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UNIFORMLY MORE POWERFUL TESTS
FOR HYPOTHESES ABOUT LINEAR INEQUALITIES

WHEN THE VARIANCE IS UNKNOWN

YINING WANG AND MICHAEL P. MCDERMOTT

(Communicated by Wei Y. Loh)

Abstract. Let X be a p-dimensional normal random vector with unknown
mean µ and covariance matrix Σ = σ2Σ0, where Σ0 is a known matrix and σ2

an unknown parameter. This paper gives a test for the null hypothesis that
µ lies either on the boundary or in the exterior of a closed, convex polyhedral
cone versus the alternative hypothesis that µ lies in the interior of the cone.
Our test is uniformly more powerful than the likelihood ratio test.

1. Introduction

Let X = (X1, . . . , Xp)′, p ≥ 2, be a p-dimensional normal random vector with
unknown mean µ = (µ1, . . . , µp)′ and covariance matrix Σ = σ2Σ0, where Σ0 is a
known matrix. Let b1, . . . , bm be m (m ≥ 2) specified p-dimensional vectors and
consider the problem of testing

H∗0 : min
1≤i≤m

b′iµ ≤ 0 versus H∗1 : min
1≤i≤m

b′iµ > 0,(1.1)

assuming that {b1, . . . , bm} is without positive relations and has no redundant
vectors (Sasabuchi [7]). This is equivalent to testing the null hypothesis that µ
lies either on the boundary or in the exterior of a closed, convex polyhedral cone
versus the alternative hypothesis that µ lies in the interior of the cone. Common
applications of the testing problem (1.1) arise in the setting of equivalence testing
(Berger and Hsu [2]) and clinical trials of combination therapies (Laska and Meisner
[3]).

Sasabuchi ([7], [8]) derived the likelihood ratio test (LRT) for a problem very
similar to (1.1), and Berger [1] showed that this test was also the LRT for (1.1).
The LRT is biased, and the level α is attained only in the limit if one b′iµ = 0
and b′jµ → ∞ for all j 6= i (Sasabuchi [7], [8]). Berger [1], Liu and Berger [4],
and McDermott and Wang [6] constructed classes of size-α tests that are uniformly
more powerful than the LRT for the case of σ2 known. Berger [1] also demonstrated
that his approach does not yield a size-α test for the case of σ2 unknown.

In view of Liu and Berger [4], it is clear that when m = 2, without loss
of generality, the problem can be transformed to that of observing (U, V )′ ∼
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N2((µ1, µ2)′, σ2I) and testing

H0 : min{µ1 + rµ2, µ2} ≤ 0 versus H1 : min{µ1 + rµ2, µ2} > 0,(1.2)

with −∞ < r < ∞. In this paper, an approach based on conditioning arguments
is used to construct tests for (1.2) that are uniformly more powerful than the LRT
for the case of σ2 unknown. This approach to test construction can be extended
to the general problem (1.1), that is, m ≥ 2 and Σ0 6= I, by linear transformation
and by applying the intersection-union method of Liu and Berger [4].

Throughout the paper, P(µ1,µ2)(·) will be used to denote the probability measure
with the indicated means and variance-covariance matrix I.

2. Derivation of tests uniformly more powerful than the LRT

In this section, an approach based on conditioning is used to derive tests that
are uniformly more powerful than the LRT assuming Σ = σ2I, with σ2 unknown.
Let C = {(U, V ) : U + rV ≥ 0, V ≥ 0}. The following theorem due to Berger [1] is
important in our derivation.

Theorem 2.1. Under H0, for any fixed σ2 > 0 and A ⊂ C,

sup
µ1,µ2

P(µ1,µ2)(A) = max
{

sup
µ1≥0

P(µ1,0)(A), sup
µ2≥0

P(−rµ2,µ2)(A)
}
.

Let S2 be a random variable independent of (U, V ) such that S2/σ2 has a χ2

distribution with ν degrees of freedom, and let W 2 = S2 +U2 +V 2. Also, let T be
a random variable such that

√
νT has a t-distribution with ν degrees of freedom.

