities of A. It is well known that $\operatorname{Id}(A)$ is completely determined by the multilinear polynomials it contains; if $V_{n}=\operatorname{Span}\left\{x_{\sigma(1)} \cdots x_{\sigma(n)} \mid \sigma \in S_{n}\right\}$ is the space of multilinear polynomials in x_{1}, \ldots, x_{n}, then the sequence $c_{n}(A)=\operatorname{dim}_{F} \frac{V_{n}}{V_{n} \cap \operatorname{Id}(A)}, n=1,2, \ldots$, is called the sequence of codimensions of A and it is an important numerical invariant of $\operatorname{Id}(A)$.

It was proved by Regev in [R$]$ that for any PI-algebra $A, c_{n}(A)$ is exponentially bounded, i.e., there exist constants $a, \alpha>0$ such that $c_{n}(A) \leq a \alpha^{n}$ for all n.

In this paper we study algebras A whose codimension sequence is polynomially bounded i.e., such that for all $n, c_{n}(A) \leq a n^{t}$ for some constants a, t. Kemer in K1] gave a characterization of such T-ideals in the language of the representation theory of S_{n}. It also follows from K2] that if $c_{n}(A)$ is polynomially bounded, then $I d(A)=I d(B)$ for a suitable finite dimensional algebra B.

For any finite dimensional algebra A over an algebraically closed field we shall prove that A has polynomial growth of the codimensions if and only if $A=A_{0} \oplus A_{1} \oplus$ $\cdots \oplus A_{m}$ where $A_{0}, A_{1}, \ldots, A_{m}$ are F-algebras such that 1) for $i=1, \ldots, m, A_{i}=$ $B_{i}+J_{i}$, where $B_{i} \cong F$ and J_{i} is a nilpotent ideal of $\left.A_{i}, 2\right) A_{0}, J_{1}, \ldots, J_{m}$ are nilpotent right ideals of A and 3) $A_{i} A_{k}=0$ for all $i, k \in\{1, \ldots, m\}, i \neq k$ and $B_{i} A_{0}=0$.

[^0]Another description of such algebras is given, as in Kemer's paper [K1], in the language of the cocharacters as follows. The symmetric group S_{n} acts on the left on V_{n} by $\sigma f\left(x_{1}, \ldots, x_{n}\right)=f\left(x_{\sigma(1)}, \ldots, x_{\sigma(n)}\right), \sigma \in S_{n}, f\left(x_{1}, \ldots, x_{n}\right) \in V_{n}$. This action induces a structure of left S_{n}-module on $\frac{V_{n}}{V_{n} \cap I d(A)}$ and we write $\chi_{n}(A)$ for its S_{n}-character; $\chi_{n}(A)$ is called the n-th cocharacter of A. Let χ_{λ} denote the irreducible S_{n}-character associated to the partition $\lambda=\left(\lambda_{1}, \ldots, \lambda_{t}\right) \vdash n$ and write $\chi_{n}(A)=\sum_{\lambda \vdash n} m_{\lambda} \chi_{\lambda}$ where $m_{\lambda} \geq 0$ are the corresponding multiplicities. We shall prove that if $\operatorname{dim}_{F} A<\infty, A$ has polynomial growth of the codimensions if and only if

$$
\chi_{n}(A)=\sum_{\substack{\lambda \vdash n \\|\lambda|-\lambda_{1}<q}} m_{\lambda} \chi_{\lambda}
$$

where J is the Jacobson radical of A and $J^{q}=0$.
In the second part of the paper we address ourself to similar questions in the setting of algebras with involution. Let $F\langle X, *\rangle=F\left\langle x_{1}, x_{1}^{*}, x_{2}, x_{2}^{*}, \ldots\right\rangle$ be the free algebra with involution $*$ and $V_{n}(*)$ the space of multilinear $*$-polynomials in $x_{1}, x_{1}^{*}, \ldots, x_{n}, x_{n}^{*}$. For an algebra with involution A we let $I d(A, *)$ be the ideal of $*$-identities of A; then the sequence of $*$-codimensions is

$$
c_{n}(A, *)=\operatorname{dim}_{F} \frac{V_{n}(*)}{V_{n}(*) \cap \operatorname{Id}(A, *)}, n=1,2, \ldots
$$

In the last section we characterize finite dimensional algebras A such that $c_{n}(A, *)$ is polynomially bounded. Moreover by using the representation theory of the hyperoctahedral group $\mathbb{Z}_{2} \sim S_{n}$, we shall obtain a characterization of A in terms of the $*$-cocharacter sequence of A.

§2. Algebras with polynomial growth of the codimensions

In this section we shall characterize algebras with polynomial growth of the codimensions. The following reduction is due to Kemer.

