PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 129, Number 3, Pages 657–662 S 0002-939(00)05558-1 Article electronically published on August 30, 2000

A NOTE ON TRIANGULAR DERIVATIONS OF $k[X_1, X_2, X_3, X_4]$

DANIEL DAIGLE AND GENE FREUDENBURG

(Communicated by Wolmer V. Vasconcelos)

ABSTRACT. For a field **k** of characteristic zero, and for each integer $n \ge 4$, we construct a triangular derivation of $\mathbf{k}[X_1, X_2, X_3, X_4]$ whose ring of constants, though finitely generated over **k**, cannot be generated by fewer than *n* elements.

1. INTRODUCTION

Let **k** be a field of characteristic zero. If *R* is a finitely generated **k**-algebra, we write #(R) = s to indicate that *R* can be generated by *s* elements but not by s - 1. The purpose of this note is to show:

Theorem. Given any integer $n \ge 3$, there exists a triangular derivation Δ of the polynomial ring $\mathbf{k}[X_1, X_2, X_3, X_4]$ whose kernel satisfies $n \le \#(\ker \Delta) \le n + 1$.

Equivalently, the theorem asserts that, given $n \geq 3$, there exists a triangular action of $G_a = (\mathbf{k}, +)$ on \mathbb{A}^4 whose ring of invariants satisfies $n \leq \#\mathcal{O}(\mathbb{A}^4)^{G_a} \leq n+1$. The theorem is proved by constructing Δ explicitly for $n \geq 4$ (for n = 3, just use a partial derivative).

In contrast to our present result, the well-known theorem of Miyanishi [2] states that, for any locally nilpotent **k**-derivation D of $\mathbf{k}[X_1, X_2, X_3]$, $\#(\ker D) = 2$. At the other extreme, the authors recently found a triangular derivation of the ring $\mathbf{k}[X_1, X_2, X_3, X_4, X_5]$ whose kernel is not finitely generated as a **k**-algebra [1]. It is not known whether such kernels in dimension four are always finitely generated, even for triangular derivations.

2. Preliminaries

A triangular derivation of $\mathbf{k}[X_1, \ldots, X_n]$ is a k-derivation $\Delta : \mathbf{k}[X_1, \ldots, X_n] \rightarrow \mathbf{k}[X_1, \ldots, X_n]$ satisfying $\Delta(X_i) \in \mathbf{k}[X_1, \ldots, X_{i-1}]$ for all $i = 1, \ldots, n$.

An element of a submonoid Γ of $(\mathbb{N}, +)$ is *primitive* if it is positive and cannot be written as the sum of two positive elements of Γ . It is easy to see that the set of primitive elements in Γ is a finite set which generates Γ and which is contained in every generating set.

The support of an element $f = \sum_{i=0}^{\infty} a_i X^i$ of the power series ring $\mathbf{k}[[X]]$ is $\operatorname{Supp}(f) = \{i \in \mathbb{N} | a_i \neq 0\}$. Given a submonoid Γ of $(\mathbb{N}, +)$, the elements f of

Key words and phrases. Derivations, Hilbert fourteenth problem, additive group actions, invariants.

©2000 American Mathematical Society

Received by the editors March 25, 1999 and, in revised form, May 12, 1999.

²⁰⁰⁰ Mathematics Subject Classification. Primary 14R10; Secondary 14R20, 13N15.

The first author's research was supported by NSERC Canada.

 $\mathbf{k}[[X]]$ satisfying $\operatorname{Supp}(f) \subseteq \Gamma$ form a subalgebra of $\mathbf{k}[[X]]$ which we denote $\mathbf{k}[[\Gamma]]$. We observe:

If
$$g_1, \ldots, g_r \in \mathbf{k}[[\Gamma]]$$
 and $P \in \mathbf{k}[[T_1, \ldots, T_r]]$ satisfy $\operatorname{ord}(g_i) \geq 1$ for

(1) all *i* and $\operatorname{ord}(P) \ge 2$, then no primitive element of Γ belongs to the support of $P(g_1, \ldots, g_r)$.

Indeed, let $\gamma \in \text{Supp } P(g_1, \ldots, g_r)$; then γ must be in the support of some monomial $g_1^{i_1} \cdots g_r^{i_r}$ with $i_1 + \cdots + i_r \geq 2$, so γ is the sum of $i_1 + \cdots + i_r$ elements of $\bigcup_{i=1}^r \text{Supp}(g_i) \subseteq \Gamma \setminus \{0\}$ and hence is not primitive.

