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HYPOELLIPTIC RANDOM HEAT KERNELS: A CASE STUDY

RICHARD B. SOWERS

(Communicated by Claudia Neuhauser)

Abstract. We consider the fundamental solution of a simple hypoelliptic sto-
chastic partial differential equation in which the first-order term is modulated
by white noise. We derive some short-time asymptotic formulæ. We discover
that the form of the dominant short-time asymptotics depends nontrivially
upon the interplay between the geometry of the noisy first-order term and the
geometry defined by the hypoelliptic operator.

1. Introduction

Consider R2 with its standard Euclidean atlas. Define two vector fields

A1(x, y) def=
∂

∂x
,

A2(x, y) def= x
∂

∂y
,

(x, y) ∈ R2.

Note that

A3(x, y) def= [A1, A2](x, y) =
∂

∂y
, (x, y) ∈ R2,

so that

Span {Lie{A1, A2}} (x, y) = T(x,y)R2, (x, y) ∈ R2.

Thus the second-order operator

L def=
1
2
A2

1 +
1
2
A2

2 =
1
2
∂2

∂x2
+
x2

2
∂2

∂y2

is hypoelliptic (in the literature, this operator is often attributed to Grushin). Now
let (Ω,F ,P) be a probability triple on which is defined a Wiener process W . We
are interested in the stochastic partial differential equations (SPDE’s)

dpi = Lpidt+Aip
i ◦ dWt,

pi(0, ·) = δ(0,0),
t ≥ 0,(1)

where ◦ denotes Stratonovich integration. Specifically, we are interested in the
behavior of these three SPDE’s as t tends to zero.
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The background of our interest is the general study of SPDE’s of the form
du = Audt+Mu ◦ dWt,

u(0, ·) = δy
(2)

on d-dimensional differentiable manifolds, where A is a second-order partial-differ-
ential operator and M is a first-order partial-differential operator, and y is some
fixed point in M . Of course ifM≡ 0 and A is elliptic, the results are classical; for
“nice” x,

u(t, x) = (2πt)−d/2 exp
[
−d

2(x, y)
2t

+ Wy(t, x)
] {
a0(x) + a1(x)t+ a2(x)t2 . . .

}
as t tends to zero, where d is the Riemannian distance, Wy(t, x) is the work done by
the non-self-adjoint part of A along the geodesic from y to x (see [10]), a0 is related
to the Ruse Invariant (see [3]), and the ai’s are functions which can be iteratively
derived according to calculations of Minakshisundaram and Pleijel (see [2] and also
[4]). If M ≡ 0 and A is hypoelliptic, Ben Arous in [1] and Leandre in [6] and [7]
showed that a similar expansion holds if we interpret d as the Carnot-Carathéodory
distance (see also [8]). Since SPDE’s where M is zero-order play a central role in
filtering theory, it is natural to ask for similar expansions in the stochastic case.
The first result was by Zhang [13], where the case of A elliptic and M zero-order
was studied; one should replace the deterministic ai’s by a collection of iterated
stochastic integrals. The case of A hypoelliptic and M zero-order was considered
by Mesnager [9].

It turns out that ifM is first-order and A is elliptic, a new phenomenon occurs.
The simplest incarnation of this occurs if the manifold is R, A = 1

2
d2

dx2 , andM = d
dx ;

then it is easily seen that the solution of (2) is

u(t, x) = exp
[
−|x− y +Wt|2

2t

]/√
2πt

= exp
[
−|x− y|

2

2t
−
(
x− y
t

)
Wt −

W 2
t

2t

] /√
2πt,

t ≥ 0, x ∈ R.

Here the dominant exponential term is the standard distance function, the second
term is the work done by ◦dWt along the line joining x and y (i.e., the geodesic),
and the third exponential term, which cannot be neglected, grows like log log t−1

(due to the law of the iterated logarithm) but its statistics are bounded (i.e., it has
a chi-square distribution). In general, the third term involves a randomly-forced
Jacobi equation (see [11] and [12]). This brings us to the present work, which is a
case study in the final situation, where A is hypoelliptic and M is first-order. We
have chosen the simplest possible form of this problem to indicate what phenomena
are at work. The operator A is of the Grushin type. This operator is degenerate
only along the line {0}×R, so we choose our initial Dirac mass to be at (0, 0). By
analogy with [12], we expect to see interesting phenomena whenM has a first-order
part; i.e., when M is a vector field. Since a general vector field can be written as
a linear combination of A1, A2, and A3, we consider these three cases separately.
By understanding the behavior of this simple case, we should be able to glimpse a
general theory for (2); we will develop this elsewhere.

