A NOTE ON TRIANGULAR DERIVATIONS OF $\mathbf{k}\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$

DANIEL DAIGLE AND GENE FREUDENBURG

(Communicated by Wolmer V. Vasconcelos)

Abstract

For a field \mathbf{k} of characteristic zero, and for each integer $n \geq 4$, we construct a triangular derivation of $\mathbf{k}\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$ whose ring of constants, though finitely generated over \mathbf{k}, cannot be generated by fewer than n elements.

1. Introduction

Let \mathbf{k} be a field of characteristic zero. If R is a finitely generated \mathbf{k}-algebra, we write $\#(R)=s$ to indicate that R can be generated by s elements but not by $s-1$. The purpose of this note is to show:

Theorem. Given any integer $n \geq 3$, there exists a triangular derivation Δ of the polynomial ring $\mathbf{k}\left[X_{1}, X_{2}, X_{3}, X_{4}\right]$ whose kernel satisfies $n \leq \#(\operatorname{ker} \Delta) \leq n+1$.

Equivalently, the theorem asserts that, given $n \geq 3$, there exists a triangular action of $G_{a}=(\mathbf{k},+)$ on \mathbb{A}^{4} whose ring of invariants satisfies $n \leq \# \mathcal{O}\left(\mathbb{A}^{4}\right)^{G_{a}} \leq$ $n+1$. The theorem is proved by constructing Δ explicitly for $n \geq 4$ (for $n=3$, just use a partial derivative).

In contrast to our present result, the well-known theorem of Miyanishi [2] states that, for any locally nilpotent \mathbf{k}-derivation D of $\mathbf{k}\left[X_{1}, X_{2}, X_{3}\right]$, $\#(\operatorname{ker} D)=2$. At the other extreme, the authors recently found a triangular derivation of the ring $\mathbf{k}\left[X_{1}, X_{2}, X_{3}, X_{4}, X_{5}\right]$ whose kernel is not finitely generated as a \mathbf{k}-algebra [1]. It is not known whether such kernels in dimension four are always finitely generated, even for triangular derivations.

2. Preliminaries

A triangular derivation of $\mathbf{k}\left[X_{1}, \ldots, X_{n}\right]$ is a \mathbf{k}-derivation $\Delta: \mathbf{k}\left[X_{1}, \ldots, X_{n}\right] \rightarrow$ $\mathbf{k}\left[X_{1}, \ldots, X_{n}\right]$ satisfying $\Delta\left(X_{i}\right) \in \mathbf{k}\left[X_{1}, \ldots, X_{i-1}\right]$ for all $i=1, \ldots, n$.

An element of a submonoid Γ of $(\mathbb{N},+)$ is primitive if it is positive and cannot be written as the sum of two positive elements of Γ. It is easy to see that the set of primitive elements in Γ is a finite set which generates Γ and which is contained in every generating set.

The support of an element $f=\sum_{i=0}^{\infty} a_{i} X^{i}$ of the power series ring $\mathbf{k}[[X]]$ is $\operatorname{Supp}(f)=\left\{i \in \mathbb{N} \mid a_{i} \neq 0\right\}$. Given a submonoid Γ of $(\mathbb{N},+)$, the elements f of

[^0]$\mathbf{k}[[X]]$ satisfying $\operatorname{Supp}(f) \subseteq \Gamma$ form a subalgebra of $\mathbf{k}[[X]]$ which we denote $\mathbf{k}[[\Gamma]]$. We observe:

If $g_{1}, \ldots, g_{r} \in \mathbf{k}[[\Gamma]]$ and $P \in \mathbf{k}\left[\left[T_{1}, \ldots, T_{r}\right]\right]$ satisfy $\operatorname{ord}\left(g_{i}\right) \geq 1$ for all i and $\operatorname{ord}(P) \geq 2$, then no primitive element of Γ belongs to the support of $P\left(g_{1}, \ldots, g_{r}\right)$.
Indeed, let $\gamma \in \operatorname{Supp} P\left(g_{1}, \ldots, g_{r}\right)$; then γ must be in the support of some monomial $g_{1}^{i_{1}} \cdots g_{r}^{i_{r}}$ with $i_{1}+\cdots+i_{r} \geq 2$, so γ is the sum of $i_{1}+\cdots+i_{r}$ elements of $\bigcup_{i=1}^{r} \operatorname{Supp}\left(g_{i}\right) \subseteq \Gamma \backslash\{0\}$ and hence is not primitive.