Lemma 1. Let Γ be a submonoid of $(\mathbb{N}, +)$, let $e_1 < \cdots < e_h$ be the primitive elements of Γ , let $R = \mathbf{k}[X^{e_1}, \ldots, X^{e_h}]$ and let T be an indeterminate over R. Then:

$$\#(R) = h$$
 and $\#(R[T]) = h + 1$.

Proof. Given $f \in R[T]$, let $f(0) \in \mathbf{k}[X]$ be the result of evaluating f at T = 0, and let $\operatorname{ord}(f) \in \mathbb{N} \cup \{\infty\}$ be the X-order of f(0), i.e., the largest $s \ge 0$ such that X^s divides f(0) in $\mathbf{k}[X]$. Note that #(R) = h is a consequence of #(R[T]) = h + 1, so it suffices to prove the latter.

Assume that $\#(R[T]) \neq h + 1$; then R[T] can be generated by h elements, say $R[T] = \mathbf{k}[f_1, \ldots, f_h]$. We begin by showing that, replacing if necessary the generating set $\{f_1, \ldots, f_h\}$ by another one with the same cardinality h, we may arrange that $\operatorname{ord}(f_j) = e_j$ for all $j = 1, \ldots, h$. To see this, consider an integer isatisfying $1 \leq i \leq h$ and

(2)
$$\operatorname{ord}(f_j) = e_j, \quad \text{for all } j < i$$

(this certainly holds for i = 1). Observe that every element of Γ strictly less than e_i belongs to the monoid generated by $\{e_1, \ldots, e_{i-1}\}$; hence, replacing each f_j (with $j \geq i$) by f_j plus a suitable polynomial in (f_1, \ldots, f_{i-1}) , we may arrange that $\operatorname{ord}(f_j) \geq e_i$ for all $j \geq i$. After relabelling, we obtain that f_i, \ldots, f_h satisfy

$$e_i \leq \operatorname{ord}(f_i) \leq \operatorname{ord}(f_{i+1}) \leq \cdots \leq \operatorname{ord}(f_h).$$

Since $X^{e_i} \in R[T]$, we may write

$$X^{e_i} = \lambda_1 f_1 + \dots + \lambda_h f_h + P(f_1, \dots, f_h),$$

where $\lambda_j \in \mathbf{k}, P \in \mathbf{k}[T_1, \ldots, T_h]$ (the T_j are indeterminates) and where every monomial occuring in $P(T_1, \ldots, T_h)$ has degree at least two. Now $P(f_1, \ldots, f_h)\Big|_{T=0} = P(f_1(0), \ldots, f_n(0)) = \sum_j \mu_j X^{\gamma_j}$, where $\mu_j \in \mathbf{k}$ and $\gamma_j \in \Gamma$, but none of these γ_j can be a primitive element of Γ by (1). It follows that $\lambda_j = 0$ for all j < i; also, $\operatorname{ord}(f_i) = e_i$, so we arranged that (2) holds for a larger value of i. Thus we may arrange that

$$\operatorname{ord}(f_j) = e_j \quad \text{for all } j = 1, \dots, h.$$

Since $T \in R[T]$, we may write

(3)
$$T = \lambda'_1 f_1 + \dots + \lambda'_h f_h + P'(f_1, \dots, f_h),$$

where $\lambda'_j \in \mathbf{k}, P' \in \mathbf{k}[T_1, \ldots, T_h]$, and where every monomial occurring in $P'(T_1, \ldots, T_h)$ has degree at least two. Evaluating (3) at T = 0 shows that $\lambda'_j = 0$ for all j (as before, $P'(f_1(0), \ldots, f_h(0))$ can't produce a term X^{e_j} , by (1)). On

the other hand, each f_j evaluated at X = 0 is an element of $T\mathbf{k}[T]$. Thus, evaluating the equation $T = P'(f_1, \ldots, f_h)$ at X = 0 yields $T = T^2Q(T)$ for some $Q(T) \in \mathbf{k}[T]$. This is a contradiction, so #(R[T]) = h + 1 cannot be false. \square

Lemma 2. Let h, p, q be positive integers. If gcd(p, q) = 1, then the ideal

$$(T_0^q - T_1^p, T_1^q - T_2^p, \dots, T_{h-1}^q - T_h^p)$$

of $\mathbf{k}[T_0, \ldots, T_h]$ is prime.