Theorem 1. Let A be a PI-algebra. If for all $n, c_{n}(A) \leq a n^{t}$ for some constants a, t, then there exists a finite dimensional algebra B such that $\operatorname{Id}(A)=\operatorname{Id}(B)$.

Proof. Let G be the Grassmann algebra of countable dimension over F. By KR], $c_{n}(G)=2^{n-1}$, hence, for n large, $c_{n}(A)<c_{n}(G)$. This implies that $\operatorname{Id}(A) \nsubseteq I d(G)$ and, by a theorem of Kemer [K2, Theorem 2.3] there exists a finite dimensional algebra B such that $\operatorname{Id}(A)=\operatorname{Id}(B)$.

We remark that $c_{n}(A)$ does not change upon extension of the ground field F. In fact, if K is an extension field of F, then $\operatorname{Id}(A) \otimes_{F} K=I d\left(A \otimes_{F} K\right)$. Therefore in studying properties of $c_{n}(A)$ we may as well assume that F is an algebraically closed field.

Theorem 2. Let A be a finite dimensional algebra over an algebraically closed field F. Then the sequence of codimensions $\left\{c_{n}(A)\right\}_{n \geq 1}$ is polynomially bounded if and only if

1) $A=A_{0} \oplus A_{1} \oplus \cdots \oplus A_{m}$ a vector space direct sum of F-algebras where for $i=$ $1, \ldots, m, A_{i}=B_{i}+J_{i}, B_{i} \cong F, J_{i}$ a nilpotent ideal of A_{i} and $A_{0}, J_{1}, \ldots, J_{m}$ are nilpotent right ideals of A;
2) for all $i, k \in\{1, \ldots, m\}, i \neq k, A_{i} A_{k}=0$ and $B_{i} A_{0}=0$.

Proof. Let $A=B+J$ be the Wedderburn-Malcev decomposition of A (CR Theorem 72.19]) where B is a semisimple subalgebra of A and $J=J(A)$ its Jacobson radical. Write $B=B_{1} \oplus \cdots \oplus B_{m}$ with B_{1}, \ldots, B_{m} simple F-algebras. Since $c_{n}(A)$ is polynomially bounded, by [GZ, $B_{i} J B_{k}=0$ for all $i \neq k$ and $\operatorname{dim}_{F} B_{i}=1, i, k=1, \ldots, m$.

Let $e=e_{1}+\cdots+e_{m}$ be the decomposition of the unit element of B into orthogonal central (in B) idempotents; thus $e_{i} B=B_{i} \cong F$. Define for all $i=$ $1, \ldots, m, J_{i}=e_{i} J$ and $J_{0}=\{x \in J \mid B x=0\}$. It is easy to show that $A=$ $B+J=\left(B_{1}+J_{1}\right) \oplus \cdots \oplus\left(B_{m}+J_{m}\right) \oplus J_{0}$; let $A_{i}=B_{i}+J_{i}$ and $A_{0}=J_{0}$.

For $i \neq k \in\{1, \ldots, m\}, A_{i} A_{k}=\left(B_{i}+J_{i}\right)\left(B_{k}+J_{k}\right)=0$ since $e_{i} e_{k}=0$ and $B_{i} J B_{k}=0$. Also, for $i \neq 0, B_{i} A_{0}=0$.

Viceversa, let A satisfy 1) and 2). From the relations $A_{i} A_{k}=0$ and $B_{i} A_{0}=0$ it follows that $J=A_{0}+J_{1}+\cdots+J_{m}$ is a nilpotent two-sided ideal of A and $A=B_{1} \oplus \cdots \oplus B_{m} \oplus J$ where $B_{i} \cong F$ for all i. Since from the defining relations $A_{i} A_{k}=0$ and $B_{i} A_{0}=0$ it follows that $B_{i} J B_{k}=0$ for all $i \neq k$, then $c_{n}(A)$ is polynomially bounded by GZ].

As an immediate consequence of the above result we get
Corollary 1. Let A be the algebra described in the previous theorem. Let J be the Jacobson radical of A and, for $i=1, \ldots, m$, let $C_{i}=A_{i} \oplus A_{0}$. Then

$$
I d(A)=I d\left(C_{1}\right) \cap \ldots \cap I d\left(C_{m}\right) \cap I d(J) .
$$

Proof. Let $f \in I d\left(C_{1}\right) \cap \ldots \cap I d\left(C_{m}\right) \cap I d(J)$ and suppose that $f \notin I d(A)$. We may clearly assume that f is multilinear and let $r_{1}, \ldots, r_{s} \in A$ be such that $f\left(r_{1}, \ldots, r_{s}\right) \neq 0$.