Lemma 1. Let Γ be a submonoid of $(\mathbb{N},+)$, let $e_{1}<\cdots<e_{h}$ be the primitive elements of Γ, let $R=\mathbf{k}\left[X^{e_{1}}, \ldots, X^{e_{h}}\right]$ and let T be an indeterminate over R. Then:

$$
\#(R)=h \quad \text { and } \quad \#(R[T])=h+1
$$

Proof. Given $f \in R[T]$, let $f(0) \in \mathbf{k}[X]$ be the result of evaluating f at $T=0$, and let $\operatorname{ord}(f) \in \mathbb{N} \cup\{\infty\}$ be the X-order of $f(0)$, i.e., the largest $s \geq 0$ such that X^{s} divides $f(0)$ in $\mathbf{k}[X]$. Note that $\#(R)=h$ is a consequence of $\#(R[T])=h+1$, so it suffices to prove the latter.

Assume that $\#(R[T]) \neq h+1$; then $R[T]$ can be generated by h elements, say $R[T]=\mathbf{k}\left[f_{1}, \ldots, f_{h}\right]$. We begin by showing that, replacing if necessary the generating set $\left\{f_{1}, \ldots, f_{h}\right\}$ by another one with the same cardinality h, we may arrange that $\operatorname{ord}\left(f_{j}\right)=e_{j}$ for all $j=1, \ldots, h$. To see this, consider an integer i satisfying $1 \leq i \leq h$ and

$$
\begin{equation*}
\operatorname{ord}\left(f_{j}\right)=e_{j}, \quad \text { for all } j<i \tag{2}
\end{equation*}
$$

(this certainly holds for $i=1$). Observe that every element of Γ strictly less than e_{i} belongs to the monoid generated by $\left\{e_{1}, \ldots, e_{i-1}\right\}$; hence, replacing each f_{j} (with $j \geq i)$ by f_{j} plus a suitable polynomial in $\left(f_{1}, \ldots, f_{i-1}\right)$, we may arrange that $\operatorname{ord}\left(f_{j}\right) \geq e_{i}$ for all $j \geq i$. After relabelling, we obtain that f_{i}, \ldots, f_{h} satisfy

$$
e_{i} \leq \operatorname{ord}\left(f_{i}\right) \leq \operatorname{ord}\left(f_{i+1}\right) \leq \cdots \leq \operatorname{ord}\left(f_{h}\right)
$$

Since $X^{e_{i}} \in R[T]$, we may write

$$
X^{e_{i}}=\lambda_{1} f_{1}+\cdots+\lambda_{h} f_{h}+P\left(f_{1}, \ldots, f_{h}\right)
$$

where $\lambda_{j} \in \mathbf{k}, P \in \mathbf{k}\left[T_{1}, \ldots, T_{h}\right]$ (the T_{j} are indeterminates) and where every monomial occuring in $P\left(T_{1}, \ldots, T_{h}\right)$ has degree at least two. Now $\left.P\left(f_{1}, \ldots, f_{h}\right)\right|_{T=0}=$ $P\left(f_{1}(0), \ldots, f_{n}(0)\right)=\sum_{j} \mu_{j} X^{\gamma_{j}}$, where $\mu_{j} \in \mathbf{k}$ and $\gamma_{j} \in \Gamma$, but none of these γ_{j} can be a primitive element of Γ by (1). It follows that $\lambda_{j}=0$ for all $j<i$; also, $\operatorname{ord}\left(f_{i}\right)=e_{i}$, so we arranged that (2) holds for a larger value of i. Thus we may arrange that

$$
\operatorname{ord}\left(f_{j}\right)=e_{j} \quad \text { for all } j=1, \ldots, h
$$

Since $T \in R[T]$, we may write

$$
\begin{equation*}
T=\lambda_{1}^{\prime} f_{1}+\cdots+\lambda_{h}^{\prime} f_{h}+P^{\prime}\left(f_{1}, \ldots, f_{h}\right), \tag{3}
\end{equation*}
$$

where $\lambda_{j}^{\prime} \in \mathbf{k}, P^{\prime} \in \mathbf{k}\left[T_{1}, \ldots, T_{h}\right]$, and where every monomial occurring in $P^{\prime}\left(T_{1}, \ldots, T_{h}\right)$ has degree at least two. Evaluating (3) at $T=0$ shows that $\lambda_{j}^{\prime}=0$ for all j (as before, $P^{\prime}\left(f_{1}(0), \ldots, f_{h}(0)\right)$ can't produce a term $X^{e_{j}}$, by (1)). On
the other hand, each f_{j} evaluated at $X=0$ is an element of $T \mathbf{k}[T]$. Thus, evaluating the equation $T=P^{\prime}\left(f_{1}, \ldots, f_{h}\right)$ at $X=0$ yields $T=T^{2} Q(T)$ for some $Q(T) \in \mathbf{k}[T]$. This is a contradiction, so $\#(R[T])=h+1$ cannot be false.

