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ABSTRACT. Let X be an infinite set, D a set of pseudo-metrics on X,
EC *X, and T' C *D.If p(a,b) is limited (finite) for every a,b € =
and every p € I', then, for each p € I', we can define a pseudo-metric p
on Z by writing p(a,b) =st(p(a,b)). We investigate the conditions under
which the topology induced on = by {p: p € I'} has a basis consisting
only of standard sets. This investigation produces a theory with a variety of
applications in functional analysis. For example, a specialization of some of
our general results will yield such classical compactness theorems as Schauder’s
theorem, Mazur’s theorem, and Gelfand-Philips’s theorem.

1. INTRODUCTION

Let X, D, £ and T be as in the abstract. Suppose that °Z2={z € X : *z €
E}#0 and °T'={de D: *deTl} #0. Let p(a,b) be limited (finite) for
every a,b€Z and pel,andlet T ={p:pel} where p(a,b) =st(p(a,b)).
Let (2,I) denote the uniform space whose uniformity is generated by the set T.
The topology induced on = by this uniformity will be referred to as T-topology
on E. We call T' compatible with Z if the I-topology on = has a basis that

consists only of standard sets. In this paper we investigate the following question.

Question. Under what conditions on the sets = and I' will the set
' be compatible with =7

Our main results regarding this question are presented in Section (2), where we
treat the question in a setting that is suitable for a wide range of applications. In
Section (3), after giving several nonstandard compactness criteria for subsets of a
Banach space and its dual, we use the theory developed in Section (2) to derive
such classical compactness theorems as Schauder’s theorem, Mazur’s theorem, and
Gelfand-Philips’s theorem.

The idea of the I-topology introduced above is an extension of the notion
of S-topology introduced by Robinson [I] in the context of metric spaces, and
further studied by Henson ([2], page 117) in the context of uniform spaces. What
was considered in [2] was a special case of (Z,T) in which Z = *X and
I ={*d: d e D}. In this special case, we shall call the I-topology the S-
topology although it was not called so in [2]. The question of existence of a basis
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consisting only of standard sets for the S-topology was not considered by Robinson
or by Henson.

Topologies that are generated by a family of standard sets on *X should not be
confused with the S-topology as defined in [I] and [2] and generalized to I'-topology
here. A special case of the former was first introduced in [4], page 47, and called
the discrete S-topology. The idea was somewhat extended and further discussed
in [3], page 197, where the relation of such topologies to compactifications of X
was pointed out. In [6], starting with a topological space (X,T), Salbany and
Todorov considered the topology T that is generated on *X by the collection
{*G: G € T}, and used this topology to study various classical compactifications
of (X,T).

In [7], H. Render, starting with a uniform space (X,V) and its induced topo-
logical space (X,T), studied the relation between the T (as defined in the above
paragraph) and the S-topology (as defined on the previous page). The result he
announced was that: if (X,V) is not zero-dimensional, then there does not exist
a base of the S-topology consisting only of standard sets. But this statement is
false. As a trivial example, consider the set X = (0,1) with its usual unifor-
mity (i.e., the one which has the sets U. = {(z,y) : |[x —y| < €}, ¢ € RT, for a
basis). By definition, the S-topology associated with this uniformity has the sets
S(a,e) ={b e *X :stla—bl <€}, a€ *X, e € R, for a basis. It is obvious
that the standard sets *S(x,e) with z € X and € € R also form a basis for the
S-topology. This does not, however, happen in an arbitrary uniform space. The
reason it happened here was that the set X = (0,1) with its usual uniformity is
a totally bounded space. In Corollary (1.3), we show that, given a uniform space
(X,V), the S-topology on *X has a basis consisting only of standard sets if and
only if (X,V) is totally bounded.

Thus we first address our opening question in the general setting where it is
posed. To fix the notation, let (X, D) be a uniform space with its uniformity
generated by a set of pseudo-metrics D. If, for an element a € *X, *d(a,z) is
limited for all d € D and all z € X, then we say that a is limited. We denote the
set of all limited elements of *X by ltd( *X). For other nonstandard concepts
used in this paper, we refer the reader to [3]. The reference [5] contains all of the
standard concepts used in this paper.

