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SPACES OF DLp−TYPE AND THE HANKEL CONVOLUTION

J. J. BETANCOR AND B. J. GONZÁLEZ

(Communicated by David R. Larson)

Abstract. In this paper we introduce new function spaces that are denoted
by Hµ,p, µ > −1/2 and 1 ≤ p ≤ ∞, and that are spaces of DLp−type where
the Hankel convolution and the Hankel transformation are defined. The spaces
Hµ,p will play the same role in the Hankel setting that the spaces DLp play
in the theory of Fourier transformation.

1. Introduction

The spaces DLp , 1 ≤ p ≤ ∞, have been studied by many authors (see [2], [3],
[4], and [21], among others).

In this paper we introduce, for every µ > −1/2 and 1 ≤ p ≤ ∞, function spaces,
represented by Hµ,p, similar to DLp but replacing the usual derivative by the Bessel
operator ∆µ = x−2µ−1Dx2µ+1D. Throughout this note µ will always denote a real
number greater than −1/2. We characterize the elements and the bounded sets of
the dual space H′µ,p of Hµ,p through the Hankel convolution. Also, we define the
Hankel convolution on H′µ,p ×H′µ,q. One of the forms that Hankel transformation
takes is the following (see G. Altenburg [1], I. I. Hirschman [14] and A. L. Schwartz
[20]):

hµ (φ) (y) =
∫ ∞

0

x2µ+1 (xy)−µ Jµ(xy)φ(x)dx, y ∈ (0,∞),

where, as usual, Jµ denotes the Bessel function of the first kind and order µ. Here
we study hµ on Hµ,p and H′µ,p. The spaces Hµ,p will play the same role in the
Hankel setting that the spaces DLp ([21, p. 199]) play in the theory of the usual
convolution and the Fourier transformation. Here we establish the first properties
of the spaces Hµ,p. However, there exist other interesting questions (convolution
equations, boundary values of holomorphic functions,...) that will be investigated
related to our new spaces. In Section 3 we present some of these open questions.

Before stating our results we recall some known definitions and results about
Hankel transformation and Hankel convolution.

G. Altenburg [1] considered the space H constituted by all those complex valued
and smooth functions φ on (0,∞) such that

γm,n (φ) = sup
x∈(0,∞)

(
1 + x2

)m ∣∣∣∣( 1
x
D

)n
φ (x)

∣∣∣∣ <∞, for every m,n ∈ N.
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When H is endowed with the topology associated to the family {γm,n}m,n∈N of
seminorms, H is a Fréchet space and the Hankel transformation hµ is an automor-
phism of H [1, Satz 5]. The Hankel transform is defined on H ′, the dual space of
H , as the transpose of hµ on H and it is denoted by h′µ. That is, if T ∈ H ′, then
the Hankel transform h′µT of T is the element of H ′ defined by〈

h′µT, φ
〉

= 〈T, hµφ〉 , φ ∈ H.

For every 1 ≤ p < ∞, the space Lµ,p consists of all those measurable functions
φ on (0,∞) such that

‖φ‖µ,p =
{∫ ∞

0

|φ(x)|p x2µ+1dx

}1/p

<∞.

By Lµ,∞ we represent the space of essentially (with respect to the measure x2µ+1dx
or, equivalently, with respect to the Lebesgue measure) bounded functions on
(0,∞). The usual norm in Lµ,∞ is denoted by ‖ ‖µ,∞.

C. Herz [13] proved that the Hankel transformation hµ can be extended to Lµ,p
as a bounded operator form Lµ,p into Lµ,p′ , provided that 1 ≤ p ≤ 2. Here and in
the sequel by p′ we denote the conjugate of p, that is: p′ =

p

p− 1
, when 1 < p ≤ ∞;

p′ = 1 when p =∞, and p′ =∞ when p = 1.
It is not hard to see that if f ∈ Lµ,p, for some 1 ≤ p ≤ ∞, then f defines an

element of H ′ through

〈f, φ〉 =
∫ ∞

0

f(x)φ(x)x2µ+1dx, φ ∈ H.