Proof. Consider the ideals $\mathbf{p} = (T_0^q - T_1^p, \dots, T_{h-1}^q - T_h^p)$ of $\mathbf{k}[T_0, \dots, T_h]$ and $\mathbf{p}' = (T_0^q - T_1^p, \dots, T_{h-2}^q - T_{h-1}^p)$ of $\mathbf{k}[T_0, \dots, T_{h-1}]$. By induction, we may assume that \mathbf{p}' is prime. This allows us to identify $R' = \mathbf{k}[T_0, \dots, T_{h-1}]/\mathbf{p}'$ with $\mathbf{k}[X^{e_0}, \dots, X^{e_{h-1}}]$, where X is an indeterminate and $e_j = p^{h-j}q^j$. Let K' be the field of fractions of R' and note that $K' = \mathbf{k}(X^p)$. Since $\mathbf{k}[T_0, \dots, T_h]/\mathbf{p} \cong R'[T_h]/(T_h^p - \theta^q)$, where $\theta = T_{h-1} + \mathbf{p}' \in R'$, it suffices to show that $T_h^p - \theta^q$ is an irreducible element of $K'[T_h]$; for this, it's enough to verify that $(\theta^q)^{i/p} \notin K'$ for all $i = 1, \dots, p-1$. But $\theta = X^{e_{h-1}}$, so $(\theta^q)^{i/p} = X^{iq^h} \notin \mathbf{k}(X^p)$ for all $i = 1, \dots, p-1$.

The following is a well-known fact about extracting roots in a power series ring.

Lemma 3. Let q be a positive integer, R a domain containing \mathbb{Q} , W an indeterminate over R and σ an element of R[[W]] with constant term equal to 1 (i.e., $\sigma = 1 + s_1W + s_2W^2 + \cdots$ where $s_i \in R$). Then there exists a unique $\rho \in R[[W]]$ satisfying $\rho^q = \sigma$ and having constant term equal to 1.

Lemma 4. Let $h \ge 2$ be an integer and p, q prime numbers such that $p^2 < q$. Then there exist $f_0, \ldots, f_h \in \mathbf{k}[W, X]$ satisfying:

(i) $f_j(0, X) = X^{p^{h-j}q^j}$ for all j such that $0 \le j \le h$; (ii) $f_{j+1} \equiv \frac{f_{j-1}^q - f_j^p}{W} \pmod{W^{h-j}}$ for all j such that 0 < j < h; (iii) $f_{h-1}^q - f_h^p = 0$.

Proof. Define $f_h = X^{q^h}$ and $f_{h-1} = X^{pq^{h-1}}$. Suppose that $f_h, \ldots, f_i \in \mathbf{k}[W, X]$ have been defined (where 0 < i < h) and satisfy (i)–(iii) and

(4)
$$X^{p^{n-j}q^j} \mid f_j \quad (i \le j \le h)$$

Note that the assumption $p^2 < q$ implies that $f_i^p + W f_{i+1}$ is divisible by $X^{p^{h-i+1}q^i}$; define

$$\sigma = \frac{f_i^p + W f_{i+1}}{X^{p^{h-i+1}q^i}} \in \mathbf{k}[W, X] \subset \mathbf{k}[X][[W]]$$

and note that σ has the form $\sigma = 1 + s_1W + s_2W^2 + \cdots$ (with $s_j \in \mathbf{k}[X]$). By Lemma 3, we may consider $\rho = 1 + r_1W + r_2W^2 + \cdots \in \mathbf{k}[X][[W]]$ (with $r_j \in \mathbf{k}[X]$) such that $\rho^q = \sigma$. Then $\tilde{f}_{i-1} := X^{p^{h-i+1}q^{i-1}}\rho \in \mathbf{k}[X][[W]]$ satisfies

$$\frac{f_{i-1}^q - f_i^p}{W} = f_{i+1} \quad \text{and} \quad X^{p^{h-i+1}q^{i-1}} \mid \tilde{f}_{i-1}$$

so, if $f_{i-1} \in \mathbf{k}[W, X]$ is a suitable truncation of f_{i-1} , then f_h, \ldots, f_{i-1} satisfy (i)–(iii) and (4). So we are done by induction.

3. The examples

Given an integer $h \ge 2$, we construct a triangular derivation $\Delta : \mathbf{k}[W, X, Y, Z] \rightarrow \mathbf{k}[W, X, Y, Z]$ whose kernel satisfies $h + 2 \le \#(\ker \Delta) \le h + 3$.