For α < 0.5, Sasabuchi ([7], [8]) showed that the critical region of the LRT is

A0 ≡
{

(U, V, S) : (U + rV )/
(
S
√

1 + r2
)
≥ t, V/S ≥ t

}
,(2.1)

where t is the upper 100α percentile of the distribution of T . Note that t > 0, since
α < 0.5. In view of Theorem 2.1, any test with critical region R ⊂ C has size α if
and only if the following is satisfied:

α = max

{
sup

µ1≥0, σ2>0

P(µ1,0;σ2) [(U, V ) ∈ R] , sup
µ2≥0, σ2>0

P(−rµ2,µ2;σ2) [(U, V ) ∈ R]

}
,

(2.2)

where the probability measure now depends on the additional parameter σ2 in the
obvious way. Let

X =
U + rV√

1 + r2
, Y =

−rU + V√
1 + r2

, ν1 =
µ1 + rµ2√

1 + r2
, ν2 =

−rµ1 + µ2√
1 + r2

.(2.3)

Then X ∼ N(ν1, σ
2), Y ∼ N(ν2, σ

2), and X , Y , and S2 are mutually independent.
Thus

sup
µ2≥0, σ2>0

P(−rµ2,µ2;σ2) [(U, V ) ∈ R] = sup
ν2≥0, σ2>0

P(0,ν2;σ2) [(X,Y ) ∈ R′] ,

where R′ is the appropriately transformed critical region.
Note that A0, the critical region for the LRT, satisfies (2.2) because the following

inequalities hold for every u, y, and w, the observed values of U , Y , and W ,
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respectively:

P(µ1,0)

(
(U + rV )/

(
S
√

1 + r2
)
≥ t, V/S ≥ t |U = u,W = w

)
≤ α,

P(0,ν2)

(
(rX + Y )/

(
S
√

1 + r2
)
≥ t, X/S ≥ t |Y = y,W = w

)
≤ α.

(2.4)

Because the above inequalities are strict for some values of u, y, and w, the rejection
region of the LRT may be expanded while preserving the size of the test to be
less than or equal to α. The general approach that follows is similar to that of
McDermott and Wang [6], but with further conditioning on W to deal with the
nuisance parameter σ2.

2.1 Derivation for r ≤ 0. Denote γ = |r|. The critical region of the LRT is

A0 =
{

(U, V, S) : (U − γV )/(S
√

1 + γ2) > t , V/S > t
}
.(2.5)

Let (u∗, v∗) be the solution to the system{
u2 + v2 = w2,

u− γv = 0.

Then v∗ = w/
√

1 + γ2 and u∗ = γv∗ (see Figures 1 and 2).

Figure 1. Illustration of A0∪(A1∩A2), the critical region of the
uniformly more powerful test for r < 0 and u0 < u∗, conditional
on W = w. The values used for computation were α = 0.20, ν = 8,
r = −2, and w2 = 28.2.
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Figure 2. Illustration of A0∪(A1∩A2), the critical region of the
uniformly more powerful test for r < 0 and u0 > u∗, conditional
on W = w. The values used for computation were α = 0.10, ν = 8,
r = −0.4, and w2 = 23.2.

Let (u0, v0) be the intersection point of the curves (u− γv)/(
√

1 + γ2s) = t and
v/s = t, which are the boundary curves of A0 (see Figures 1 and 2). That is,
(u0, v0) is the solution to the system{

(u− γv)/
√

(1 + γ2)(w2 − u2 − v2) = t,

v/
√
w2 − u2 − v2 = t,

subject to v > 0 and vγ < u. The solution is

v0 = tw/

√
1 + t2 + t2(γ +

√
1 + γ2)2, u0 = (γ +

√
1 + γ2)v0.

2.1.1 The case of u0 ≤ u∗. It can be easily verified that A0 is contained in the
positive orthant. Note also that

{
(U, V, S) : V > 0, U ≤ u∗, U − γV > 0, (U − γV )/S >

√
1 + γ2t

}
=
{

(U, V, S) : V > 0, γV < U ≤ u∗, (U − γV )2 > (1 + γ2)t2(W 2 − U2 − V 2)
}

= {(U, V, S) : V > 0, γV < U ≤ u∗,

V <
[
γU −

√
d(1 + γ2)t2(W 2 − U2) + (γ2 − d)U2

]
/d
}
,

(2.6)
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where d = t2 +γ2+γ2t2. The last equation in (2.6) holds because the critical region
is under the curve v = γu/d−

√
d(1 + γ2)t2(w2 − u2)− du2 + γ2u2/d (see Figure

1). Now define, for u ≤ u∗,

g(u,w) = γu/d−
√
d(1 + γ2)t2(w2 − u2)− du2 + γ2u2/d.

From (2.5) and (2.6), it follows that

A0 ∩ {(U, V, S) : U ≤ u∗} = {(U, V, S) : U ≤ u∗, tS < V < g(U,W )} .