The basic idea of our proof is to start along the road of [12]. We shall rescale and
then write a variational problem similar to one for a subRiemannian-type distance
function. This variational problem is that of finding the control of least cost which
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drives a certain stochastic differential equation (SDE) from (0, 0) to (x, y). We then
must be careful with the variational problem. In essence, we must keep track of
the directions in which the noise can drive the SDE versus the directions in which
controls can drive the SDE, and the rates of each in terms of iterated Lie brackets.
Finally, we note that our geometry is not locally constant since the dimension of
the span of A1 and A2 is not constant (i.e., it is 1 along {0} ×R and 2 elsewhere).

2. A rescaling heuristic

We will first rescale the SPDE’s (1); set

qi,ε(t, x, y) def= pi(tε, x, y), t ≥ 0, (x, y) ∈ R2,

for all ε > 0; thus

pi(t, x, y) = qi,t(1, x, y).

We note that qi,ε satisfies the SPDE

dqi,ε = εLqi,εdt+ ε1/2Aiq
i,ε ◦ dW ε

t ,

qi,ε(0, ·) = δ(0,0),
t ≥ 0, x ∈ R2,

where

W ε
t

def= ε−1/2Wtε, t ≥ 0.

Next we will replace W ε by a smooth function b; this leads to the PDE

dqi,ε,b = εLqi,ε,bdt+ ε1/2Aiq
i,ε,bḃ(t)dt,

qi,ε,b(0, ·) = δ(0,0),
t ≥ 0.

A reasonable guess is thus that

qi,ε,b(t, x, y) � exp
[
−ε−1J̃ε,bi (t, x, y)

]
where

J̃ε,bi (t, x, y) def= inf

1
2

∫ t

0

∑
j∈{1,2}

p2
j(s)ds :

ζ̇(s) =
∑

j∈{1,2}
Aj(ζ(s))pj(s) + ε1/2Ai(ζ(s))ḃ(s),(3)

ζ(0) = (0, 0), ζ(t) = (x, y)

 .

We should now retrace our steps and get a formula for J̃ t,W
t

i (1, x, y).
The main idea of [12] is that, in the elliptic case, one can differentiate the vari-

ational formula (3) with respect to ε. This gives the correct exponential expansion
in that case. Things are not so simple here, however. In the simplest case, when
i = 3, we see that the b term (which, being a substitute for the Wiener process W ε,
should be thought of as a generalized function) can drive ζ in the A3 direction; if
y = 0, then the controls p1 and p2 need to compensate for this through the bracket
of their respective vector fields, incurring a much greater cost than if y 6= 0. On
the other hand, in the case i = 1, y = 0, the control p may be directly used, which
isn’t so costly.
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To sort these things out, let’s define a semiflow {ψ̃i,b,εt ; t ≥ 0} of diffeomorphisms
of R2 by

˙̃
ψi,b,εs (x, y) = ε1/2Ai(ψ̃i,b,εs (x, y))ḃ(s),

ψ̃i,b,ε0 (x, y) = (x, y),
t ≥ 0, (x, y) ∈ R2.

Recall that if Z is a vector field on R2 and ψ is a diffeomorphism from R2 to itself,
the pullback of Z through ψ is the vector field ψ∗Z on R2 defined by

(ψ∗Z)(x, y) def= DψZ(ψ−1(x, y)), (x, y) ∈ R2.

We can then rewrite (3) by making the transformation ζ(s) = ψ̃i,b,εs (ξ(s)); we get
that

J̃ε,bi (t, x, y) def= inf

1
2

∫ t

0

∑
j∈{1,2}

p2
j(s)ds :

ξ̇(s) =
∑

j∈{1,2}
(ψ̃i,ε,b,−1
s )∗Aj(ξ(s))pj(s),(8)

ξ(0) = (0, 0), ψ̃i,ε,bt (ξ(t)) = (x, y)

 .

Note that with this representation, we can rigorously retrace our steps and get a
quantity which should contain the dominant asymptotics of pi. Let’s first replace ε
by t and b by W t. We define a stochastic semiflow {ψit; t ≥ 0} of diffeomorphisms
of R2 by

dψit(x, y) = Ai(ψit(x, y)) ◦ dWt,

ψi0(x, y) = (x, y),
t ≥ 0, (x, y) ∈ R2.