If $r_{1}, \ldots, r_{s} \in J$, then $f \notin I d(J)$, a contradiction. Hence there exists $r_{i} \notin J$; by linearity we may assume that $r_{i} \in B_{k}$ for some k. Recall that, for all $l, B_{l} A_{0}=$ $0, J_{l}$ is a right ideal of A and, in case $l \neq k, A_{k} A_{l}=A_{l} A_{k}=0$. From an easy calculation it follows that $r_{1}, \ldots, r_{i-1}, r_{i+1}, \ldots, r_{s} \in A_{k} \cup A_{0}$. But then $f \notin \operatorname{Id}\left(C_{k}\right)$, a contradiction.

What can be said if F is not algebraically closed?
Let A be a finite dimensional algebra over a field F and write $A=B+J, B=$ $B_{1} \oplus \cdots \oplus B_{m}$ with the B_{i} 's simple algebras. If \bar{F} is the algebraic closure of F, we write $\bar{A}=A \otimes_{F} \bar{F}$; moreover, since $J(\bar{A})=J(A) \otimes_{F} \bar{F}$ (see Ro Theorem 2.5.36]), we get that

$$
\bar{A} \cong \overline{B_{1}} \oplus \cdots \oplus \overline{B_{m}}+J(\bar{A})
$$

where $\overline{B_{i}}=B_{i} \otimes_{F} \bar{F}$ are semisimple algebras.
Let $Z\left(B_{i}\right)$ be the center of B_{i} and $t_{i}=\operatorname{dim}_{F} Z\left(B_{i}\right)$. Then $\overline{B_{i}} \cong C_{i 1} \oplus \cdots \oplus C_{i t_{i}}$ where $C_{i 1} \cong \ldots \cong C_{i k}$ are central simple algebras over \bar{F}.

In case $c_{n}(A)=c_{n}(\bar{A})$ is polynomially bounded, by [GZ], $C_{i k} \cong \bar{F}$ for all i, k and $C_{i k} J(\bar{A}) C_{u v}=0$ if $(i, k) \neq(u, v)$. It follows that for all $i=1, \ldots, m, B_{i}$ is a field extension of F of degree t_{i}. Since $\operatorname{char} F=0$, we write $B_{i}=F\left(a_{i}\right)$, a simple algebraic extension of F of degree t_{i}. We have shown that if F is any field and A is an F-algebra with polynomial growth of the codimensions, then

$$
A \cong F\left(a_{1}\right) \oplus \cdots \oplus F\left(a_{m}\right)+J(A)
$$

and for all $i \neq k, F\left(a_{i}\right) J(A) F\left(a_{k}\right)=0$.

We next give a characterization of polynomial growth in terms of the cocharacter sequence of the algebra.

In the sequel for $\lambda \vdash n$ we also write $|\lambda|=n$. We write $\chi_{\lambda}(1)=d_{\lambda}$ for the degree of the irreducible S_{n}-character χ_{λ} and, if T_{λ} is a tableau of shape λ, we let $e_{T_{\lambda}}$ be the corresponding essential idempotent of $F S_{n}$. Notice that if $\lambda=\left(\lambda_{1}, \lambda_{2}, \ldots\right) \vdash n$, then $|\lambda|-\lambda_{1}$ denotes the number of boxes below the first row of the diagram of λ.

Theorem 3. Let A be a finite dimensional algebra over a field F. Then $\left\{c_{n}(A)\right\}_{n \geq 1}$ is polynomially bounded if and only if

$$
\chi_{n}(A)=\sum_{\substack{\lambda \vdash n \\|\lambda|-\lambda_{1}<q}} m_{\lambda} \chi_{\lambda}
$$

where $J(A)^{q}=0$.
Proof. Note that the decomposition of $\chi_{n}(A)$ into irreducible components does not change when extending the base field. Therefore, since $J\left(A \otimes_{F} \bar{F}\right)^{q}=0$, we may assume, without lost of generality, that F is algebraically closed.

Suppose first that the codimensions of A are polynomially bounded. Let λ be a partition of n such that $|\lambda|-\lambda_{1} \geq q$ and suppose by contradiction that $m_{\lambda} \neq 0$. Then there exists a tableau T_{λ} such that $e_{T_{\lambda}}\left(x_{1}, \ldots, x_{n}\right) \notin \operatorname{Id}(A)$. Let $\lambda^{\prime}=\left(\lambda_{1}^{\prime}, \ldots, \lambda_{t}^{\prime}\right)$ be the conjugate partition of λ. Then $e_{T_{\lambda}}\left(x_{1}, \ldots, x_{n}\right)$ is a linear combination of polynomials each alternating on t disjoint sets of $\lambda_{1}^{\prime}, \ldots, \lambda_{t}^{\prime}$ variables, respectively. We shall reach a contradiction by proving that each such polynomial f vanishes in A.