Theorem 1.1. Let T ={*d:d e D}. A subset A of X s totally bounded
n (X,D) if and only if *A C td( *X) and the T'-topology on *A has a basis
consisting only of standard sets.

Proof. Recall that A is totally bounded if and only if every element of *A is
pre-near standard. Assume that A is totally bounded. Since *A C pns( *X) C
Itd (*X), *d(a,b) islimited for every d € D and every a,b € *A. Furthermore,
forall a€ *A, € X, ec RT, and d € D, the sets

(1) S(a; z,dye) ={be *A: st(| *d(z,b) — *d(z,a)|) < €}

are open relative to the f‘—topology, are standard, and form a subbasis for the
f—topology on *A. To prove they are open, fix b € g(a; x,d,e). Choose
§ = e —st(| *d(x,b) — *d(z,a)]). Since S(b; d,8) C g(b; z,d,0), we have
S(b; d,d) C S’(a; x,d,€). To see that they are standard, note that the expression
st(| *d(z,b) — *d(z,a)]) in (1) can be written as |a(z,d) — b(x,d)|, where
¢: X xD—R (celtd( *X)) is defined by é(z,d) = st( *d(c,z) ). Thus the
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defining formula of S (a; x,d,€) is equivalent to one that contains only standard
constants. This proves that the set S'(a; x,d,€) is standard. Next let S'(a; d,e) =
{be *A: st( *d(a,b) ) < € be a subbasic element of the T-topology of
*A. Choose z € X such that st( *d(a,z) ) < §. Then it is easily seen
that S(a; ,d, $) C S(a; d,e). This proves that the sets defined in (1) form a

subbasis for the I'-topology on *A. The converse is an easy consequence of the
definitions. O

In the next two corollaries we continue to assume that I' = { *d : d € D}. Since,
for subsets of a complete uniform space, total boundedness and relative compactness
are equivalent properties, Theorem (1.1) has the following immediate corollary.

Corollary 1.2. Suppose that (X, D) is a complete uniform space. A suljset A of
X s relatively compact in (X, D) if and only if *A C ltd( *X) and the T'-topology
on *A has a basis consisting only of standard sets.

Corollary 1.3. Suppose that D consists only of bounded pseudo-metrics on X.
The following assertions are equivalent.
(i) The space (X, D) is totally bounded.

(ii) The space (*X,T') has a basis consisting only of standard sets.
(iii) The space (*X,T') 1is quasi-compact and has X as a dense subset.

Proof. The implication (i) = (ii) is an immediate consequence of Theorem (1.1).
Assume that (ii) holds, and let B be a basis of (*X,T) that consists only of
standard sets. Since every nonempty member of B contains a standard element,
X is dense in (*X,T). The quasi-compactness of (*X,T) follows from the fact
if C is a nonempty subfamily of {C: *X\C € B} with the finite intersection
property, then () C # (. For the implication (iii) = (i), we need only observe
that the denseness of X in (*X,T) implies that every point in *(X,D) is
pre-nearstandard. O

2. MAIN THEOREM

Corollary (1.2) suggests that the notion of compatibility defined in the opening
paragraph of the previous section might give rise to interesting compactness con-
ditions in functional analysis. The goal of the present section is to explore this
possibility. Theorem (2.3), below, is the main theorem of this paper. First we need
to fix the notation. Unless stated otherwise, throughout this section, X and Y
are infinite sets, = is a subset of *X with °Z2={ze€ X: *z €=} #0, T isa
subset of *Y with °T={y€Y: *y €'} #0, and o is a real-valued function
on X xY.

Using Y and o we define a uniform structure on X that is generated by the set
of pseudo-metrics D(y,,) = {dy : y € Y}, where dy(z1,22) = |0(x1,y) —0(x2,¥)|
Now consider the subset { *dy : b€ '} of *D(y,,). Given that *o(a,b) is limited
forall a € E and b €T, we can define a pseudo-metric st((*dp)(a1,az2)) on =
for each b € I Thus we can speak of a I',-topology on = induced by these
pseudometrics.