Thus, Lµ,p can be seen as a subspace of H ′. Moreover, h′µf = hµf when f ∈ Lµ,p
and 1 ≤ p ≤ 2.

The Hankel convolution was introduced and investigated on Lµ,p by
I. I. Hirschman [14] and D. T. Haimo [12]. They defined the Hankel convolution
f#g of f and g by

(f#g) (x) =
∫ ∞

0

f (y) (τxg) (y)
y2µ+1

2µΓ (µ+ 1)
dy(1.1)

where the Hankel translation operator τx, x ∈ (0,∞), is defined through

(τxg) (y) =
∫ ∞

0

g (z)D (x, y, z)
z2µ+1

2µΓ (µ+ 1)
dz,

provided the above integrals exist. Here, for every x, y, z ∈ (0,∞), D (x, y, z)
represents the area of the triangle having sides with length x, y and z, when that
triangle exists, and D (x, y, z) = 0, otherwise.

In a series of papers J. J. Betancor and I. Marrero ([6], [7], [8] and [16]) stud-
ied the Hankel convolution on Zemanian spaces of distributions. The convolution
operation considered by the last author is different although closely connected to
the #−convolution defined by (1.1). We need to rewrite for # some of the results
of J. J. Betancor and I. Marrero. According to Proposition 2.1 of [16], for each
x ∈ (0,∞) the Hankel translation τx defines a continuous linear mapping from
H into itself. We define the Hankel convolution T#φ of T ∈ H ′ and φ ∈ H by
(T#φ) (x) = 〈T, τxφ〉 , x ∈ (0,∞). By Proposition 3.5 of [16] T#φ ∈ O where O is
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the space of multipliers of H (see [24, p. 134] and [5]), for every T ∈ H ′ and φ ∈ H.
Also, if T ∈ H ′ and φ, ψ ∈ H , then

〈T#φ, ψ〉 = 〈T, φ#ψ〉 .(1.2)

Inspired in [7] we introduce for every a ∈ (0,∞) the space Wm
a constituted by

all those complex valued functions ψ ∈ C2m(0,∞) such that ψ (x) = 0, for each

x > a, and the limit lim
x→0+

(
1
x
D

)k
ψ (x) exists for every k ∈ N, 0 ≤ k ≤ 2m.

By proceeding as in Lemma 2.1 of [7] we can also prove the following

Proposition 1.1. Let a ∈ (0,∞) and m ∈ N. Then there exists r0 > 0 such that
for each r ∈ N, r ≥ r0, we can find ϕr ∈ Wm

a and ψr ∈ H, with ψr (x) = 0, x > a,
for which

δ = (1−∆µ)r ϕr + ψr,

in the sense of equality in H ′. Here δ is the element of H ′ defined by

〈δ, φ〉 = lim
x→0+

φ (x) , φ ∈ H. 2

2. The spaces Hµ,p and H′µ,p and the Hankel convolution

Let 1 ≤ p ≤ ∞. We say that a measurable function f on (0,∞) is in Hµ,p if for
every k ∈ N, ∆k

µf ∈ Lµ,p, that is, there exists hk ∈ Lµ,p such that〈
∆k
µf, φ

〉
=
∫ ∞

0

(
∆k
µφ
)

(x) f(x)x2µ+1dx

=
∫ ∞

0

φ (x) hk (x)x2µ+1dx, φ ∈ H.

The space Hµ,p is endowed with the topology generated by the system
{
γkµ,p

}
k∈N

of seminorms, where

γkµ,p (f) =
∥∥∆k

µf
∥∥
µ,p

, f ∈ Hµ,p and k ∈ N.

It is not hard to see that H is continuously contained in Hµ,p.

Remark 1. It is well known that if f is a measurable function on Rn and f admits

distributional derivatives
∂α1+···+αn

∂xa1
1 . . . ∂xαnn

f ∈ L1
loc (Rn), for every α1, . . . , αn ∈ N,

then f ∈ C∞ (Rn) ([11, Corollaire IX.13]). We do not know if a similar result
holds for Hµ,p, p > 2, that is, if Hµ,p is contained in C∞ (0,∞), when 2 < p ≤ ∞.
However, we can prove thatHµ,p is contained in C∞ (0,∞), provided that 1 ≤ p ≤ 2.
Indeed, let 1 ≤ p ≤ 2 and f ∈ Hµ,p. According to [13, Theorem 3], a distributional
argument allows us to conclude that for every k ∈ N, y2khµ (f) ∈ Lµ,p′ .