Fix a basis of A which is the union of bases of B_{1}, \ldots, B_{m} and J respectively. Since $B_{i} B_{k}=B_{i} J B_{k}=0$ for all $i \neq k$, in order to get a non-zero value of f we must replace all the variables with elements of J and of one simple component, say, B_{i}. Also, since $\operatorname{dim} B_{i}=1$, we can substitute at most one element of B_{i} in each alternating set. Hence we can substitute in all at most $t=\lambda_{1}$ elements from B_{i}. It follows that in order to get a non-zero value, we must substitute at least $|\lambda|-\lambda_{1} \geq q$ elements from J. Since $J^{q}=0$, we get that $f \equiv 0$ and with this contradiction the proof of the first part of the theorem is complete.

Suppose now that $\chi_{n}(A)=\sum_{\lambda \vdash n} m_{\lambda} \chi_{\lambda}$ and $m_{\lambda}=0$ whenever $|\lambda|-\lambda_{1} \geq q$. By [BR] the multiplicities m_{λ} are polynomially bounded; hence

$$
c_{n}(A)=\sum_{\substack{\lambda \vdash n \\|\lambda|-\lambda_{1}<q}} m_{\lambda} d_{\lambda} \leq C n^{t} \sum_{\substack{\lambda|-n\\| \lambda \mid-\lambda_{1}<q}} d_{\lambda}
$$

and the proof now follows from the hook formula for the degrees d_{λ}.
The previous theorem says that A has polynomial growth of the codimensions if and only if all the irreducible characters appearing with non-zero multiplicity in $\chi_{n}(A)$ have associated diagram with at most $q-1$ boxes below the first row where $J^{q}=0$.

§3. Finite dimensional algebras with involution

In this section we shall prove that if A is a finite dimensional algebra with involution $*$, then in the decomposition $A=B+J$ we can choose B to be invariant under *. Beside its own interest, this result will be used in the next section. Throughout we shall assume that char $F \neq 2$.

Theorem 4. Let A be a finite dimensional algebra with involution * over F and J its Jacobson radical. Then $J^{*}=J$ and there exists a maximal semisimple subalgebra B such that $B=B^{*}$ and $A=B+J$.

Proof. It is obvious that $J^{*}=J$. Let $A=B+J$ with B a semisimple subalgebra of A and suppose first that $J^{2}=0$.

Since B^{*} is also a maximal semisimple subalgebra of A, by the WedderburnMalcev theorem there exists $y \in J$ such that $B^{*}=(1-y) B(1+y)$. For $b \in B$ let $\bar{b} \in B$ be such that $b^{*}=(1-y) \bar{b}(1+y)$. Then $b=b^{* *}=\left(1+y^{*}\right) \bar{b}^{*}\left(1-y^{*}\right)=$ $\left(1+y^{*}\right)(1-y) \overline{\bar{b}}(1+y)\left(1-y^{*}\right)$, for a suitable $\overline{\bar{b}} \in B$. It follows that we can write $b=\overline{\bar{b}}+j$ for a suitable $j \in J$; hence $b-\overline{\bar{b}} \in B \cap J=0$ and $b=\overline{\bar{b}}$ follows. But then, from the above, $b=\left(1+y^{*}\right) \bar{b}^{*}\left(1-y^{*}\right)=\left(1+y^{*}\right)(1-y) b(1+y)\left(1-y^{*}\right)=$ $\left(1-y+y^{*}\right) b\left(1+y-y^{*}\right)$ since $J^{2}=0$. This says that $y-y^{*}$ commutes with b. Therefore by writing $y=\frac{y+y^{*}}{2}+\frac{y-y^{*}}{2}$, we get $b^{*}=(1-y) \bar{b}(1+y)=\left(1-\frac{y+y^{*}}{2}\right) \bar{b}\left(1+\frac{y+y^{*}}{2}\right)$.

We have proved that $B^{*}=(1-s) B(1+s)$ for a suitable symmetric element $s=s^{*} \in J$. At this stage it is easy to check that $B^{\prime}=\left(1-\frac{s}{2}\right) B\left(1+\frac{s}{2}\right)$ is the desired invariant subalgebra of A.

Suppose now that $J^{n}=0, J^{n-1} \neq 0, n>2$. Set $J^{n-1}=I$. Since $I^{*}=I, A / I$ has an induced involution; also $J(A / I)=J / I$ and $J(A / I)^{n-1}=0$. Therefore, by induction on $n, A / I=B / I+J / I$ for a suitable semisimple subalgebra $B / I=$ $(B / I)^{*}$. It follows that we can write $B=C+I$ where C is a semisimple subalgebra of B and, since $B^{*}=B$, by the first part we may assume that $C^{*}=C$. By counting dimensions we get that C is a maximal semisimple subalgebra of A and $A=C+J$ is the desired decomposition.