Choose prime numbers p, q satisfying $p^2 < q$; consider $f_0, \ldots, f_h \in \mathbf{k}[W, X]$ as in Lemma 4 and define $F_0 = f_0 + YW^{h+1}$, $F_1 = f_1 + ZW^h$ and

$$F_{i+1} = \frac{F_{i-1}^q - F_i^p}{W} \quad (1 \le i \le h).$$

Let $A = \mathbf{k}[W, F_0, \dots, F_{h+1}]$. We have to prove the following two claims:

(5)
$$h+2 \le \#(A) \le h+3$$

A is the kernel of some triangular derivation

(6)
$$\Delta: \mathbf{k}[W, X, Y, Z] \to \mathbf{k}[W, X, Y, Z].$$

We begin by showing that

(7)
$$F_j = f_j + b_j W^{h+1-j} \qquad (0 \le j \le h+1),$$

where $b_j \in \mathbf{k}[W, X, Y, Z]$ and $b_j(0, X, Y, Z) \notin \mathbf{k}[X]$, and where we define $f_{h+1} = 0$. We proceed by induction and note that the assertion is clear for $j \leq 1$. Assume that (7) holds for $0 \leq j \leq i$, for some i such that $1 \leq i \leq h$. Then $F_i = f_i + b_i W^{h+1-i}$ and $F_{i-1} = f_{i-1} + b_{i-1} W^{h+2-i}$, so

$$F_{i-1}^q - F_i^p = (f_{i-1} + b_{i-1}W^{h+2-i})^q - (f_i + b_iW^{h+1-i})^p$$
$$= (f_{i-1}^q - f_i^p) - pf_i^{p-1}b_iW^{h+1-i} + \varepsilon_1W^{h+2-i}$$

for some $\varepsilon_1 \in \mathbf{k}[W, X, Y, Z]$. Write $\frac{f_{i-1}^q - f_i^p}{W} = f_{i+1} + \varepsilon_2 W^{h-i}$, with $\varepsilon_2 \in \mathbf{k}[W, X]$; then dividing $(F_{i-1}^q - F_i^p)$ by W gives

$$F_{i+1} = (f_{i+1} + \varepsilon_2 W^{h-i}) - p f_i^{p-1} b_i W^{h-i} + \varepsilon_1 W^{h+1-i}$$

= $f_{i+1} + (\varepsilon_2 - p f_i^{p-1} b_i + \varepsilon_1 W) W^{h-i},$

which proves (7). (In particular, the F_i 's are polynomials.)

Let $\pi : \mathbf{k}[W, X, Y, Z] \to \mathbf{k}[X, Y, Z]$ be the surjective **k**-homomorphism defined by

$$W \mapsto 0, \ X \mapsto X, \ Y \mapsto Y, \ Z \mapsto Z.$$

Then (7) implies that $\pi(A) = \mathbf{k}[X^{e_0}, \dots, X^{e_h}, \tau]$, where $e_i = p^{h-i}q^i$ and where τ is transcendental over $\mathbf{k}(X)$. Let $R = \mathbf{k}[X^{e_0}, \dots, X^{e_h}]$; since $R[\tau]$ is a homomorphic image of A, $\#(A) \ge \#(R[\tau])$; since $\#(R[\tau]) = h + 2$ by Lemma 1, (5) holds. Define a derivation $\Delta : \mathbf{k}[W, X, Y, Z] \to \mathbf{k}[W, X, Y, Z]$ by

(8)
$$\Delta = \begin{vmatrix} \frac{\partial}{\partial X} & \frac{\partial}{\partial Y} & \frac{\partial}{\partial Z} \\ \frac{\partial F_0}{\partial X} & \frac{\partial F_0}{\partial Y} & \frac{\partial F_0}{\partial Z} \\ \frac{\partial F_1}{\partial X} & \frac{\partial F_1}{\partial Y} & \frac{\partial F_1}{\partial Z} \end{vmatrix}$$

Then $\Delta Z = -W^{h+1} \frac{\partial f_1}{\partial X}$, $\Delta Y = -W^h \frac{\partial f_0}{\partial X}$, $\Delta X = W^{2h+1}$ and $\Delta W = 0$, so Δ is a triangular derivation of $\mathbf{k}[W, X, Y, Z]$. It is clear that $\mathbf{k}[W, F_0, F_1] \subseteq \ker \Delta$, so $A \subseteq \ker \Delta$; let us now argue that $\ker \Delta \subseteq A_W$. Write $B = \mathbf{k}[W, X, Y, Z]$; since

$$B_W \supseteq A_W[X] \supseteq \mathbf{k}[W, W^{-1}, X, F_0, F_1] = \mathbf{k}[W, W^{-1}, X, Y, Z] = B_W,$$

 B_W is a polynomial ring over A_W . On the other hand, $(\ker \Delta)_W$ contains A_W and is the kernel of the nonzero derivation $\Delta_W : B_W \to B_W$, so $(\ker \Delta)_W = A_W$ and we have shown that $A \subseteq \ker \Delta \subset A_W$. So, in order to prove (6), there remains only to prove