Hence, Hölder’s inequality implies that y2khµ (f) ∈ Lµ,r, for every k ∈ N, pro-
vided that 1 ≤ r ≤ p′. In particular, by [13, Theorem 3], hµ (hµ (f)) ∈ Lµ,2 and

f (x) =
∫ ∞

0

(xy)−µ Jµ (xy)hµ (f) (y) y2µ+1dy, a.e. x ∈ (0,∞) .

Moreover, by invoking well-known properties of the Bessel function Jµ, we can
see that the function in the right-hand side of the last equality is in C∞ (0,∞) .
Note that we can also obtain from [13, Theorem 3] that ∆k

µf ∈ Lµ,r, for every
k ∈ N and 2 ≤ r ≤ ∞. Thus, we prove that Hµ,p is continuously contained in Hµ,r,
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for each 2 ≤ r < ∞, provided that 1 ≤ p ≤ 2. This can be seen as an embedding
theorem in the setting of our spaces.

Proposition 2.1. For every 1 ≤ p ≤ ∞, Hµ,p is a Fréchet space.

Proof. Let 1 ≤ p ≤ ∞ and let (fn)n∈N be a Cauchy sequence in Hµ,p. Since Lµ,p is
a Banach space, there exists hk ∈ Lµ,p such that ∆k

µfn −→ hk, as n→∞, in Lµ,p,
for each k ∈ N. Moreover, ∆k

µh0 = hk, k ∈ N. Indeed, let k ∈ N. We can write〈
∆k
µh0, φ

〉
=
〈
h0,∆k

µφ
〉

=
∫ ∞

0

h0 (x)
(
∆k
µφ
)

(x) x2µ+1dx

= lim
n→∞

∫ ∞
0

fn (x)
(
∆k
µφ
)

(x)x2µ+1dx = lim
n→∞

〈
fn,∆k

µφ
〉

= lim
n→∞

〈
∆k
µfn, φ

〉
= 〈hk, φ〉 , φ ∈ H.

Thus the proof is finished.

It is clear that the mapping f 7−→ ∆µf is continuous from Hµ,p into itself, for
each 1 ≤ p ≤ ∞.

Also, for every x ∈ (0,∞) and 1 ≤ p ≤ ∞, the Hankel translation τx defines a
continuous mapping from Hµ,p into itself. Indeed, let x ∈ (0,∞), 1 ≤ p ≤ ∞ and
k ∈ N. From Proposition 2.1 (ii) of [16] we can deduce that〈

∆k
µτxf, φ

〉
=
〈
τx∆k

µf, φ
〉
, f ∈ Hµ,p and φ ∈ H.

Since τx is a contractive operator in Lµ,p [23, p. 16], ∆k
µτxf ∈ Lµ,p, and∥∥∆k

µτxf
∥∥
µ,p
≤
∥∥∆k

µf
∥∥
p

for every f ∈ Hµ,p. Thus we conclude that τx is bounded from Hµ,p into itself, for
all x ∈ (0,∞).

As usual, we denote by H′µ,p the dual space of Hµ,p. In the following we charac-
terize the elements of H′µ,p.
Proposition 2.2. Let T be a functional on Hµ,p where 1 ≤ p <∞. Then, T is in
H′µ,p if, and only if, there exist r ∈ N and fk ∈ Lµ,p′ , k = 0, 1, . . . , r, for which

T =
r∑

k=0

∆k
µfk, on Hµ,p.(2.1)

Proof. First, assume that T is in Hµ,p. Then there exists C > 0 and r ∈ N such
that

|〈T, f〉| ≤ C max
0≤k≤r

∥∥∆k
µf
∥∥
p

for every f ∈ Hµ,p.(2.2)

We define the mappings
J : Hµ,p −→ Πr+1

p

f −→
(
∆k
µf
)r
k=0

where Πr+1
p = Lµ,p×

r+1· · · ×Lµ,p, and

L : JHµ,p −→ C(
∆k
µf
)r
k=0
−→ 〈T, f〉 .