Consequently, for u ≤ u∗,
P(µ1,0)(A0 |U = u,W = w)

=

{
0 if u < u0,

P(µ1,0)[tS < V < g(U,W ) |U = u,W = w] if u0 ≤ u ≤ u∗.
(2.7)

Note that when u ≤ u∗,

{V : 0 < V < g(U,W ) |U = u,W = w}
=
{
V : V > 0, V 2/(W 2 − U2 − V 2)

< g2(U,W )/[W 2 − U2 − g2(U,W )] |U = u,W = w
}
.

By Lukacs’ theorem [5], V 2/(W 2 − U2 − V 2) is independent of (U,W ). Therefore,
when u ∈ [u0, u

∗],

P(µ1,0)(A0 |U = u,W = w)

=P(µ1,0)

(
t < V/S < g(U,W )/

√
W 2 − U2 − g2(U,W ) |U = u,W = w

)
=G

(
g(u,w)/

√
w2 − u2 − g2(u,w)

)
−G(t)

=G
(
g(u,w)/

√
w2 − u2 − g2(u,w)

)
− (1 − α),(2.8)

where G(·) is the distribution function of T . Define the type I error probability
of the LRT, conditioning on U and W , as α1(u,w) = P(µ1,0)(A0 |U = u,W = w).
From (2.7) and (2.8), it follows that

α1(u,w) =


0 if 0 < u < u0,

G
(
g(u,w)/

√
w2 − u2 − g2(u,w)

)
− (1− α) if u0 ≤ u < u∗,

ξ(u,w) if u ≥ u∗,

where ξ(u,w) = P(µ1,0)(A0 |U = u > u∗,W = w) ≤ P(µ1,0)(V/S > t) = α.
Note that α1(u,w) < α for every (u,w) such that u ∈ (0, u∗), and α1(u,w) ≤ α
for u > u∗. To compensate for this shortcoming, we want to find two functions
f1(u,w) and f2(u,w) satisfying the following conditions:

(i) If u∈ [u0, u
∗), then f1(u,w)<t and f2(u,w)>g(u,w)/

√
w2 − u2 − g2(u,w);

(ii) P(µ1,0)[f1(U,W ) < V/S < f2(U,W ) |U = u,W = w] = α for u ≤ u∗.
Clearly, if f1 and f2 satisfy the above conditions, then A0 ⊂ {(U, V, S) : f1(U,W )

< V/S ≤ f2(U,W )} and P(µ1,0)[f1(U,W ) < V/S ≤ f2(U,W ) |U = u,W = w] = α
for u ≤ u∗.

We first consider the case when u ∈ [u0, u
∗). It can be easily verified that

the functions f1 and f2 satisfying the following equations also satisfy the above
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conditions (i) and (ii):

P(µ1,0)(f1 < V/S < t |U = u,W = w) = k[α− α1(u,w)],(2.9)

P(µ1,0)[g(U,W )/
√
W 2 − U2 − g2(U,W ) < V/S < f2 |U = u,W = w]

= (1 − k)[α− α1(u,w)],
(2.10)

where 0 < k < 1. From (2.9) and Lukacs’ theorem [5], it follows that

G(t)−G(f1) = k[α− α1(u,w)].

This equation may be solved for f1 to obtain

f1(u,w) = G−1 [1− α− kα+ kα1(u,w)] .

Similarly, (2.10) can be solved to obtain

f2(u,w) = G−1
{
G
[
g(u,w)/

√
w2 − u2 − g2(u,w)

]
+ (1− k) [α− α1(u,w)]

}
.

Next, we discuss the case when u ∈ (0, u0). Following Liu and Berger [4], it is
desired to have the line segment joining the origin and the point (u0, v0) included in
the critical region. Note that the equation of this line is v = (v0/u0)u. Therefore,
two functions h1(u,w) and h2(u,w) need to be defined that satisfy the following
equations:

P(µ1,0)(h1 < V < v0U/u0 |U = u,W = w) = k[α− α1(u,w)] = kα,(2.11)

P(µ1,0)(v0U/u0 < V < h2 |U = u,W = w) = (1− k)[α− α1(u,w)] = (1 − k)α.
(2.12)

To solve (2.11), note that

{V : h1 < V < v0u/u0 |U = u,W = w}

=
{
V : h1/

√
w2 − u2 − h2

1 < V/S < (v0u/u0)/
√
w2 − u2 − (v0u/u0)2

}
.

(2.13)

Define f1 = h1/
√
w2 − u2 − h2

1. In view of (2.13), it is clear that (2.11) can be
rewritten as

P(µ1,0)

[
f1 < V/S ≤ (v0U/u0)/

√
W 2 − U2 − (v0U/u0)2 |U = u,W = w

]
= kα.

