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A PROOF OF THE HOMOTOPY PUSH-OUT
AND PULL-BACK LEMMA

MICHIHIRO SAKAI

(Communicated by Ralph Cohen)

Abstract. The homotopy push-out and pull-back lemma of Iwase (1998) is a
generalized version of Theorem 1.1 of Ganea (1965) and the Theorem of Rutter
(1971) whose proofs were given under the simply-connectivity condition. The
purpose of this paper is to give a proof in the general case.

1. Introduction

In this paper, we work in the category of Hausdorff compactly generated spaces.
Let (X,A) and (Y,B) be NDR-pairs with i : A→X and j : B→Y the inclusions;
i.e., i : A→X and j : B→Y are closed cofibrations (see page 22 in [9], for example).
For given f : Z→X and g : Z→Y , we define some homotopy pull-backs:

Ωf,i = {(z, l)∈Z×P (X)|f(z) = l(0), l(1)∈A},
Ωg,j = {(z, l′)∈Z×P (Y )|g(z) = l′(0), l′(1)∈B},

where P (X) = {l : [0,∞)→ X | l(t) = l(1), for t≥1} and P (Y ) = {l′ : [0,∞)→Y |
l′(t) = l′(1), for t≥1}. Similarly, for maps i×j : A×B→X×Y , k : X×B∪A×Y→
X×Y and (f, g) = (f×g)◦∆Z : Z→X×Y , we define

Ω(f,g),i×j = {(z, l, l′)∈Z×P (X)×P (Y )|l(0) = f(z), l′(0) = g(z),

(l(1), l′(1))∈A×B},

Ω(f,g),k = {(z, l, l′)∈Z×P (X)×P (Y )|l(0) = f(z), l′(0) = g(z),

(l(1), l′(1))∈X×B∪A×Y }.

Using them, we have the homotopy push-out W = Ωf,i∪{Ω(f,g),i×j×[−1, 1]}∪Ωg,j
of natural projections p1 : Ω(f,g),i×j→Ωf,i and p2 : Ω(f,g),i×j→Ωg,j which are given
by

p1(z, l, l′) = (z, l), p2(z, l, l′) = (z, l′).

Received by the editors December 1, 1999.
2000 Mathematics Subject Classification. Primary 55R70.
Key words and phrases. Homotopy push-out, homotopy pull-back, NDR-pair.

c©2001 American Mathematical Society

2461



2462 MICHIHIRO SAKAI

Then we have the following diagram:

Ω(f,g),i×j
p2- Ωg,j

??
p1 HPO

Ωf,i
(1.1)

- W - Ω(f,g),k
- X×B∪A×Y

? ?
kHPB

Z X×Y,-(f, g)

where (z, l, l′,−1) and (z, l, l′, 1) are identified with (z, l) and (z, l′) in W , respec-
tively.

Theorem 1.1 (Homotopy Push-out and Pull-back Lemma). Let (X,A) and (Y,B)
be NDR-pairs and let Z be a space with maps f : Z→X and g : Z→Y . Then the
homotopy pull-back Ω(f,g),k of maps (f, g) and k has naturally the homotopy type
of the homotopy push-out W of p1and p2, in the diagram (1.1).

2. Proof of Theorem 1.1

Proof. First, we define Ŵ a subspace of Ω(f,g),k×[−1, 1] by

Ŵ = Ω(f,g),i×1Y ×{−1}∪Ω(f,g),i×j×[−1, 1]∪Ω(f,g),1X×j×{1},

and a map Φ̂ : Ŵ→Ω(f,g),k by

Φ̂(z, l, l′, t) = (z, l1−t, l′1+t) =

{
(z, l, l′1+t), t≤0,
(z, l1−t, l′), t≥0,

where l1−t(s) = l(Min{(1−t)s, s}) , l′1+t(s) = l′(Min{(1+t)s, s}) (s∈I = [0, 1]), re-
spectively. Let π : Ŵ→W be the identification map. By definition, Φ̂(z, l, l′,−1) =
(z, l, cg(z)) doesn’t depend on l′. Similarly, Φ̂(z, l, l′, 1) = (z, cf(z), l

′) doesn’t depend
on l. Thus we see that Φ̂ induces a map Φ : W→Ω(f,g),k.