Note that, since J is one to one, the mapping L is well defined. Moreover, ac-
cording to (2.2), L is a continuous linear mapping when in JHµ,p we consider the
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topology induced by Πr+1
p . Hence, according to the Hahn-Banach Theorem, L

can be extended to Πr+1
p as an element of

(
Πr+1
p

)′
. Then, there exists fk ∈ Lµ,p′ ,

k = 0, 1, . . . , r, such that (2.1) holds.
Conversely, if T takes the form (2.1), for some fk ∈ Lµ,p′ , k = 0, 1, . . . , r, with

r ∈ N, Hölder’s inequality implies that T ∈ H′µ,p.

Now we analyze the behaviour of the Hankel transformation hµ on the spaces
Hµ,p and H′µ,p.

Proposition 2.3. (a) If f ∈ Hµ,p with 1 ≤ p ≤ 2, then P (y)hµ (f) ∈ Lµ,p′ , for
every polynomial P .

(b) If T ∈ H′µ,p, with 2 ≤ p <∞, then h′µT = P
(
y2
)
F, where P is a polynomial

and F ∈ Lµ,p.

Proof. (a) Let f be in Hµ,p, with 1 ≤ p ≤ 2. Then, by invoking Theorem 3 of [13]
it follows that

h′µ
(
∆k
µf
)

= hµ
(
∆k
µf
)
∈ Lµ,p′ , k ∈ N.

Moreover, according to [24, Lemma 5.4-1], we have

h′µ
(
∆k
µf
)

=
(
−y2

)k
h′µ (f) =

(
−y2

)k
hµ (f) , k ∈ N.

Hence, hµ
(
∆k
µf
)

=
(
−y2

)k
hµ (f) ∈ Lµ,p′ , k ∈ N.

(b) Let T ∈ H′µ,p, with 2 ≤ p < ∞. By virtue of Proposition 2.2 we can find
n ∈ N and fk ∈ Lµ,p′ , k = 0, . . . , n, such that

T =
n∑
k=0

∆k
µfk.

Then, by [24, Lemma 5.4-1] we obtain

h′µT =
n∑
k=0

h′µ∆k
µfk =

n∑
k=0

(
−y2

)k
hµfk.

Therefore, the function F defined by

F (y) =
n∑
k=0

(
−y2

)k
hµfk (y)

(1 + y2)n
, y ∈ (0,∞),

is in Lµ,p [13, Theorem 3], and h′µ (T ) =
(
1 + y2

)n
F.

The result in Proposition 2.3 (b) can be improved when p = 2.

Proposition 2.4. Let T ∈ H ′. Then T ∈ H′µ,2 if, and only if, there exist a poly-
nomial P and a function F in Lµ,2 such that h′µT = P

(
y2
)
F.

Proof. Assume that h′µT = P
(
y2
)
F , where P is a polynomial and F ∈ Lµ,2. Then,

according to [24, Lemma 5.4-1],

T = h′µ
(
P
(
y2
)
F
)

= P (−∆µ) h′µF = P (−∆µ)hµF.

Since hµF ∈ Lµ,2 [13, Theorem 3], from Proposition 2.2 we deduce that T ∈
H′µ,2.

The proof of this proposition can be completed by invoking Proposition 2.3
(b).
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Next we obtain a characterization of Hµ,p involving the Hankel convolution. We
will consider the space β of functions defined as follows. Let a ∈ (0,∞). A function
φ ∈ H is in βa if, and only if, φ (x) = 0, for every x ≥ a. βa is endowed with
the topology induced on it by H . The space β =

⋃
a∈(0,∞)

βa is equipped with the

inductive topology.

Theorem 2.1. Let T ∈ H ′ and 1 ≤ p < ∞. Then T is in H′µ,p if and only if
T#φ ∈ Lµ,p′ , for every φ ∈ β.