Lemma 2. Let h, p, q be positive integers. If $\operatorname{gcd}(p, q)=1$, then the ideal

$$
\left(T_{0}^{q}-T_{1}^{p}, T_{1}^{q}-T_{2}^{p}, \ldots, T_{h-1}^{q}-T_{h}^{p}\right)
$$

of $\mathbf{k}\left[T_{0}, \ldots, T_{h}\right]$ is prime.
Proof. Consider the ideals $\mathfrak{p}=\left(T_{0}^{q}-T_{1}^{p}, \ldots, T_{h-1}^{q}-T_{h}^{p}\right)$ of $\mathbf{k}\left[T_{0}, \ldots, T_{h}\right]$ and $\mathfrak{p}^{\prime}=$ $\left(T_{0}^{q}-T_{1}^{p}, \ldots, T_{h-2}^{q}-T_{h-1}^{p}\right)$ of $\mathbf{k}\left[T_{0}, \ldots, T_{h-1}\right]$. By induction, we may assume that \mathfrak{p}^{\prime} is prime. This allows us to identify $R^{\prime}=\mathbf{k}\left[T_{0}, \ldots, T_{h-1}\right] / \mathfrak{p}^{\prime}$ with $\mathbf{k}\left[X^{e_{0}}, \ldots, X^{e_{h-1}}\right]$, where X is an indeterminate and $e_{j}=p^{h-j} q^{j}$. Let K^{\prime} be the field of fractions of R^{\prime} and note that $K^{\prime}=\mathbf{k}\left(X^{p}\right)$. Since $\mathbf{k}\left[T_{0}, \ldots, T_{h}\right] / \mathfrak{p} \cong R^{\prime}\left[T_{h}\right] /\left(T_{h}^{p}-\theta^{q}\right)$, where $\theta=T_{h-1}+\mathfrak{p}^{\prime} \in R^{\prime}$, it suffices to show that $T_{h}^{p}-\theta^{q}$ is an irreducible element of $K^{\prime}\left[T_{h}\right]$; for this, it's enough to verify that $\left(\theta^{q}\right)^{i / p} \notin K^{\prime}$ for all $i=1, \ldots, p-1$. But $\theta=X^{e_{h-1}}$, so $\left(\theta^{q}\right)^{i / p}=X^{i q^{h}} \notin \mathbf{k}\left(X^{p}\right)$ for all $i=1, \ldots, p-1$.

The following is a well-known fact about extracting roots in a power series ring.
Lemma 3. Let q be a positive integer, R a domain containing \mathbb{Q}, W an indeterminate over R and σ an element of $R[[W]]$ with constant term equal to 1 (i.e., $\sigma=1+s_{1} W+s_{2} W^{2}+\cdots$ where $\left.s_{i} \in R\right)$. Then there exists a unique $\rho \in R[[W]]$ satisfying $\rho^{q}=\sigma$ and having constant term equal to 1 .
Lemma 4. Let $h \geq 2$ be an integer and p, q prime numbers such that $p^{2}<q$. Then there exist $f_{0}, \ldots, f_{h} \in \mathbf{k}[W, X]$ satisfying:
(i) $f_{j}(0, X)=X^{p^{h-j} q^{j}}$ for all j such that $0 \leq j \leq h$;
(ii) $f_{j+1} \equiv \frac{f_{j-1}^{q}-f_{j}^{p}}{W}\left(\bmod W^{h-j}\right)$ for all j such that $0<j<h$;
(iii) $f_{h-1}^{q}-f_{h}^{p}=0$.