Second, to define a homotopy inverse of Φ, let us recall that (X,A) is a NDR-pair:
there exist maps u : X→I and h : X×I→X which satisfy the following properties:

(1) u−1(0) = A.
(2) h|X×{0} = 1X , h|A×{t} = 1A (t∈I).
(3) If x∈U = u−1([0, 1)), then h(x, 1)∈A.

Similarly, the NDR-pair (Y,B) has maps u′ : Y→I, h′ : Y×I→Y as above. Making
use of them, we define maps Ψ̂ : Ω(f,g),k→Ŵ and Ψ : Ω(f,g),k→W as follows:

Ψ = π◦Ψ̂,
Ψ̂(z, l, l′) = (z, l⊕h, l′⊕h′, u(l(1))− u′(l′(1)))

=

{
(z, l⊕h, l′⊕h′,−u′(l′(1))), l(1)∈A,
(z, l⊕h, l′⊕h′, u(l(1))), l′(1)∈B,
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where l⊕h, l′⊕h′ are the composition of paths, i.e.,

l⊕h(s) =

{
l(2s), 0≤s≤1

2 ,

h(l(1), 2s− 1), 1
2≤s≤1,

l′⊕h′(s) =

{
l′(2s), 0≤s≤ 1

2 ,

h′(l′(1), 2s− 1), 1
2≤s≤1.

Third, we show that Φ◦Ψ'1Ω(f,g),k . We have the following equation:

Φ◦Ψ(z, l, l′) = Φ◦π◦Ψ̂(z, l, l′)

= Φ̂◦Ψ̂(z, l, l′)

=

{
Φ̂(z, l⊕h, l′⊕h′,−u′(l′(1))), l(1)∈A,
Φ̂(z, l⊕h, l′⊕h′, u(l(1))), l′(1)∈B,

=

{
(z, l⊕h, (l′⊕h′)1−u′(l′(1))), l(1)∈A,
(z, (l⊕h)1−u(l(1)), l

′⊕h′), l′(1)∈B.

Then we define a map H : Ω(f,g),k×I→Ω(f,g),k by

H(z, l, l′, s) = (z, (l⊕h)(1−u(l(1)))(1−s)+ 1
2 s
, (l′⊕h′)(1−u′(l′(1)))(1−s)+ 1

2 s
)

=

{
(z, (l⊕h)(1−s)+ 1

2 s
, (l′⊕h′)(1−u′(l′(1)))(1−s)+ 1

2 s
), l(1)∈A,

(z, (l⊕h)(1−u(l(1)))(1−s)+ 1
2 s
, (l′⊕h′)(1−s)+ 1

2 s
), l′(1)∈B.

As is easily checked, H gives a homotopy of Φ◦Ψ and 1Ω(f,g),k , the identity.
Finally, we show that Ψ◦Φ'1W . We have the following equation:

Ψ̂◦Φ̂(z, l, l′, t) = Ψ̂(z, l1−t, l′1+t)

= (z, l1−t⊕h, l′1+t⊕h′, u(l(1− t))− u′(l′(1 + t)))

=

{
(z, l⊕h, l′1+t⊕h′,−u′(l′(1 + t))), t≤0,
(z, l1−t⊕h, l′⊕h′, u(l(1− t))), t≥0.

Then we define a map Ĥ ′ : Ŵ×I→W by

Ĥ ′(z, l, l′, t, s)

=


π(z, l1−t⊕h, l′1+t⊕h′, (1− 3s)u(l, l′, t) + 3sm(l, l′, t)), 0≤s≤ 1

3 ,

π(z, lv(−t,s)⊕h, l′v(t,s)⊕h′,m(l, l′, t)), 1
3≤s≤

2
3 ,

π(z, (l⊕h)v( 1
2 ,s)

, (l′⊕h′)v( 1
2 ,s)

, (3− 3s)m(l, l′, t) + (3s− 2)t), 2
3≤s≤1,

where v(t, s) = (2− 3s)(1 + t) + 3s− 1, u(l, l′, t) = u(l(1− t))− u′(l′(1 + t)),
m(l, t) = Max{u(l([1− t, 2])), t}, m(l, l′, t) = m(l, t)−m(l′,−t).