It is easy to see that the proof of (9) reduces to that of the following: if T_0, \ldots, T_{h+1} are indeterminates and $\psi \in \mathbf{k}[T_0, \ldots, T_{h+1}]$, then $\psi(F_0, \ldots, F_{h+1}) \in WB$ implies $\psi(F_0, \ldots, F_{h+1}) \in WA$. Write $\psi = \sum_{n\geq 0} \psi_n T_{h+1}^n$ with $\psi_n \in \mathbf{k}[T_0, \ldots, T_h]$. Then

$$0 = \pi(\psi(F_0, \dots, F_{h+1})) = \sum_{n \ge 0} \psi_n(X^{e_0}, \dots, X^{e_h})\tau^n,$$

where $\tau = \pi(F_{h+1})$ is transcendental over $\mathbf{k}(X)$, and consequently $\psi_n \in \ker \varphi$ for all n, where $\varphi : \mathbf{k}[T_0, \ldots, T_h] \to \mathbf{k}[X]$ is the **k**-homomorphism which maps T_i to X^{e_i} . By Lemma 2, $\ker \varphi = (T_0^q - T_1^p, \ldots, T_{h-1}^q - T_h^p)$, so $\psi_n = \sum_{j=1}^h \alpha_j (T_{j-1}^q - T_j^p)$ for some $\alpha_j \in \mathbf{k}[T_0, \ldots, T_h]$. Then

$$\psi_n(F_0, \dots, F_h) = \sum_{j=1}^h \alpha_j(F_0, \dots, F_h)(F_{j-1}^q - F_j^p)$$
$$= \sum_{j=1}^h \alpha_j(F_0, \dots, F_h)WF_{j+1} \in WA$$

So (9) holds and, consequently, $ker(\Delta) = A$. So (5) and (6) are proved.

Example. We exhibit a triangular derivation Δ of $\mathbf{k}[W, X, Y, Z]$ whose kernel cannot be generated by five elements over \mathbf{k} . Let p = 2, q = 5 and h = 4 and, following the proof of Lemma 4, successively define f_4, f_3, f_2, f_1, f_0 by:¹

$$f_4 = X^{625}, \quad f_3 = X^{250}, \quad f_2 = X^{100} + \frac{1}{5}X^{225}W,$$

$$f_1 = X^{40} + \left(\frac{2}{25}X^{165} + \frac{1}{5}X^{90}\right)W + \left(-\frac{3}{625}X^{290} - \frac{8}{125}X^{215} - \frac{2}{25}X^{140}\right)W^2$$

and

$$\begin{split} f_0 &= X^{16} + \left(\frac{2}{25}X^{66} + \frac{1}{5}X^{36} + \frac{4}{125}X^{141}\right)W \\ &+ \left(-\frac{92}{3125}X^{191} - \frac{23}{625}X^{116} - \frac{42}{15625}X^{266} + \frac{9}{625}X^{161} - \frac{8}{125}X^{86} - \frac{2}{25}X^{56}\right)W^2 \\ &+ \left(\frac{408}{78125}X^{241} + \frac{68}{15625}X^{166} + \frac{666}{390625}X^{316} + \frac{328}{15625}X^{211} + \frac{132}{3125}X^{136} \\ &+ \frac{36}{625}X^{106} - \frac{72}{78125}X^{286} - \frac{28}{3125}X^{181} + \frac{6}{125}X^{76} + \frac{244}{1953125}X^{391}\right)W^3. \end{split}$$

Define Δ as in (8) or, equivalently, by

$$\Delta W = 0, \quad \Delta X = W^9, \quad \Delta Y = -W^4 \frac{\partial f_0}{\partial X} \text{ and } \Delta Z = -W^5 \frac{\partial f_1}{\partial X}$$

Then, by (5) and (6), we have $6 \le \#(\ker \Delta) \le 7$.

¹Note that the f_j 's are not unique.

References

- 1. D. Daigle, G. Freudenburg, A counterexample to Hilbert's Fourteenth Problem in dimension five, ppt 1999 (9 pages)
- 2. M. Miyanishi, Normal affine subalgebras of a polynomial ring, in: Algebraic and Topological Theories to the Memory of Dr. Takehiko Miyata, Kinokuniya, Tokyo (1985) 37-51 CMP 91:10

Department of Mathematics and Statistics, University of Ottawa, Ottawa, Canada K1N $6\mathrm{N5}$

E-mail address: daniel@mathstat.uottawa.ca

Department of Mathematics, University of Southern Indiana, Evansville, Indiana47712

 $E\text{-}mail\ address: \texttt{freudenb@usi.edu}$

662