Recall that an algebra with involution A is $*$-simple if A has no proper $*$-invariant ideals (i.e., ideals I such that $I^{*}=I$). It is well known and easy to prove that if A is *-simple, then either A is simple or $A \cong A_{1} \oplus A_{1}^{\mathrm{op}}$ where A_{1} is a simple homomorphic image of A and $*$ on $A_{1} \oplus A_{1}^{\mathrm{op}}$ is the exchange involution $(a, b)^{*}=(b, a)$ (see Ro Proposition 2.13.24]).

Remark 1. If B is a semisimple algebra with involution and $\operatorname{dim}_{F} B<\infty$, then $B=B_{1} \oplus \cdots \oplus B_{t}$ where B_{1}, \ldots, B_{t} are $*$-simple algebras.

Proof. Let $B=C_{1} \oplus \cdots \oplus C_{m}$ be the decomposition of B into simple components. Let e_{1}, \ldots, e_{m} be the corresponding orthogonal central idempotents. Let $i \in\{1, \ldots, m\}$; if $e_{i}^{*}=e_{i}$, then $C_{i}=C_{i}^{*}=e_{i} B$ is $*$-simple. If $e_{i}^{*} \neq e_{i}$, then $e_{i}^{*} B$ is still a minimal ideal of B which implies that $e_{i}^{*}=e_{j}$ for some $j \in\{1, \ldots, m\}$. Hence $C_{i} \oplus C_{j}$ is $*$-simple.

§4. *-CODIMENSIONS WITH POLYNOMIAL GROWTH

Throughout this section F will be a field of characteristic zero, and A an F algebra with involution $*$. Let $A^{+}=\left\{a \in A \mid a=a^{*}\right\}$ and $A^{-}=\left\{a \in A \mid a=-a^{*}\right\}$ be the sets of symmetric and skew elements of A respectively.

We consider $F\langle X, *\rangle=F\left\langle x_{1}, x_{1}^{*}, x_{2}, x_{2}^{*}, \ldots\right\rangle$ the free algebra with involution $*$ of countable rank. Recall that $f\left(x_{1}, x_{1}^{*}, \ldots, x_{n}, x_{n}^{*}\right) \in F\langle X, *\rangle$ is a $*$-polynomial identity for A if $f\left(a_{1}, a_{1}^{*}, \ldots, a_{n}, a_{n}^{*}\right)=0$ for all $a_{1}, \ldots, a_{n} \in A$. The set $\operatorname{Id}(A, *)$ of all $*$-polynomial identities of A is a T-ideal of $F\langle X, *\rangle$, i.e., an ideal invariant
under all endomorphisms of $F\langle X, *\rangle$ commuting with the involution. Let

$$
V_{n}(*)=\operatorname{Span}_{F}\left\{x_{\sigma(1)}^{a_{1}} \cdots x_{\sigma(n)}^{a_{n}} \mid \sigma \in S_{n}, a_{i} \in\{1, *\}\right\}
$$

be the space of multilinear $*$-polynomials in $x_{1}, x_{1}^{*}, \ldots, x_{n}, x_{n}^{*}$.
If we set $s_{i}=x_{i}+x_{i}^{*}$ and $k_{i}=x_{i}-x_{i}^{*}, i=1,2, \ldots$, then, since char $F \neq 2$, we can also write

$$
V_{n}(*)=\operatorname{Span}_{F}\left\{w_{\sigma(1)} \cdots w_{\sigma(n)} \mid \sigma \in S_{n}, w_{i}=s_{i} \text { or } w_{i}=k_{i}, i=1, \ldots, n\right\} .
$$

Let H_{n} be the hyperoctahedral group. Recall that $H_{n}=\mathbb{Z}_{2} \sim S_{n}$ is the wreath product of $\mathbb{Z}_{2}=\{1, *\}$, the multiplicative group of order 2 , and S_{n}. We write the elements of H_{n} as $\left(a_{1}, \ldots, a_{n} ; \sigma\right)$ where $a_{i} \in \mathbb{Z}_{2}, \sigma \in S_{n}$. The action of H_{n} on $V_{n}(*)$ defined in GR$]$ can be rewritten (see [DG]) as follows: for $h=\left(a_{1}, \ldots, a_{n} ; \sigma\right) \in H_{n}$ define $h s_{i}=s_{\sigma(i)}, h k_{i}=k_{\sigma(i)}^{a_{\sigma(i)}}= \pm k_{\sigma(i)}$ and then extend this action diagonally to $V_{n}(*)$. Hence $V_{n}(*)$ becomes a left H_{n}-module and, since $V_{n}(*) \cap \operatorname{Id}(A, *)$ is a subspace invariant under this action, we can view $V_{n}(*) /\left(V_{n}(*) \cap I d(A, *)\right)$ as an H_{n}-module. Let $\chi_{n}(A, *)$ be its character.