Proof. First, suppose that T ∈ H′µ,p. According to Proposition 2.2 we can assume
without loss of generality that T = ∆k

µf , where k ∈ N and f ∈ Lµ,p′ . Then, for
every φ ∈ β

(T#φ) (x) = 〈T, τxφ〉 =
〈
f, τx∆k

µφ
〉

=
(
f#∆k

µφ
)

(x) , x ∈ (0,∞).

Since ∆k
µφ ∈ β, for each φ ∈ β, and since β is contained in Lµ,1, from Theorem 2.b

of [14] we deduce that T#φ ∈ Lµ,p′ .
Assume now that T#φ ∈ Lµ,p′ , for every φ ∈ β. We will see that T takes the

form (2.1) for certain r ∈ N and fk ∈ Lµ,p′ , k = 0, 1, . . . , r.
According to (1.2) for every φ, ϕ ∈ β we have

〈T#φ, ϕ〉 = 〈T, φ#ϕ〉 = 〈T#ϕ, φ〉 .
Then, Hölder’s inequality leads to

|〈T#ϕ, φ〉| ≤ ‖T#φ‖µ,p′ ‖ϕ‖µ,p , φ, ϕ ∈ β.(2.3)

Denote by B the intersection between β and the unit ball of Lµ,p. From (2.3) it is
deduced that the set {T#ϕ}ϕ∈B is bounded in β′ when we consider in β′ the weak*
topology (also, when β′ is endowed with the strong topology [6, p. 281]). Hence,
by invoking [6, Proposition 2.5], for every a > 0 there exists m ∈ N such that
for every ϕ ∈ B there exists an extension of T#ϕ to Wm

a , denoted again by T#ϕ,
with {T#ϕ}ϕ∈B pointwise bounded onWm

a . As we mentioned in Section 1, for every
m ∈ N and a > 0, the spaceWm

a is constituted by all those complex valued functions

ψ ∈ C2m (0,∞) such that ψ (x) = 0, x > a, and the limit lim
x→0+

(
1
x
D

)k
ψ (x) exists

for every k ∈ N, 0 ≤ k ≤ 2m.
Moreover, if φ ∈ Wm

a , then hµ (φ) is a multiplier of H . Therefore, according to
the interchange formula [14, Theorem 2.b], every φ ∈ Wm

a defines a convolution
operator on H ; that is, the mapping ϕ −→ φ#ϕ is continuous from H into itself.
Then by proceeding as in [8, Proposition 3] we obtain

〈T#φ, ϕ〉 = 〈T#ϕ, φ〉 , ϕ ∈ β and φ ∈ Wm
a .

Hence, T#φ ∈ Lµ,p′ , for every φ ∈ Wm
a . Now, by invoking Proposition 1.1 we

conclude that
T = T#δ = (1−∆µ)r (T#φ) + T#Ψ

where r ∈ N, φ ∈ Wm
a and Ψ ∈ βa.

Thus the proof is finished.

In the following we characterize the bounded sets in H′µ,p.

Proposition 2.5. Let 1 ≤ p < ∞ and let K be a subset of H′µ,p. The following
three assertions are equivalent:
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(i) K is a bounded set in H′µ,p when in H′µ,p we consider the weak* topology.
(ii) There exist C > 0 and r ∈ N and for every T ∈ K, r + 1 functions f0,T ,

f1,T , . . . , fr,T ∈ Lµ,p′ such that

T =
r∑

k=0

∆k
µfk,T

and
∑r
k=0 ‖fk,T ‖µ,p′ ≤ C.

(iii) For every φ ∈ β, the set {T#φ}T∈K is bounded in Lµ,p′ .

Proof. To prove this proposition it is sufficient to repeat the arguments of Propo-
sitions 2.2 and Theorem 2.1.

We now introduce for 1 ≤ p < ∞ the space Hµ,p as the closure of H in Hµ,p.
It is obvious that Hµ,p is a Fréchet space when we consider on Hµ,p the topology
induced on it by Hµ,p. Also, we can establish a property analogous to Proposition
2.2 when the space Hµ,p is replaced by Hµ,p.

Remark 2. It is an open question if the spaces Hµ,p and Hµ,p coincide for some µ
and p values.