(2.14)

The above equation may be solved to obtain

f1(u,w) = G−1
{
G
[
(v0u/u0)/

√
w2 − u2 − (v0u/u0)2

]
− kα

}
.

Similarly, we can define f2 = h2/
√
w2 − u2 − h2

2 and rewrite (2.12) as

P(µ1,0)

[
(v0U/u0)/

√
W 2 − U2 − (v0U/u0)2 < V/S ≤ f2 |U = u,W = w

]
.(2.15)

Equation (2.12) may then be solved to obtain

f2(u,w) = G−1
{

(1 − k)α+G
[
(v0u/u0)/

√
w2 − u2 − (v0u/u0)2

]}
.
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Recall that when u ≥ u∗, P(µ1,0)(V/S > t) = α. Thus, in summary,

f1(u,w) =


G−1

{
G
[
(v0u/u0)/

√
w2 − u2 − (v0u/u0)2

]
− kα

}
if 0 < u < u0,

G−1[1− α− kα+ kα1(u,w)] if u0 ≤ u < u∗,

t if u ≥ u∗,
f2(u,w)

=


G−1

{
(1− k)α+G

[
(v0u/u0)/

√
w2 − u2 − (v0u/u0)2

]}
if 0 < u < u0,

G−1

{
G

[
g(u,w)√

w2 − u2 − g2(u,w)

]
+ (1− k)[α− α1(u,w)]

}
if u0 ≤ u < u∗,

∞ if u ≥ u∗.

(2.16)

Next, recall the definitions of X , Y , ν1, and ν2 in (2.3). The critical region of the
LRT can be expressed as A0 = {(U, V, S) : X/S > t, (γX + Y )/(S

√
1 + γ2) > t}.

Note that X , Y , and W are functions of (U, V, S). Define

A1 = {(U, V, S) : f1(U,W ) < V/S ≤ f2(U,W )} ∩ C,
A2 = {(U, V, S) : f1(Y,W ) < X/S ≤ f2(Y,W )} ∩ C.

From the above derivation (see (2.9), (2.10), (2.14) and (2.15)), it follows that
P(µ1,0)(A1 |U = u,W = w) ≤ α for all real numbers u and w > 0. In fact, when
u > 0, P(µ1,0)(A1 |U = u,W = w) = α. Similarly, P(γµ2,µ2)(A2 |Y = y,W = w) ≤
α for all real numbers y and w > 0. Therefore,

P(µ1,0)(A1 ∩A2) ≤ E[P(µ1,0)(A1 |U,W )] ≤ α,
P(γµ2,µ2)(A1 ∩A2) ≤ E[P(γµ2,µ2)(A2 |Y,W )] ≤ α.

Note also that A0 ⊂ A1 ∩A2 (see conditions (i) and (ii) for f1 and f2 given above).
Thus, by Theorem 2.1, the test with critical region A1 ∩A2 is a size-α test that is
uniformly more powerful than the LRT.

2.1.2 The case of u0 > u∗. In this case we have, similar to (2.6),

{
(U, V, S) : V > 0, U < u0, (U − γV )/S > t

√
1 + γ2

}
=
{

(U, V, S) : V > 0, γV < U < u0, (U − γV )2/(W 2 − U2 − V 2) > t2(1 + γ2)
}

=
{

(U, V, S) : U > u0, V > γU/d+
√
d(1 + γ2)t2(W 2 − U2)− dU2 + γ2U2/d

}
.

(2.17)

Note that the conditional critical region is above the curve

v = γu/d+
√
d(1 + γ2)t2(w2 − u2)− du2 + γ2u2/d

(see Figure 2). Let g(u,w) = γu/d+
√
d(1 + γ2)t2(w2 − u2)− du2 + γ2u2/d be a

function defined for u∗ < u ≤ u0. From (2.1) and (2.17), it follows that

A0 ∩ {(U, V, S) : U ≤ u0} = {(U, V, S) : U ≤ u0, V > g(U,W )} .
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Consequently, for u ≤ u0,

P(µ1,0)(A0 |U = u,W = w)

=

{
0 if u ≤ u∗,
P(µ1,0)[V > g(U,W ) |U = u,W = w] if u∗ < u ≤ u0.

(2.18)

Note that when u∗ < u ≤ u0,

{V : V > g(U,W ) |U = u,W = w}
=
{
V : V 2/(W 2 − U2 − V 2) > g2(U,W )/[W 2 − U2 − g2(U,W )] |U = u,W = w

}
.