The sequence $c_{n}(A, *)=\chi_{n}(A, *)(1)=\operatorname{dim}_{F} \frac{V_{n}(*)}{V_{n}(*) \cap I d(A, *)}, n=1,2, \ldots$, is called the sequence of $*$-codimensions of A.

Recall that there is a one-to-one correspondence between irreducible H_{n}-characters and pairs of partitions (λ, μ), where $\lambda \vdash r, \mu \vdash n-r$, for all $r=0,1, \ldots, n$. If $\chi_{\lambda, \mu}$ denotes the irreducible H_{n}-character corresponding to (λ, μ), then we can write

$$
\chi_{n}(A, *)=\sum_{r=0}^{n} \sum_{\substack{\lambda \vdash r \\ \mu \vdash n-r}} m_{\lambda, \mu} \chi_{\lambda, \mu}
$$

where $m_{\lambda, \mu} \geq 0$ are the corresponding multiplicities.
Now, for $r=0, \ldots, n$, we let

$$
\begin{aligned}
& V_{r, n-r}=\operatorname{Span}\left\{w_{\sigma(1)} \cdots w_{\sigma(n)} \mid \sigma \in S_{n}, w_{i}=s_{i} \text { for } i=1, \ldots, r\right. \text { and } \\
& \left.\qquad w_{i}=k_{i} \text { for } i=r+1, \ldots, n\right\} .
\end{aligned}
$$

Thus $V_{r, n-r}$ is the space of multilinear polynomials in $s_{1}, \ldots, s_{r}, k_{r+1}, \ldots, k_{n}$. It is clear that in order to study $V_{n}(*) \cap I d(A, *)$ it is enough to study $V_{r, n-r} \cap \operatorname{Id}(A, *)$ for all r.

If we let S_{r} act on the symmetric variables s_{1}, \ldots, s_{r} and S_{n-r} on the skew variables k_{r+1}, \ldots, k_{n}, we obtain an action of $S_{r} \times S_{n-r}$ on $V_{r, n-r}$ and

$$
V_{r, n-r}(A, *)=\frac{V_{r, n-r}}{V_{r, n-r} \cap I d(A, *)}
$$

becomes a left $S_{r} \times S_{n-r}$-module. Let $\psi_{r, n-r}(A, *)$ be its character and

$$
c_{r, n-r}(A, *)=\psi_{r, n-r}(A, *)(1)=\operatorname{dim}_{F} V_{r, n-r}(A, *)
$$

We write $\psi_{\lambda, \mu}$ for the irreducible $S_{r} \times S_{n-r}$-character associated to the pair (λ, μ) with $\lambda \vdash r, \mu \vdash n-r$. The following result holds.
Theorem 5 ([DG, Theorem 1.3]). Let A be an algebra with involution; then, for all n,

$$
\chi_{n}(A, *)=\sum_{r=0}^{n} \sum_{\substack{\lambda \vdash r \\ \mu \vdash n-r}} m_{\lambda, \mu} \chi_{\lambda, \mu}, \quad \text { and } \quad \psi_{r, n-r}(A, *)=\sum_{\substack{\lambda \vdash r \\ \mu \vdash n-r}} m_{\lambda, \mu} \psi_{\lambda, \mu}
$$

Moreover

$$
c_{n}(A, *)=\sum_{r=0}^{n}\binom{n}{r} c_{r, n-r}(A, *)
$$

We next characterize finite dimensional algebras A with polynomial growth of the $*$-codimensions.

Theorem 6. Let A be a finite dimensional algebra with involution over an algebraically closed field F. Then the sequence of $*$-codimensions $\left\{c_{n}(A, *)\right\}_{n \geq 1}$ is polynomially bounded if and only if

1) the sequence of codimensions $\left\{c_{n}(A)\right\}_{n \geq 1}$ is polynomially bounded;
2) $A=B+J$, where B is a maximal semisimple subalgebra of A and $b=b^{*}$ for all $b \in B$.

Proof. By GR] Lemma 4.4], for all $n, c_{n}(A) \leq c_{n}(A, *) \leq \alpha n^{t}$ for some constants α, t, and the sequence of codimensions is polynomially bounded. From GZ it follows that $A=B+J$, where $B=B_{1} \oplus \cdots \oplus B_{m}$ and $B_{i} \cong F, B_{i} J B_{k}=0$ for all $i \neq k$. By Theorem 4 we may also assume that $B^{*}=B$.