We now analyze the Hankel convolution onH′µ,p×Hµ,p. As was mentioned above,
for every x ∈ (0,∞), the Hankel translation τx is a continuous mapping from Hµ,p
into itself.

For every T ∈ H′µ,p and φ ∈ Hµ,p, where 1 ≤ p < ∞, we define the convolution
T#φ of T and φ by

(T#φ) (x) = 〈T, τxφ〉 , x ∈ (0,∞).

By virtue of Proposition 2.2 there exist n ∈ N and fk ∈ Lµ,p′ , k = 0, 1, . . . , n,
for which

(T#φ) (x) =
n∑
k=0

∫ ∞
0

fk (y) τx
(
∆k
µφ
)

(y) y2µ+1dy

= 2µΓ (µ+ 1)
n∑
k=0

(
fk#∆k

µφ
)

(x) .(2.4)

Hence, according to [14, Theorem 2.b], T#φ ∈ Lµ,∞. Moreover, if we also assume
that φ ∈ Hµ,p, for every k ∈ N, ∆k

µ (T#φ) = T#∆k
µφ. Indeed, let f ∈ Lµ,p′ ,

φ ∈ Hµ,p and ψ ∈ H. We have by using [14, Theorem 2.b] again that

〈∆µ (f#φ) , ψ〉 = 〈f#φ,∆µψ〉 =
∫ ∞

0

(f#φ) (y) ∆µψ (y) y2µ+1dy

=
∫ ∞

0

∫ ∞
0

f (z) (τyφ) (z) ∆µψ (y)
y2µ+1

Γ (µ+ 1)
dy z2µ+1dz

=
∫ ∞

0

f (z) (φ#∆µψ) (z) z2µ+1dz = 〈f#∆µφ, ψ〉 .

Hence, by (2.4) it follows that

∆k
µ (T#φ) = T#∆k

µφ ∈ Lµ,∞, k ∈ N.
Thus, we establish that T#φ ∈ Hµ,∞ for each T ∈ H′µ,p and φ ∈ Hµ,p with

1 ≤ p <∞.
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Again let T ∈ H′µ,p. Suppose that

T =
m∑
k=0

∆k
µfk(2.5)

where m ∈ N and fk ∈ Lµ,p′ , k = 0, 1, . . . ,m. We define the Hankel convolution
T#φ of T and φ ∈ Hµ,r, 1 ≤ r < p, by

T#φ =
m∑
k=0

fk#∆k
µφ.

According to [14, Theorem 2.b], if T ∈ H′µ,p , then the mapping defined by φ −→

T#φ is continuous from Hµ,r into Lµ,q provided that
1
q

=
1
r
− 1
p
.

Moreover, if φ ∈ H we can write

(T#φ) (x) =
m∑
k=0

(
fk#∆k

µφ
)

(x) = 〈T, τxφ〉 , x ∈ (0,∞).

Then, since H is a dense subspace of Hµ,r, the definition of T#φ, for every
T ∈ H′µ,p and φ ∈ Hµ,r, is not dependent of the representation (2.5) of T.

Since ∆k
µ (T#φ) = T#∆k

µφ, T ∈ H′µ,p, φ ∈ Hµ,r and k ∈ N [14, Theorem 2.b],
we can conclude that, for every T ∈ H′µ,p, the mapping φ −→ T#φ is continuous

from Hµ,r into Hµ,q provided that
1
q

=
1
r
− 1
p
.

Let 1 ≤ p, q <∞. If T ∈ H′µ,p and S ∈ H′µ,q, we define the #−convolution S#T
of S and T by

〈S#T, φ〉 = 〈S, T#φ〉 , φ ∈ Hµ,r,

where
1
p

+
1
q

=
1
r
. Then, S#T ∈ H ′µ,r.

3. Open questions

In this section we present some interesting questions related to the spaces Hµ,p
introduced in this paper that can be studied and that are our next objectives.

3.1. Asymptotic of elements in Hµ,p and H′µ,p. B. Stankovic [22] investigated
the asymptotic of elements of DLp and D′Lp . The concept of asymptotic that is
suitable to the Hankel setting must involve the Hankel translation.