Note that if b is close in some sense to W t, then ψ̃i,t,bs is close to ψist (this can be
made precise, but we will not need to do so). Then we define

Ji(t, x, y) def= inf

1
2

∫ 1

0

∑
j∈{1,2}

p2
j(s)ds :

ξ̇(s) =
∑

j∈{1,2}
(ψi,−1
st )∗Aj(ξ(s))pj(s),

ξ(0) = (0, 0), ψit(ξ(1)) = (x, y)


= t inf

1
2

∫ t

0

∑
j∈{1,2}

p2
j(s) :

ξ̇(s) =
∑

j∈{1,2}
(ψi,−1
s )∗Aj(ξ(s))pj(s),

ξ(0) = (0, 0), ψit(ξ(t)) = (x, y)

 .

(4)
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We can now claim

Proposition 2.1. We have that P-a.s.,

lim
t→0

t ln pi(t, x, y) = − lim
t→0

Ji(t, x, y).(5)

Proof. The proof is essentially that of [6] and [7]. We can write pi(t, x, y) as a
weighted density (with respect to Lebesgue measure on R2) of an SDE with random
coefficients (using standard techniques of decompositions of stochastic flows; see,
for example, [5, Chapter 4]). Then [6] and [7] can be used.

Our goal is to simplify the right-hand side of (5). Not surprisingly, we should
look at the subRiemannian distance between (x, y) and the origin of R2; define

d2
0,0(x, y) = t inf


∫ t

0

∑
j∈{1,2}

γ̇2
j (s)ds : γ1, γ2 ∈ C1

0 ([0, t];R),

γ1(t) = x,

∫ t

0

γ1(s)γ̇2(s)ds = y


for all (x, y) ∈ R2, where C1

0 ([0, t];R) is the collection of differentiable functions γ
such that γ(0) = 0 (we note that this definition does not in fact depend upon t).
We note that for all (x, y), there are γ1 and γ2 which achieve the minimum. Our
main result is

Theorem 2.2. In all cases (i.e., for all i ∈ {1, 2, 3}), and for all (x, y) ∈ R2,

lim
t→0

t ln pi(t, x, y) = −
d2

0,0(x, y)
2

, P-a.s.

Proof. Lemmas 3.1, 4.3, and 5.3.

The motivation of our work is that the dependence of Ji(t, x, y) of (4) upon
W is fairly explicit, so the proof of Theorem 2.2 should involve a minimum of
technicalities and should thus allow us to focus on relevant qualitative phenomena.
First, note that {ψi,−1

t ; t ≥ 0} describes a stochastic flow of diffeomorphisms of R2

given by

dψi,−1
s (x, y) = −(ψi,−1

t )∗Ai(ψi,−1
s (x, y)) ◦ dWt,

ψi,−1
0 (x, y) = (x, y),

t ≥ 0, (x, y) ∈ R2.(6)

Second, note that for any (x, y) ∈ R2 and any vector field V on R2, {(ψi,−1
s )∗V (x, y);

t ≥ 0} satisfies the T(x,y)R2-valued stochastic differential equation

d((ψi,−1
t )∗V )(x, y) =

(
(ψi,−1
t )∗[Ai, V ]

)
(x, y) ◦ dWt,

(ψi,−1
0 V )(x, y) = V (x, y),

t ≥ 0, (x, y) ∈ R2.(7)

In the next three sections we will use this last fact to write a stochastic Taylor
series for the terms in the minimization problem in (5); this will give us explicit
dependencies on W . Since A1, A2, and A3 are linear, the ψit’s can be explicitly
solved for. Along the same lines, it can be seen that [A1, A3] = [A2, A3] = 0, so
(ψi,−1
t )∗A1 and (ψi,−1

t )∗A2 can be explicitly represented.



2456 RICHARD B. SOWERS

Before starting our case-by-case analysis, let’s make some definitions. For t > 0
and κ ∈ (0, 1/2), define

[W ]t,κ
def= sup

0<s≤t

|Ws|
sκ

.

Lemma 2.3. For any t > 0, κ ∈ (0, 1/2), and ζ ∈ L2([0, t]),∣∣∣∣∫ t

0

Wsζ(s)ds
∣∣∣∣ ≤ [W ]t,κtκ+1/2

{∫ t

0

ζ2(s)ds
}1/2

.