A =,-topology on T' can be defined in a similar fashion. This topology, being
induced on T' by the family =, = {st(*d,) : @ € E} of pseudo-metrics, has as a
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subbase the family 8 consisting of the sets

S=z(b; a,e) ={b €T : st(| *o(a,b’) — *o(a,b)|) <€},

where beT', a € Z, and ¢ € R*. Note that, in case I'= *G for some G CY,

]

the members S'E(b; x,€) of 8§, where x € °Z, are standard.

Definition 2.1. Let the notations be as in the first paragraph of this section.
Suppose that G is a nonempty subset of Y such that *G C I'. Suppose also that
*o(a,b) is limited for all a € = and b€ *G. For a €E, be *G, and €€ RT,
let

S=(b; a,e) = {b' € *G: st(] *o(a,b') — *o(a,b)|) < €}
The éa-topology on *G is the topology that has the sets S'E(b; a,e) for a
subbasis. The set E is called o-compatible with *G if the sets S'E(b; x,0) as
b runs through *G, z through °Z, and § through R, form a subbasis for
the Z,-topology on *G. We call E o-compatible with ' if it is o-compatible
with *G for every *G that is contained in T
Given that H is a nonempty subset of X such that *H C E, the definitions

of I'p-topology on *H and o-compatibility of I' with = are obtained
symmetrically from the above by an appropriate interposition of notations.

Notation and Definition 2.2. Suppose that Z is a union monad (that is, there
exists a family ¥ of subsets of X such that E = |J{ *H : H € £}). Note
that in this case °E=(J3. By X, we denote the family of all finite subsets of
(UX. Theset °E should also be regarded as a union monad because we can write
CE=U{*H:HeX,}

We now use the set = to define an infinitesimal relation on *Y as follows.
Two elements b; and by of *Y are called infinitely close relative to = if

*o(a,b1) ~ *o(a,by) for all a € E.

We shall write (Y,0,%) to indicate that Y is equipped with the uniformity that
is determined by this infinitesimal relation. Similarly, we use the set °Z= to define
the following infinitesimal relation on *Y. We call two elements b; and by of
*Y infinitely close relative to °E if

*o(a,b1) ~ *o(a,bg) forall ae °Z.

We shall write (Y,0,%,) to indicate that Y is equipped with the uniformity that
is determined by the relation of infinitely close with respect to °
Assuming that I' is also a union monad such that I' = |J{ *G : G € Q}, where
Q is a family of subsets of Y, and that , is the family of all finite subsets of
U9, the notions of infinitely close relative to T' and to °T" and the corresponding
uniform spaces (X,0,Q) and (X,0,9,) are defined in a symmetric manner.

—_
—
[l

We are now ready to present the main theorem of this paper.

Theorem 2.3. The notation satisfies all of the conditions stated in (2.2). Suppose
also that *o(xz,b) and *o(a,y) are limited for all x € °E, y € °T, a € E, and
beT. The following statements are equivalent.

(i) ZE is o-compatible with T.

(i) = C pns( *(X,0,0)).

(iii) T Cpns( *(Y,0,%)).
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(iv) T' is o-compatible with Z.

(v) For every a € E and beTl, *o(a,b) is limited and the restriction of
the internal function *o( *,b) to *(H,o0,Qp) is S-continuous, where H is any
subset of X with *H C =.

(vi) For every beT and a €Z, *o(a,b) is limited and the restriction of the
internal function *o(a,) to *(G,o0,%,) is S-continuous, where G is any subset
of Y with *G CT.

Proof. (i) = (ii). Fix ap € E, Gi,...,G, €, and e € RT. Choose H € X
such that ag € *H. We show thereis x € H such that

(2) (Wbe *G)[| *o(an,b) — "o(x,b)] <e],

where G = JI_, Gi. The result follows almost immediately once the statement
(2) is proved. By hypothesis, *o(a,y) is limited for all a € *H and all y € G.
Hence, for each a € *H, we can define a function a : G — R by writing
a(y) =st( *o(a,y) ). The set

{ae "H: (vbe *G)[ *a(b) — *ao(b)| < i]}

is standard and contains ag, so it contains an element x € H. From this it
follows that
€

3) (% € Q)llo(wy) — “olan,y)l < 5]