We say that a distribution T ∈ H′µ,p has asymptotic behavior in infinity, with
respect to a positive function c defined on (0,∞) , to S ∈ H′µ,p, if and only if

lim
x→∞

〈
(τxT ) (y)
c (x)

, φ (y)
〉

= 〈S, φ〉 , φ ∈ Hµ,p.

Several questions can be asked about the function c appearing in the above
definition (see [22]).

3.2. Convolution operators and multipliers in Hµ,p and H′µ,p. In [2] S. Ab-
dullah characterized the spaces of convolution operators and multipliers of distribu-
tions of Lp−growth. It is an open question to characterize the Hankel convolution
operators in Hµ,p and H′µ,p.
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3.3. Hankel convolution equations inH′µ,p. Convolution equations inD′Lp were
considered by D. H. Pahk [17]. He found a condition for convolution operators to
be hypoelliptic in D′L∞ in terms of their Fourier transforms and he showed that the
same conditions work for the solvability of convolution operators in the tempered
distribution spaces S′ and D′Lp .

Hankel convolution equation in spaces of distributions of slow growth and of
exponential growth were studied in [9]. We think that the analysis of the hypoel-
lipticity and the solubility of Hankel convolution equations in H′µ,p is an interesting
question.

3.4. Other spaces of type Hµ,p. S. Pilipovic ([18] and [19]) and D. Kovacevic
[15], among others, have investigated spaces of Beurling and Roumieu ultradistri-
butions that are generalizations of the spaces D′Lp . We can define, in a similar way,
new spaces of type Hµ,p.

Let (Mr)r∈N be a strictly increasing sequence of positive numbers and let h > 0.

For every p ≥ 1, we define the space Hh,(Mr)r∈N
µ,p as follows:

Hh,(Mr)r∈N
µ,p =

{
φ ∈ C∞ (0,∞) : sup

r∈N

{
hr

Mr

∥∥∆r
µ,pφ

∥∥} <∞
}
.

Also we introduce the spaces

H(Mr)r∈N
µ,p = projlim

h→∞
Hh,(Mr)r∈N
µ,p and H{Mr}r∈N

µ,p = indlim
h→0

Hh,(Mr)r∈N
µ,p .

Inspired in [15], [18] and [19] we think that it is an interesting problem to obtain
representations of elements belonging to the dual spaces of H(Mr)r∈N

µ,p and H{Mr}r∈N
µ,p ,

p ∈ (1,∞) , where (Mr)r∈N is a nonquasianalytic sequence, as boundary values of
holomorphic functions which satisfy appropriated estimates on the boundary of
their domains. Also, the hypoellipticity of the Hankel convolution equations in the
above spaces can be investigated.
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Departamento de Análisis Matemático, Universidad de La Laguna, 38271 La Laguna,

Islas Canarias, Spain

http://www.ams.org/mathscinet-getitem?mr=98e:46047
http://www.ams.org/mathscinet-getitem?mr=2000b:46066
http://www.ams.org/mathscinet-getitem?mr=85a:46001
http://www.ams.org/mathscinet-getitem?mr=32:2847
http://www.ams.org/mathscinet-getitem?mr=16:127b
http://www.ams.org/mathscinet-getitem?mr=28:433
http://www.ams.org/mathscinet-getitem?mr=94f:46050
http://www.ams.org/mathscinet-getitem?mr=96m:46072
http://www.ams.org/mathscinet-getitem?mr=86j:46037
http://www.ams.org/mathscinet-getitem?mr=94f:46048
http://www.ams.org/mathscinet-getitem?mr=97m:46070
http://www.ams.org/mathscinet-getitem?mr=39:4616
http://www.ams.org/mathscinet-getitem?mr=90m:46067
http://www.ams.org/mathscinet-getitem?mr=87k:42013

	1. Introduction
	2. The spaces H,p and H,p and the Hankel convolution
	3. Open questions
	3.1. Asymptotic of elements in H,p and H,p.
	3.2. Convolution operators and multipliers in H,p and H,p
	3.3. Hankel convolution equations in H,p
	3.4. Other spaces of type H,p.

	Acknowledgments
	References