Proof. Define $f_{h}=X^{q^{h}}$ and $f_{h-1}=X^{p q^{h-1}}$. Suppose that $f_{h}, \ldots, f_{i} \in \mathbf{k}[W, X]$ have been defined (where $0<i<h$) and satisfy (i)-(iii) and

$$
\begin{equation*}
X^{p^{h-j} q^{j}} \mid f_{j} \quad(i \leq j \leq h) \tag{4}
\end{equation*}
$$

Note that the assumption $p^{2}<q$ implies that $f_{i}^{p}+W f_{i+1}$ is divisible by $X^{p^{h-i+1} q^{i}}$; define

$$
\sigma=\frac{f_{i}^{p}+W f_{i+1}}{X^{p^{h-i+1} q^{i}}} \in \mathbf{k}[W, X] \subset \mathbf{k}[X][[W]]
$$

and note that σ has the form $\sigma=1+s_{1} W+s_{2} W^{2}+\cdots$ (with $s_{j} \in \mathbf{k}[X]$). By Lemma 3 we may consider $\rho=1+r_{1} W+r_{2} W^{2}+\cdots \in \mathbf{k}[X][[W]]$ (with $r_{j} \in \mathbf{k}[X]$) such that $\rho^{q}=\sigma$. Then $\tilde{f}_{i-1}:=X^{p^{h-i+1} q^{i-1}} \rho \in \mathbf{k}[X][[W]]$ satisfies

$$
\frac{\tilde{f}_{i-1}^{q}-f_{i}^{p}}{W}=f_{i+1} \quad \text { and } \quad X^{p^{h-i+1} q^{i-1}} \mid \tilde{f}_{i-1}
$$

so, if $f_{i-1} \in \mathbf{k}[W, X]$ is a suitable truncation of \tilde{f}_{i-1}, then f_{h}, \ldots, f_{i-1} satisfy (i)-(iii) and (4). So we are done by induction.

3. The examples

Given an integer $h \geq 2$, we construct a triangular derivation $\Delta: \mathbf{k}[W, X, Y, Z] \rightarrow$ $\mathbf{k}[W, X, Y, Z]$ whose kernel satisfies $h+2 \leq \#(\operatorname{ker} \Delta) \leq h+3$.

Choose prime numbers p, q satisfying $p^{2}<q$; consider $f_{0}, \ldots, f_{h} \in \mathbf{k}[W, X]$ as in Lemma 4 and define $F_{0}=f_{0}+Y W^{h+1}, F_{1}=f_{1}+Z W^{h}$ and

$$
F_{i+1}=\frac{F_{i-1}^{q}-F_{i}^{p}}{W} \quad(1 \leq i \leq h)
$$

Let $A=\mathbf{k}\left[W, F_{0}, \ldots, F_{h+1}\right]$. We have to prove the following two claims:

$$
\begin{equation*}
h+2 \leq \#(A) \leq h+3 \tag{5}
\end{equation*}
$$

A is the kernel of some triangular derivation

$$
\begin{equation*}
\Delta: \mathbf{k}[W, X, Y, Z] \rightarrow \mathbf{k}[W, X, Y, Z] . \tag{6}
\end{equation*}
$$

We begin by showing that

$$
\begin{equation*}
F_{j}=f_{j}+b_{j} W^{h+1-j} \quad(0 \leq j \leq h+1) \tag{7}
\end{equation*}
$$

where $b_{j} \in \mathbf{k}[W, X, Y, Z]$ and $b_{j}(0, X, Y, Z) \notin \mathbf{k}[X]$, and where we define $f_{h+1}=0$. We proceed by induction and note that the assertion is clear for $j \leq 1$. Assume that (7) holds for $0 \leq j \leq i$, for some i such that $1 \leq i \leq h$. Then $F_{i}=f_{i}+b_{i} W^{h+1-i}$ and $F_{i-1}=f_{i-1}+b_{i-1} W^{h+2-i}$, so

$$
\begin{aligned}
F_{i-1}^{q}-F_{i}^{p} & =\left(f_{i-1}+b_{i-1} W^{h+2-i}\right)^{q}-\left(f_{i}+b_{i} W^{h+1-i}\right)^{p} \\
& =\left(f_{i-1}^{q}-f_{i}^{p}\right)-p f_{i}^{p-1} b_{i} W^{h+1-i}+\varepsilon_{1} W^{h+2-i}
\end{aligned}
$$

for some $\varepsilon_{1} \in \mathbf{k}[W, X, Y, Z]$. Write $\frac{f_{i-1}^{q}-f_{i}^{p}}{W}=f_{i+1}+\varepsilon_{2} W^{h-i}$, with $\varepsilon_{2} \in \mathbf{k}[W, X]$; then dividing $\left(F_{i-1}^{q}-F_{i}^{p}\right)$ by W gives