We are now ready to prove (2). Fix b € *G. Then b € *G; for some
je{l,...,n}. Theset U=z(b; ao,x, £) is open in the Z,-topology of *Gj.
Hence there is a standard element S of the Z,-topology on *G; such that
be S c U=(b; ao,z, 7). Choose a standard element y of S. Now b and y

belong to UE(b; aop,, §), so we have

€ €
@ | olab) — “olasy)l < 5 and lo(ey) — “oab) < 5
Since y € G, from (3) and (4), we get

|*U(a/07b) - *U(l‘,b)| < | *O'(Cl07b) - *U(G/an” + |*U(a/05y) - *U(x7y)|
+ [To(z,y) — To(2,b)] <e

This completes the proof of ((i) = (ii)).

(ii) = (i). If *Go C T, there are Gy,...,G, € Q such that Gy C |, G;
(see [3], Theorem (7.4.4.b), page 182). Hence, for each a € E, by (ii), there is
x € °Z such that | *o(a,b) — *o(x,b)] <1 forall b€ *Go. From this it follows
that *o(a,b) is limited for all b€ *G and all a € E.

Next we show that the sets S’E(b; x,0), as b runs through *Gp, = through
2, and § through R, form a standard subbasis for the E,-topology on *Gy.
To see this, for each b e *G, define b: °Z — R by b(z) = st( *o(z,b)). Note
that the sets S'E(b; x,0) can be written as

S=(b; x,8) ={b € *G : | b(x) —V(z)| < d}.

o

Hence these sets are all standard. To see that they form a subbasis for the gg—
topology on *Gp, fix an arbitrary subbasic element Sz(bo; ag,€) of the Z,-
topology on *Go. By (ii), thereis z¢ € °Z such that | *o(ag,b) — *o(xo,b)| < §

forall b € *Gy. From this, it is easily seen that by € S'E(bo; xo, ) C Sa(bo; ag, €).
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(ii) = (iii). Fix bp €D, e€ R", and Hy,...,H, €X. Let H=J], H;
and choose G € ) such that by € *G. By an argument similar to that given for
(3) above, there is an element y € G such that

(5) (va € H)llo(x,y) ~ “ole,bo)| < gl.

We need to show that | *o(a,y) — *o(a,bp)| <€ forall a € *H. Fix a€ *H.
By (ii), there is 2 € H such that | *o(a,b) — *o(z,b)| < § forall b € *G. In
particular, we have

6)  |olay) - "oley) <3 and | olab) ~ o) < .
From (5) and (6), we get

| *o(a,y) — "ola,bo)| < | o(a,y) — “o(z,y)| + | “o(x,y) — “o(x,bo)
+ | "oz, bo) — *ola,by)| <e.

This completes the proof of ( (i) = (iii) ). The converse of this implication is
proved similarly. Also, by symmetry, the proof of the implication ( (iv) = (iii) )
is similar to that of ( (i) = (ii) ).

The proofs of the equivalences ( (iv) <= (v) ) and ( (i) <= (vi) ) are trivial.
Indeed, we need only recall that *o( -, b) is S-continuous at a point ag € *(H, 0, 2p)
if and only if for all € € RT, there are y1,...,y, € °I' and § € RT such that
for all a € *H we can write

max | *o(a,y;) — *o(ao,yi)| <I — | *o(a,b) — *o(ap,b)| <e.
1<i<n

O

We observe that, under the conditions of theorem (2.3), o-compatibility has
turned out to be a symmetric relation between = and I'. This prompts us to
slightly modify our terminology of Definition (2.1) to better reflect this symmetry.
Thus we shall say that & and I' are o-compatible if and only if any of the
equivalent conditions of Theorem (2.3) holds.

There are several standard conditions that are equivalent to the o-compatibility
of E and T'. For example, under the conditions of Theorem (2.3), as is evident from
the statements (i) and (iii) of this theorem, the sets & and T' are o-compatible
if and only if either of the following equivalent statements holds:

e Every member H of ¥ is totally bounded in (X, 0,Q).
e Every member G of  is totally bounded in (Y, 0,3).

We add two more to these in the next theorem, where the notation is as in (2.2).
Also recall that if F is a filter, then p(F) denotes its monad.