Therefore, again using Lukacs’ theorem [5], when u ∈ (u∗, u0], the type I error
probability of the LRT when µ2 = 0, conditioning on U and W , is

α1(u,w) =


0 if 0 < u ≤ u∗,
1−G

(
g(u,w)/

√
w2 − u2 − g2(u,w)

)
if u∗ < u ≤ u0

ξ(u,w) if u > u0,

,(2.19)

where ξ(u,w) = P(µ1,0)(A0 |U = u > u0,W = w) ≤ P(µ1,0)(V/S > t) = α. Clearly,
α1(u,w) < α for all (u,w) such that u ≤ u0, and α1(u,w) ≤ α for u > u0.
To compensate for this shortcoming, we want to find two functions f1(u,w) and
f2(u,w) such that

P(µ1,0)(f1 < V/S ≤ f2 |U = u,W = w) = α− α1(u,w),

with the line segment joining the origin and the point (u0, v0) being contained in
the set {(U, V, S) : f1 < V/S < f2}.

To accomplish this, we first define two functions h1 and h2 by the following two
equations:

P(µ1,0){h1 < V ≤ v0U/u0 |U = u,W = w} = k[α− α1(u,w)],

P(µ1,0){v0U/u0 < V ≤ h2 |U = u,W = w) = (1− k)[α− α1(u,w)].

Let fi(u,w) = hi(u,w)/
√
w2 − u2 − h2

i (u,w) for i = 1, 2. The above equations are
equivalent to

P(µ1,0)

[
f1(u,w) < V/S < (v0u/u0)/

√
w2 − u2 − (v0u/u0)2

]
= k[α− α1(u,w)],

P(µ1,0)

[
(v0u/u0)/

√
w2 − u2 − (v0u/u0)2 < V/S ≤ f2(u,w)

]
= (1− k)[α− α1(u,w)],

since V/S is independent of (U,W ).
The above equations may be solved to obtain, for 0 < u ≤ u0,

f1(u,w) = G−1
{
G
[
(v0u/u0)/

√
w2 − u2 − (v0u/u0)2

]
− k[α− α1(u,w)]

}
,

f2(u,w) = G−1
{
G
[
(v0u/u0)/

√
w2 − u2 − (v0u/u0)2

]
+ (1− k)[α− α1(u,w)]

}
,

where α1(u,w) is the piecewise-defined function given in (2.19).
Finally, as in Subsection 2.1.1, recall the definitions of X and Y in (2.3) and

define
A1 = {(U, V, S) : f1(U,W ) < V/S ≤ f2(U,W )} ∩ C,
A2 = {(U, V, S) : f1(Y,W ) < X/S ≤ f2(Y,W )} ∩ C.
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It follows from the same argument given in Subsection 2.1.1 that the test with
critical region A0 ∪ (A1 ∩A2) is a size-α test that is uniformly more powerful than
the LRT.

2.2 Tests for r > 0. In this section, a test is given that is uniformly more powerful
than the LRT when r > 0. Details of the derivation are omitted here, but they are
very similar to those given in Section 2.1. Let (u0, v0) ∈ C be the solution to the
following system of equations:{

(u+ rv)2 = t2(1 + r2)(w2 − u2 − v2),
v2 = t2(w2 − u2 − v2).

This system can be solved to obtain u0 = ctw/
√

1 + t2c2 + t2 and v0 = u0/c, where
c =
√

1 + r2−r. Thus, the equation of the line joining (0, 0) and (u0, v0) is v = u/c.
Let d = t2 + r2 + r2t2, k ∈ (0, 1), and

g(u,w) =
{
−ru+

√
d(1 + r2)t2(w2 − u2)− du2 + r2u2

}
/d,

α1(u,w) = 1−G
(
g(u,w)/

√
w2 − u2 − g2(u,w)

)
,

f1(u,w; k) = G−1
{
G
(
u/
√
c2w2 − u2c2 − u2

)
− (1− k)[α− α1(u,w)]

}
,

f2(u,w; k) = G−1
{
G
(
u/
√
c2w2 − u2c2 − u2

)
+ k[α− α1(u,w)]

}
.

Note that u0 ≡ u0(w) depends on w. Define X and Y as in (2.3), and let

A1 = {0 < U < u0(W ), f1(U,W ; k) < V/S ≤ f2(U,W ; k)} ,
A2 = {0 < Y < u0(W ), f1(Y,W ; 1− k) < X/S ≤ f2(Y,W ; 1− k)} .

Then the test with critical region A0 ∪ (A1 ∩ A2 ∩ C) is uniformly more powerful
than the LRT.

Again, extensions to the general problem (1.1) with m > 2 and Σ0 6= I can be
achieved by linear transformation and by applying the intersection-union method
described in Section 4 of Liu and Berger [4].
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