We remark that u(l, l′, t) = u(l(1− t)) if t≥0 and u(l, l′, t) = −u′(l′(1 + t)) if t≤0
for (z, l, l′, t)∈Ŵ , and hence −1≤u(l, l′, t)≤1, and u(l, l′, 0) = 0. Similarly, it follows
that m(l, t) = Max{0, t} = 0 (−1≤t≤0), and m(l′,−t) = Max{0,−t} = 0 (0≤t≤1).
We remark that m(l, l′, t) = m(l, t) if t≥0 and m(l, l′, t) = −m(l′,−t) if t≤0 for
(z, l, l′, t)∈Ŵ . Thus −1≤m(l, l′, t)≤1, and m(l, l′, 0) = 0.
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Let us recall that π×1I : Ŵ×I→W×I gives also an identification map (see page
20 in [9], for example). By definition, we have the following:

Ĥ ′(z, l, l′,−1, s)

=



π(z, l⊕h, cg(z)⊕h′,−u′(g(z))) = Ψ̂◦Φ̂(z, l, l′,−1), s = 0,

π(z, l⊕h, cg(z)⊕h′, (1− 3s)(−u′(g(z)))− 3s), 0≤s≤ 1
3
,

π(z, l⊕h, cg(z)⊕h′,−1) = [z, l⊕h], s = 1
3
,

π(z, l⊕h, l′3s−1⊕h′,−1) = [z, l⊕h], 1
3
≤s≤ 2

3
,

π(z, l⊕h, l′⊕h′,−1) = [z, l⊕h], s = 2
3
,

π(z, (l⊕h)2− 3
2 s
, (l′⊕h′)2− 3

2 s
,−1) = [z, (l⊕h)2− 3

2 s
], 2

3
≤s≤1,

π(z, l, l′,−1) = [z, l], s = 1,

Ĥ ′(z, l, l′, t, s)

=



π(z, l⊕h, l′1+t⊕h′,−u′(l′(1 + t))) = Ψ̂◦Φ̂(z, l, l′, t), t≤0, s = 0,

π(z, l⊕h, l′1+t⊕h′, (1− 3s)(−u′(l′(1 + t)))− 3sm(l′,−t)), t≤0, 0≤s≤ 1
3
,

π(z, l⊕h, l′1+t⊕h′,−m(l′,−t)), t≤0, s = 1
3
,

π(z, l⊕h, l′v(t,s)⊕h′,−m(l′,−t)), t≤0, 1
3
≤s≤ 2

3
,

π(z, l⊕h, l′⊕h′,−m(l′,−t)), t≤0, s = 2
3
,

π(z, (l⊕h)2− 3
2 s
, (l′⊕h′)2− 3

2 s
, (3s− 3)m(l′,−t) + (3s− 2)t), t≤0, 2

3
≤s≤1,

π(z, l, l′, t), t≤0, s = 1,

Ĥ ′(z, l, l′, 0, s)

=


π(z, l⊕h, l′⊕h′, 0) = Ψ̂◦Φ̂(z, l, l′, 0), 0≤s≤ 2

3
,

π(z, (l⊕h)2− 3
2 s
, (l′⊕h′)2− 3

2 s
, 0), 2

3
≤s≤1,

π(z, l, l′, 0), s = 1,

Ĥ ′(z, l, l′, t, s)

=



π(z, l1−t⊕h, l′⊕h′, u(l(1− t))) = Ψ̂◦Φ̂(z, l, l′, t), t≥0, s = 0,

π(z, l1−t⊕h, l′⊕h′, (1− 3s)u(l(1− t)) + 3sm(l, t)), t≥0, 0≤s≤ 1
3
,

π(z, l1−t⊕h, l′⊕h′,m(l, t)), t≥0, s = 1
3
,

π(z, lv(−t,s)⊕h, l′⊕h′, m(l, t)), t≥0, 1
3
≤s≤ 2

3
,

π(z, l⊕h, l′⊕h′,m(l, t)), t≥0, s = 2
3
,

π(z, (l⊕h)2− 3
2 s
, (l′⊕h′)2− 3

2 s
, (3− 3s)m(l, t) + (3s− 2)t), t≥0, 2

3
≤s≤1,

π(z, l, l′, t), t≥0, s = 1,

Ĥ ′(z, l, l′, 1, s)