$$
\begin{aligned}
F_{i+1} & =\left(f_{i+1}+\varepsilon_{2} W^{h-i}\right)-p f_{i}^{p-1} b_{i} W^{h-i}+\varepsilon_{1} W^{h+1-i} \\
& =f_{i+1}+\left(\varepsilon_{2}-p f_{i}^{p-1} b_{i}+\varepsilon_{1} W\right) W^{h-i}
\end{aligned}
$$

which proves (7). (In particular, the F_{j} 's are polynomials.)
Let $\pi: \mathbf{k}[W, X, Y, Z] \rightarrow \mathbf{k}[X, Y, Z]$ be the surjective \mathbf{k}-homomorphism defined by

$$
W \mapsto 0, X \mapsto X, Y \mapsto Y, Z \mapsto Z
$$

Then (7) implies that $\pi(A)=\mathbf{k}\left[X^{e_{0}}, \ldots, X^{e_{h}}, \tau\right]$, where $e_{i}=p^{h-i} q^{i}$ and where τ is transcendental over $\mathbf{k}(X)$. Let $R=\mathbf{k}\left[X^{e_{0}}, \ldots, X^{e_{h}}\right]$; since $R[\tau]$ is a homomorphic image of $A, \#(A) \geq \#(R[\tau])$; since $\#(R[\tau])=h+2$ by Lemma (1) (5) holds. Define a derivation $\Delta: \mathbf{k}[W, X, Y, Z] \rightarrow \mathbf{k}[W, X, Y, Z]$ by

$$
\Delta=\left|\begin{array}{ccc}
\frac{\partial}{\partial X} & \frac{\partial}{\partial Y} & \frac{\partial}{\partial Z} \tag{8}\\
\frac{\partial F_{0}}{\partial X} & \frac{\partial F_{0}}{\partial Y} & \frac{\partial F_{0}}{\partial Z} \\
\frac{\partial F_{1}}{\partial X} & \frac{\partial F_{1}}{\partial Y} & \frac{\partial F_{1}}{\partial Z}
\end{array}\right| .
$$

Then $\Delta Z=-W^{h+1} \frac{\partial f_{1}}{\partial X}, \Delta Y=-W^{h} \frac{\partial f_{0}}{\partial X}, \Delta X=W^{2 h+1}$ and $\Delta W=0$, so Δ is a triangular derivation of $\mathbf{k}[W, X, Y, Z]$. It is clear that $\mathbf{k}\left[W, F_{0}, F_{1}\right] \subseteq$ ker Δ, so $A \subseteq$ ker Δ; let us now argue that ker $\Delta \subseteq A_{W}$. Write $B=\mathbf{k}[W, X, Y, Z]$; since

$$
B_{W} \supseteq A_{W}[X] \supseteq \mathbf{k}\left[W, W^{-1}, X, F_{0}, F_{1}\right]=\mathbf{k}\left[W, W^{-1}, X, Y, Z\right]=B_{W}
$$

B_{W} is a polynomial ring over A_{W}. On the other hand, $(\operatorname{ker} \Delta)_{W}$ contains A_{W} and is the kernel of the nonzero derivation $\Delta_{W}: B_{W} \rightarrow B_{W}$, so $(\operatorname{ker} \Delta)_{W}=A_{W}$ and
we have shown that $A \subseteq$ ker $\Delta \subset A_{W}$. So, in order to prove (6), there remains only to prove

$$
\begin{equation*}
A \cap W B=W A \tag{9}
\end{equation*}
$$

It is easy to see that the proof of (9) reduces to that of the following: if T_{0}, \ldots, T_{h+1} are indeterminates and $\psi \in \mathbf{k}\left[T_{0}, \ldots, T_{h+1}\right]$, then $\psi\left(F_{0}, \ldots, F_{h+1}\right) \in$ $W B$ implies $\psi\left(F_{0}, \ldots, F_{h+1}\right) \in W A$. Write $\psi=\sum_{n \geq 0} \psi_{n} T_{h+1}^{n}$ with $\psi_{n} \in$ $\mathbf{k}\left[T_{0}, \ldots, T_{h}\right]$. Then

$$
0=\pi\left(\psi\left(F_{0}, \ldots, F_{h+1}\right)\right)=\sum_{n \geq 0} \psi_{n}\left(X^{e_{0}}, \ldots, X^{e_{h}}\right) \tau^{n}
$$