Proof. A simple application of Hölder’s inequality.

Also note that for any α ∈ R and ε > 0,

(1 + α)2 ≤ (1 + ε2) + (1 + ε−2)α2,

as one can see from Young’s inequality. Thirdly for each ε ∈ R and y ∈ R, we define

yε
def=

{
y if y 6= 0,
ε if y = 0.

3. Case 3

First, we consider the case i = 3. This is the easiest case. We have

ψit(x, y) = (x, y +Wt), t ≥ 0, (x, y) ∈ R2,

and due to (6) and (7), or direct calculations, we know that

(ψi,−1
t )∗A1 = A1 and (ψi,−1

t )∗A2 = A2.

Thus the minimization problem is

J3(t, x, y) = t inf

1
2

∫ t

0

∑
j∈{1,2}

p2
j(s)ds :

ξ̇(s) =
∑

j∈{1,2}
Aj(ξ(s))pj(s),

ξ(0) = (0, 0), ξ(t) = (x, y −Wt)


=
d2

0,0(x, y −Wt)
2

.

Thus we have

Proposition 3.1. For any (x, y) ∈ R2,

lim
t→0

t ln p3(t, x, y) = −
d2

0,0(x, y)
2

, P-a.s.
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4. Case 2

Next we consider the case i = 2. This is the next-to-easiest case. We explicitly
have that

ψit(x, y) = (x, y + xWt), t ≥ 0, (x, y) ∈ R2,

and due to (6) and (7), or direct calculations, we know that

(ψi,−1
t )∗A1 = A1 −A3Wt and (ψi,−1

t )∗A2 = A2.

Thus we can rewrite the minimization problem (4) as

J2(t, x, y) = t inf
{

1
2

∫ t

0

γ̇2
1(s) + γ̇2

2(s)ds : γ1, γ2 ∈ C1
0 ([0, t];R)

γ1(t) = x,

∫ t

0

γ1(s)γ̇2(s)ds = y +
∫ t

0

{Ws −Wt}γ̇1(s)ds
}
.(8)

An upper bound is

Lemma 4.1. We have that

J2(t, x, y) ≤
d2

0,0(x, yε)
2

{
(1 + ε2) + 4[W ]2t,κy

−2
ε t2κd2

0,0(x, yε)(1 + ε−2)
}
.(9)

Proof. Let γ1 and γ2 in C1
0 ([0, t];R) be such that γ1(t) = x,

∫ t
0
γ1(s)γ̇2(s)ds = yε,

and ∫ t

0

γ̇2
1(s) + γ̇2

2(s) =
d2

0,0(x, yε)
t

.

Now set ζ1
def= αεγ1 and ζ2(s) def= βεγ2. We want to choose αε and βε such that ζ1

and ζ2 are an admissible pair for the variational problem for J2(t, x, y). Thus we
need αε = 1. We also need that

βεyε = y +
∫ t

0

γ̇1(s){Ws −Wt}ds.

Thus there are two possibilities. If y 6= 0, then we need that

βε = 1 + y−1

∫ t

0

γ̇1(s){Ws −Wt}ds

and if y = 0, then we need that

βε = ε−1

∫ t

0

γ̇1(s){Ws −Wt}ds.

Thus

βε = χ{y 6=0} + y−1
ε

∫ t

0

γ̇1(s){Ws −Wt}ds.

From Lemma 2.3, we get that∣∣∣∣∫ t

0

γ̇1(s){Ws −Wt}ds
∣∣∣∣ ≤ 2[W ]t,κtκd0,0(x, yε).

Thus

β2
ε ≤ (1 + ε2) + 4[W ]2t,κy

−2
ε t2κd2

0,0(x, yε)(1 + ε−2).

This gives us (9).
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From this we get a lower bound.

Lemma 4.2. We have that

J2(t, x, y) ≥
inf |y′−y|≤4[W ]t,κtκ+1/2J

1/2
2 (t,x,y)

d2
0,0(x, y′)

2
.

Proof. If γ1 and γ2 are sufficiently close to being a minimizer of (8), we must have
that∣∣∣∣∫ t

0

γ̇1(s){Ws −Wt}ds
∣∣∣∣ ≤ 2[W ]t,κtκ+1/2

{∫ t

0

γ̇2
1(s)ds

}1/2

≤ 23/2[W ]t,κtκ+1/2

{
1
2

∫ t

0

γ̇2
1(s)ds

}1/2

≤ 4[W ]t,κtκ+1/2J
1/2
2 (t, x, y).