=



π(z, cf(z)⊕h, l′⊕h′, u(f(z))) = Ψ̂◦Φ̂(z, l, l′, 1), s = 0,

π(z, cf(z)⊕h, l′⊕h′, (1− 3s)(u(f(z))) + 3s), 0≤s≤ 1
3
,

π(z, cf(z)⊕h, l′⊕h′, 1) = [z, l′⊕h′], s = 1
3
,

π(z, l3s−1⊕h, l′⊕h′, 1) = [z, l′⊕h′], 1
3
≤s≤ 2

3
,

π(z, l⊕h, l′⊕h′, 1) = [z, l′⊕h′], s = 2
3
,

π(z, (l⊕h)2− 3
2 s
, (l′⊕h′)2− 3

2 s
, 1) = [z, (l′⊕h′)2− 3

2 s
], 2

3
≤s≤1,

π(z, l, l′, 1) = [z, l′], s = 1.

Therefore, Ĥ ′(z, l, l′,−1, s) doesn’t depend on l′ and Ĥ ′(z, l, l′, 1, s) doesn’t de-
pend on l. Thus Ĥ ′ induces a map H ′ : W×I→W , which gives a homotopy of Ψ◦Φ
and 1W , the identity.
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3. A generalization of Theorem 1.1

In this section, we extend Theorem 1.1 in the category of quasi-fibrations q-Fib.

Definition 3.1. An object of the category q-Fib is a pair consisting of a topological
space X and a continuous map p : X→B which satisfy the following conditions:

(1) p : X→B is a quasi-fibration over polyhedra.
(2) (local-triviality condition) For each simplex ∆α of B, there exists a homeo-

morphism φα which makes the following diagram commute:

∆α×F -φα
ι∗αX

�
�
��	

@
@
@@R

pr1

∆α

- X

?
pPB

B-ια : embedding

(3) A is closed in X ⇐⇒ for each α∈Λ, A∩ι∗αX is closed in ι∗αX .
A morphism of the category of q-Fib is a pair (f, g) of maps which makes the

following diagram commute:

X1
f−−−−→ X2

p1

y yp2

B1
g−−−−→ B2

where g is a simplicial map.

Definition 3.2. Let pX : X→B be an object of the category of q-Fib, and A a
subspace of X with the restriction pX |A an object of it. Then a pair (X,A) is called
a fibrewise cofibred pair when the following fibrewise homotopy extension property
is satisfied. Let pE : E→B be an object of q-Fib and (f, 1B) a morphism of q-Fib.
Let gt : A→E be a homotopy of fA which makes the following diagram commute:

A -gt
E

�
�
��	

@
@
@@R

pA pE

B

Then there exists a homotopy ht : X→E of f such that (ht, 1B) is a morphism of
q-Fib and gt = ht|A.

Some arguments on continuous functors (see [7]) yield the following result.

Theorem 3.3. Let (X1, A1) and (X2, A2) be closed fibrewise cofibred pairs and pZ :
Z→B an object of q-Fib with morphisms (f1, 1B) and (f2, 1B). Then the homotopy
pull-back Ω(f1,f2),k of (f1, f2) : Z→X1×BX2 and k : X1×BA2∪A1×BX2→X1×BX2
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has naturally fibrewise homotopy type of the homotopy push-out of p1 : Ω(f1,f2),i1×Bi2
→Ωf1,i1 and p2 : Ω(f1,f2),i1×Bi2→Ωf2,i2

Ω(f1,f2),i1×Bi2
p1−−−−→ Ωf1,i1

p2

y y
Ωf2,i2 −−−−→ Ω(f1,f2),k −−−−→ X1×BA2∪A1×BX2y yk

Z
(f1, f2)−−−−→ X1×BX2
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