Theorem 2.4. The sets Z and I' are o-compatible if and only if o is bounded
on Hx{y} and {x}xG forall HeX, GeQ, ze X, and yeJQ and
any of the following four equivalent statements holds.

(i) Every member H of ¥ is totally bounded in (X,0,Q).

(ii) Every member G of Q is totally bounded in (Y,0,%).

(iii) For all H €X and all filters F on H if F is a Cauchy filter relative
to (H,o,Qy), then it is also a Cauchy filter relative to (H,o,).

(iv) For all G €Q and dll filters F on G if F is a Cauchy filter relative
to (G,0,%,), then it is also a Cauchy filter relative to (G,o,X).
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Proof. First note that the boundedness conditions on o stated in this theorem
are equivalent to those mentioned in Theorem (2.3). Thus the theorem is already
proved for (i) and (ii). The theorem for (iii) is symmetric with that for (iv). We
thus prove the theorem only for (iii).

Suppose that = and T' are o-compatible. For each H € ¥ and y € 9,
the internal set {n € *N : (Va € *H) [| *o(a,y) | < n ] } contains all infinitely
large m, so it must contain a standard n. Hence o is bounded on H x {y}. Its
boundedness on {z} x G is argued similarly.

To prove (iii), let W and V denote the relations of infinitely close on *X
relative to I' and °T, respectively (see (2.2)). We claim that if F is a filter
on H that is Cauchy relative to (H,o,9Q,), then u(F) x u(F) C W. Fix
a,a’ € u(F) and beT. Since p(F)x u(F) CV, wehave *o(a,y) ~ *o(d,y)
forall y € °T'. Since, by (2.3.v), the internal function *o( -, b) is S-continuous on
*(H,0,9p), it follows that *o(a,b) ~ *o(a’,b). Hence a and o are infinitely
close relative to T'; that is, the ordered pair (a,a’) belongs to W as desired.

For the converse, by Theorem (2.3), it suffices to show that (iii) implies (2.3.ii).
Fix a € 2. Choose H € ¥ such that a € *H. Given e € Rt and y € °T,
there is a standard z € {a’ € *H : st(| *o(a,y) — *o(d’,y)]) < € }, since
the set is standard and non-empty. Hence a € pns *(H,0,9,). So there is a
Cauchy filter F on (H,0,Q,) such that a € u(F) (see [4], Theorem (3.12.2),
page 77). By (iii), we have u(F) x p(F) C W. Since a € u(F), it follows that
u(F) is contained in Wia] (the monad of a in *(H,o,)), which means that
a € pns *(H,0,Q). The proof is finished. O

The applications of the above results presented in the next section concern the
special case where ¥ = {H} forsome H C X and Q= {G} forsome GC Y.
It is convenient to state this special case in the following corollary.

Corollary 2.5. Suppose that 0 # H C X and 0 # G C Y. Suppose also that
*o(a,y) and *o(x,b) are limited for all x € H, y€ G, a€ *H, and be *G.
The following statements are equivalent.

(i) The sets *H and *G are o-compatible.

(ii)  The set H is totally bounded in (X,0,{G}).

(iii) The set G s totally bounded in (Y,o,{H}).

(iv) For every a€ *H and be *G, *o(a,b) is limited and the restriction
of the internal function *o( -,b) to *(H,o,{G}p) is S-continuous.

(v) Forevery a€ *H and be *G, *o(a,b) is limited and the restriction
of the internal function *o(a, ) to *(G,o,{H},) is S-continuous.

(vi) Ewvery filter F on H that is Cauchy relative to (H,o,{G}p) is also
Cauchy relative to (H,o0,{G}).

(vil) Every filter F on G that is Cauchy relative to (G,o,{H},) is also
Cauchy relative to (G,o,{H}).

3. APPLICATIONS

In this section, after giving nonstandard compactness criteria for subsets of a
Banach space and its dual, we use them to derive a number of classical compactness
results of functional analysis.