where $\tau=\pi\left(F_{h+1}\right)$ is transcendental over $\mathbf{k}(X)$, and consequently $\psi_{n} \in \operatorname{ker} \varphi$ for all n, where $\varphi: \mathbf{k}\left[T_{0}, \ldots, T_{h}\right] \rightarrow \mathbf{k}[X]$ is the \mathbf{k}-homomorphism which maps T_{i} to $X^{e_{i}}$. By Lemma 2 $\operatorname{ker} \varphi=\left(T_{0}^{q}-T_{1}^{p}, \ldots, T_{h-1}^{q}-T_{h}^{p}\right)$, so $\psi_{n}=\sum_{j=1}^{h} \alpha_{j}\left(T_{j-1}^{q}-T_{j}^{p}\right)$ for some $\alpha_{j} \in \mathbf{k}\left[T_{0}, \ldots, T_{h}\right]$. Then

$$
\begin{aligned}
\psi_{n}\left(F_{0}, \ldots, F_{h}\right) & =\sum_{j=1}^{h} \alpha_{j}\left(F_{0}, \ldots, F_{h}\right)\left(F_{j-1}^{q}-F_{j}^{p}\right) \\
& =\sum_{j=1}^{h} \alpha_{j}\left(F_{0}, \ldots, F_{h}\right) W F_{j+1} \in W A
\end{aligned}
$$

So (9) holds and, consequently, $\operatorname{ker}(\Delta)=A$. So (5) and (6) are proved.
Example. We exhibit a triangular derivation Δ of $\mathbf{k}[W, X, Y, Z]$ whose kernel cannot be generated by five elements over \mathbf{k}. Let $p=2, q=5$ and $h=4$ and, following the proof of Lemma [4] successively define $f_{4}, f_{3}, f_{2}, f_{1}, f_{0}$ by 1$]$

$$
\begin{gathered}
f_{4}=X^{625}, \quad f_{3}=X^{250}, \quad f_{2}=X^{100}+\frac{1}{5} X^{225} W \\
f_{1}=X^{40}+\left(\frac{2}{25} X^{165}+\frac{1}{5} X^{90}\right) W+\left(-\frac{3}{625} X^{290}-\frac{8}{125} X^{215}-\frac{2}{25} X^{140}\right) W^{2}
\end{gathered}
$$

and

$$
\begin{aligned}
f_{0}= & X^{16}+\left(\frac{2}{25} X^{66}+\frac{1}{5} X^{36}+\frac{4}{125} X^{141}\right) W \\
+ & \left(-\frac{92}{3125} X^{191}-\frac{23}{625} X^{116}-\frac{42}{15625} X^{266}+\frac{9}{625} X^{161}-\frac{8}{125} X^{86}-\frac{2}{25} X^{56}\right) W^{2} \\
& +\left(\frac{48}{78125} X^{241}+\frac{68}{15625} X^{166}+\frac{666}{390625} X^{316}+\frac{328}{15625} X^{211}+\frac{132}{3125} X^{136}\right. \\
& \left.\quad+\frac{36}{625} X^{106}-\frac{72}{78125} X^{286}-\frac{28}{3125} X^{181}+\frac{6}{125} X^{76}+\frac{244}{1953125} X^{391}\right) W^{3} .
\end{aligned}
$$

Define Δ as in (8) or, equivalently, by

$$
\Delta W=0, \quad \Delta X=W^{9}, \quad \Delta Y=-W^{4} \frac{\partial f_{0}}{\partial X} \quad \text { and } \quad \Delta Z=-W^{5} \frac{\partial f_{1}}{\partial X}
$$

Then, by (5) and (6), we have $6 \leq \#(\operatorname{ker} \Delta) \leq 7$.

[^1]
References

1. D. Daigle, G. Freudenburg, A counterexample to Hilbert's Fourteenth Problem in dimension five, ppt 1999 (9 pages)
2. M. Miyanishi, Normal affine subalgebras of a polynomial ring, in: Algebraic and Topological Theories - to the Memory of Dr. Takehiko Miyata, Kinokuniya, Tokyo (1985) 37-51 CMP 91:10

Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada K1N 6N5

E-mail address: daniel@mathstat.uottawa.ca
Department of Mathematics, University of Southern Indiana, Evansville, Indiana 47712

E-mail address: freudenb@usi.edu

[^0]: Received by the editors March 25, 1999 and, in revised form, May 12, 1999.
 2000 Mathematics Subject Classification. Primary 14R10; Secondary 14R20, 13N15.
 Key words and phrases. Derivations, Hilbert fourteenth problem, additive group actions, invariants.

 The first author's research was supported by NSERC Canada.

[^1]: ${ }^{1}$ Note that the f_{j} 's are not unique.