Suppose by contradiction that $*$ is not the identity map on B; then, by Remark 1, there exist B_{i}, B_{k} such that $C=B_{i} \oplus B_{k} \cong F \oplus F$ is $*$-simple with involution $(a, b)^{*}=(b, a)$. Notice that, for all $\sigma \in S_{n}$ and $a_{1}, \ldots, a_{n} \in\{1, *\}$,

$$
x_{\sigma(1)}^{a_{\sigma(1)}} \cdots x_{\sigma(n)}^{a_{\sigma(n)}} \equiv x_{1}^{a_{1}} \cdots x_{n}^{a_{n}}(\bmod \operatorname{Id}(C, *))
$$

Moreover the set $\left\{x_{1}^{a_{1}} \cdots x_{n}^{a_{n}} \mid a_{i} \in\{1, *\}\right\}$ is linearly independent modulo $\operatorname{Id}(C, *)$. It follows that $c_{n}(C, *)=2^{n}$. Since $c_{n}(C, *) \leq c_{n}(A, *)$ we get a contradiction.

Suppose now that $A=B+J, c_{n}(A)$ is polynomially bounded and $*$ is the identity on B. In this case, if $a \in A$, write $a=b+j, b \in B, j \in J$. Then $a-a^{*}=j-j^{*} \in J$ and $A^{-} \subseteq J$.

Notice that if $f\left(x_{1}, \ldots, x_{n}\right) \in V_{n} \cap I d(A)$, then, for every $r=0, \ldots, n$,

$$
f\left(s_{1}, \ldots, s_{r}, k_{r+1}, \ldots, k_{n}\right) \in V_{r, n-r} \cap I d(A, *)
$$

Hence $c_{r, n-r}(A, *) \leq c_{n}(A) \leq \alpha n^{t}$, for some α, t, for all r. Let $J^{q}=0$. Since $A^{-} \subseteq J$, then, for all $r \leq n-q, V_{r, n-r} \cap I d(A, *)=V_{r, n-r}$ and $c_{r, n-r}(A, *)=0$ follows. By Theorem 5 for all n we obtain

$$
\begin{gathered}
c_{n}(A, *)=\sum_{r=0}^{n}\binom{n}{r} c_{r, n-r}(A, *) \leq \alpha n^{t} \sum_{r=n-q+1}^{n}\binom{n}{r} \\
=\alpha n^{t} \sum_{r=0}^{q-1}\binom{n}{r} \leq \alpha n^{t+q}
\end{gathered}
$$

and $c_{n}(A, *)$ is polynomially bounded.
Next we want to get an analogue of Theorem 3 above by using the representation theory of the hyperoctahedral group H_{n}. We write $\chi_{\lambda, \mu}(1)=d_{\lambda, \mu}$ for the degree of the irreducible H_{n}-character $\chi_{\lambda, \mu}$. Recall that if $\lambda \vdash n, \mu \vdash n-r$, then $d_{\lambda, \mu}=$ $\binom{n}{r} d_{\lambda} d_{\mu}($ see [DG]).

Theorem 7. Let A be a finite dimensional algebra with involution over a field F. Then the sequence of $*$-codimensions $\left\{c_{n}(A, *)\right\}_{n \geq 1}$ is polynomially bounded if and only if

$$
\chi_{n}(A, *)=\sum_{\substack{|\lambda|+|\mu|=n \\ n-\lambda_{1}<q}} m_{\lambda, \mu} \chi_{\lambda, \mu}
$$

where $J(A)^{q}=0$.
Proof. Since the decomposition of $V_{n}(*)$ into irreducible H_{n}-modules does not change by extending the scalars, as in the proof of Theorem 3 we may assume that F is algebraically closed.

Suppose that the $*$-codimensions of A are polynomially bounded and let $\lambda=$ $\left(\lambda_{1}, \ldots, \lambda_{t}\right) \vdash r, \mu \vdash n-r$ be such that $n-\lambda_{1} \geq q$. Suppose by contradiction that $m_{\lambda, \mu} \neq 0$; then there exist tableaux T_{λ}, T_{μ} such that $e_{T_{\lambda}} e_{T_{\mu}}$ has a non-trivial action on $V_{r, n-r}(A, *)$. This says that there exists a non trivial polynomial $f \in$ $e_{T_{\lambda}} e_{T_{\mu}} V_{r, n-r}$ such that $f=f\left(s_{1}, \ldots, s_{r}, k_{r+1}, \ldots, k_{n}\right)$ is not a $*$-identity of A.

We have that f is a linear combination of polynomials each alternating on t disjoint sets of $\lambda_{1}^{\prime}, \ldots, \lambda_{t}^{\prime}$ symmetric variables respectively. Let g be one such polynomial; it is clear that, in order to finish the proof, it is enough to show that $g \equiv 0$ in A.