Thus

J2(t, x, y) ≥ t inf
{

1
2

∫ t

0

γ̇2
1(s) + γ̇2

2(s)ds : γ1, γ2 ∈ C1
0 ([0, t];R)

γ1(t) = x,

∣∣∣∣∫ t

0

γ1(s)γ̇2(s)ds− y
∣∣∣∣ ≤ 4[W ]t,κtκ+1/2J

1/2
2 (t, x, y)

}
.

This gives the result.

The combination of these gives

Proposition 4.3. For any (x, y) ∈ R2,

lim
t→0

t ln p2(t, x, y) = −
d2

0,0(x, y)
2

, P-a.s.

Proof. First take the limit in t, then in ε.

5. Case 1

We finally consider the case i = 1. We explicitly have that

φit(x, y) = (x+Wt, y), t ≥ 0, (x, y) ∈ R2,

and due to (6) and (7), or direct calculations, we know that

(ψi,−1
t )∗A1 = A1 and (ψi,−1

t )∗A2 = A2 +A3Wt.

Thus the minimization problem is

J1(t, x, y) = t inf
{

1
2

∫ t

0

γ̇2
1(s) + γ̇2

2(s)ds : γ1, γ2 ∈ C1
0 ([0, t];R2)

γ1(t) = x−Wt,

∫ t

0

{γ1(s) +Ws}γ̇2(s)ds = y

}
.(10)

The upper bound is

Lemma 5.1. We have that

J1(t, x, y) ≤
d2

0,0(x −Wt, yε)
2

{
(1 + ε2) + 2[W ]2t,κy

−2
ε t2κd2

0,0(x −Wt, yε)(1 + ε−2)
}
.

(11)
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Proof. Let γ1 and γ2 in C1
0 ([0, t];R) be such that γ1(t) = x−Wt,

∫ t
0
γ1(s)γ̇2(s)ds =

yε, and ∫ t

0

γ̇2
1(s) + γ̇2

2(s) =
d2

0,0(x −Wt, yε)
t

.

Now set ζ1
def= αεγ1 and ζ2(s) def= βεγ2. We want to choose αε and βε such that ζ1

and ζ2 are an admissible pair for the variational problem for J1(t, x, y). Thus we
need αε = 1. We also need that

βεyε = y +
∫ t

0

γ̇1(s){Ws −Wt}ds.

Thus there are two possibilities. If y 6= 0, then we need that

βε = 1− y−1

∫ t

0

γ̇2(s){Ws −Wt}ds

and if y = 0, then we need that

βε = −ε−1

∫ t

0

γ̇2(s){Ws −Wt}ds.

Thus

βε = χ{y 6=0} − y−1
ε

∫ t

0

γ̇2(s)Wsds.

From Lemma 2.3, we get that∣∣∣∣∫ t

0

γ̇2(s)Wsds

∣∣∣∣ ≤ [W ]t,κt2κd2
0,0(x−Wt, yε).

Thus

β2
ε ≤ (1 + ε2) + [W ]2t,κy

−2
ε t2κd2

0,0(x−Wt, yε)(1 + ε−2).

This gives us (11).

From this we get a lower bound.

Lemma 5.2. We have that

J1(t, x, y) ≥
inf |y′−y|≤23/2[W ]t,κtκ+1/2J

1/2
1 (t,x,y)

d2
0,0(x−Wt, y

′)

2
.

Proof. If γ1 and γ2 are sufficiently close to being a minimizer of (10), we must have
that ∣∣∣∣∫ t

0

γ̇2(s)Wsds

∣∣∣∣ ≤ 21/2[W ]t,κJ
1/2
1 (t, x, y).

Thus

J1(t, x, y) ≥ t inf
{

1
2

∫ t

0

γ̇2
1(s) + γ̇2

2(s)ds : γ1, γ2 ∈ C1
0 ([0, t];R)

γ1(t) = x,

∣∣∣∣∫ t

0

γ1(s)γ̇2(s)ds− y
∣∣∣∣ ≤ 21/2[W ]t,κtκ+1/2J

1/2
1 (t, x, y)

}
.

This gives the result.
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The combination of these gives

Proposition 5.3. For any (x, y) ∈ R2,

lim
t→0

t ln p1(t, x, y) = −
d2

0,0(x, y)
2

, P-a.s.

Proof. First take the limit in t, then in ε.
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