Let E be a Banach space, with E’ its (continuous) dual. Suppose that
c:ExFE — R isgivenby o(z,z’) = (z,2') = 2'(z), and that B, and B, are
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the closed unit balls of E and E’, respectively. Recall that the uniformity on E
that is determined by the relation of infinitely close relative to *B.s is the same
as that determined by the norm of the Banach space E. Hence a subset A of E
is relatively compact in the Banach space E for the norm topology if and only if
it is totally bounded in (FE,0,{Be}). Similarly, a subset A’ of E’ is relatively
compact in the Banach space E’ for the norm topology if and only if it is totally
bounded in (E’,0,{B.}). From these observations and Corollary (2.5), we get
the following nonstandard characterizations of compactness in a Banach space and
its dual, which might be regarded as the nonstandard version of Bartle’s notion of
strong pairing [8].

Theorem 3.1. Let ACE and A CE'. We have:

(i) A is relatively compact for the norm topology if and only if *A and *Be
are o-compatible.

(il) A’ is relatively compact for the norm topology if and only if *A’ and *B,
are o-compatible.

Next, combining Theorem (3.1) with an idea due to S. Kakutani [9], we give a
nonstandard proof of the following theorem of Schauder. First, some notation.

Let E and F be Banach spaces. Define o: ExE' — R by o(z,2') = (z,2')
and v: FxF — R by ~(y,v') = (y,v'). Let T : E — F be a continuous
linear operator and let T’ : F' — E’ be its adjoint, so that (Tz,y’) = (z,T'y’)
for all € E and y € F’. Finally, let ¢, : E x F/ — R be defined by
@t(xayl) = <Txayl> = <$,le/>.

Theorem 3.2 (Schauder). The operator T is compact if and only if T’ s
compact.

Proof. By definition, T is compact if and only if T B, is relatively compact in
F. By Theorem (3.1.i), this is equivalent to the condition that *(T'B.) and *Bj
are y-compatible. Since ¢¢(z,y’) = y(Tx,y’), this last condition is equivalent to

(7) *B. and *Bj are g,-compatible
Since ¢i(x,y') = o(z,T'y’), (7) holds if and only if *(7"By) and *B. are

o-compatible. By Theorem (3.1.ii), this is equivalent to: (I'Bys) is relatively
compact in E’, which means T’ is compact. O

As another application of Corollary (2.5), we give a nonstandard proof of Mazur’s
theorem. For a different proof, one that is based on a nonstandard version of
Grothendieck’s completeness theorem, see [3], page 282.

Theorem 3.3 (Mazur). If A is a norm compact subset of a Banach space FE,
then the closed convex hull A of A is also norm compact.

Proof. By Theorem (3.1.i) and the fact that A s closed, we need only show that
*A and *B. are o-compatible. For this we use (2.5.iv). Fix a € *A and
be *B.. We have a = Zle o;a;, where a; € *A, a; € *R, a; > 0 and
>, a;=1. Since *A and *B. are o-compatible, thereis M € R such that
[{a;, b)) < M for all i€ {1,...,w}. Hence [{a,b)] < M. Next we show that the
restriction of the internal function *o(é,”) to *(Be,o,{A},) is S-continuous. Fix
b,b' € *B. and assume that (&,b—b') ~0 forall # € A. Then (x,b—b') ~0 for
all z € A. Since the restriction of the internal function *o(a, ) to *(Be,o,{A}p)
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is S-continuous for all a €* A, it follows that {(a;,b—b') ~0 forall i € {1,...,w}.
Hence (a,b—1¥") ~0, as desired. O

Finally, we remark that the equivalence of the statements (2.4.i) and (2.4.iv) may
be regarded as an extension of Gelfand-Philips’s compactness condition for subsets
of a Banach space. According to this condition, a subset A of E is relatively
compact if and only if it is bounded and, for every bounded filter F of subsets of
E’, if F converges to zero pointwise on FE, then its convergence is uniform on
A. The derivation of this condition from Theorem (2.4) consists in taking 3 as
the family of subsets of E that consists of A and all the singletons {z}, where
x € E\A, and letting ©Q = {B./}. Then it takes a straightforward argument to
show that Gelfand-Philips’s condition on bounded filters on E’ is equivalent to
the condition (2.4.iv) imposes on filters on B.. But (2.4.iv) is equivalent to (2.4.i),
which means that A is relatively compact.
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