Since $B_{i} B_{k}=B_{i} J B_{k}=0$ for all $i \neq k$, we get $g \equiv 0$ on A unless we substitute for the symmetric variables elements from one simple component, say B_{i}, and from J. Also, since $\operatorname{dim} B_{i}=1$, only one element of B_{i} can be replaced for a variable in each alternating set. Thus, since $A^{-} \subseteq J$, in all we substitute at least $|\lambda|-\lambda_{1}+|\mu|=n-\lambda_{1} \geq q$ elements from J. Since $J^{q}=0$ we get that $g \equiv 0$ also in this case and the proof of the first part is complete.

Suppose now that $\chi_{n}(A, *)=\sum_{|\lambda|+|\mu|=n, n-\lambda_{1}<q} m_{\lambda, \mu} \chi_{\lambda, \mu}$. By a result of Berele ([B, Theorem 15]) the multiplicities $m_{\lambda, \mu}$ are polynomially bounded. By recalling that if $|\lambda|-\lambda_{1}$ is bounded by a constant, then d_{λ} is polynomially bounded, we get

$$
\begin{gathered}
c_{n}(A, *)=\sum_{\substack{|\lambda|+|\mu|=n \\
n-\lambda_{1}<q}} m_{\lambda, \mu} d_{\lambda, \mu} \leq \alpha n^{t} \sum_{\substack{r=n-q}}^{n} \sum_{\substack{\lambda \vdash r, \mu \vdash n-r \\
n-\lambda_{1}<q}}\binom{n}{r} d_{\lambda} d_{\mu} \\
\leq \alpha_{1} n^{t_{1}} \sum_{r=0}^{q}\binom{n}{r} \leq \alpha_{1} n^{t_{1}} n^{q+1}
\end{gathered}
$$

The previous theorem says that a finite dimensional algebra with involution A has polynomial growth of the $*$-codimensions if and only if all the irreducible $H_{n^{-}}$ characters $\chi_{\lambda, \mu}$ appearing with non-zero multiplicity in $\chi_{n}(A, *)$ are such that the diagram of λ, without the first row, and the diagram of μ contain in all at most q boxes.

References

[BR] A. Berele and A. Regev, Applications of hook diagrams to P.I. algebras, J. Algebra 82 (1983), 559-567. MR 84g:16012
[B] A. Berele, Cocharacter sequences for algebras with Hopf algebra actions, J. Algebra 185 (1996), 869-885. MR 97h:16032
[CR] C. W. Curtis and I. Reiner, Representation Theory of Finite Groups and Associative Algebras, John Wiley and Sons, New York, 1962. MR 90g:16001
[DG] V. Drensky and A. Giambruno, Cocharacters, codimensions and Hilbert series of the polynomial identities for 2×2 matrices with involution, Canadian J. Math. 46 (1994), 718-733.
[GR] A. Giambruno and A. Regev, Wreath products and P.I. algebras, J. Pure Applied Algebra 35 (1985), 133-149. MR 86e:16027
[GZ] A. Giambruno and M. Zaicev, On codimension growth of finitely generated associative algebras, Adv. Math. 140 (1998), 145-155. CMP 99:05
[K1] A. Kemer, T-ideals with power growth of the codimensions are Specht, Sibirskii Matematicheskii Zhurnal 19 (1978), 37-48 (Russian), English transl Siberian Math. J.
[K2] A. Kemer, Ideals of identities of associative algebras, Transl. Math. Monogr., vol. 87, Amer. Math. Soc., Providence RI, 1988. MR 92f:16031
[KR] A. Krakowsky and A. Regev, The polynomial identities of the Grassmann algebra, Trans. AMS 181 (1973), 429-438. MR 48:4005
[R] A. Regev, Existence of identities in $A \otimes B$, Israel J. Math. 11 (1972), 131-152. MR 47:3442
[Ro] L. H. Rowen, Ring Theory, Academic Press, New York, 1988. MR 89h:16001
Dipartimento di Matematica e Applicazioni, Università di Palermo, Via Archirafi 34, 90123 Palermo, Italy

E-mail address: a.giambruno@unipa.it
Department of Algebra, Faculty of Mathematics and Mechanics, Moscow State University, Moscow, 119899 Russia

E-mail address: zaicev@nw.math.msu.su

[^0]: Received by the editors December 1, 1998 and, in revised form, March 26, 1999.
 1991 Mathematics Subject Classification. Primary 16R10, 16R50; Secondary 16P99.
 The first author was partially supported by the CNR and MURST of Italy; the second author was partially supported by RFFI, grants 96-01-00146 and 96-15-96050.

