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ON SUPPORT POINTS OF UNIVALENT FUNCTIONS
AND A DISPROOF OF A CONJECTURE OF BOMBIERI

RICHARD GREINER AND OLIVER ROTH

(Communicated by Albert Baernstein II)

Abstract. We consider the linear functional Re(a3 + λa2) for λ ∈ iR on the
set of normalized univalent functions in the unit disk and use the result to
disprove a conjecture of Bombieri.

1. Introduction

Let S be the class of functions f(z) = z+a2z
2 +a3z

3+ · · · analytic and univalent
in the unit disk D := {z ∈ C : |z| < 1}. We consider for a fixed constant λ ∈ C the
linear functional

Lλ(f) = Lλ(a2, a3) := Re (a3 + λa2) , f ∈ S.(1.1)

Every function F ∈ S maximizing Lλ over S is called a support point for Lλ.
The coefficient functional Lλ has been studied by Brown [Bro81] who obtained a

complete picture of the support points for Lλ for all λ ∈ C apart from the case
λ = ±i|λ|, 6 ≤ |λ| < 8. In a completely different manner the functional Lλ was
investigated by Tammi and Kortram in [KT80] and by Tammi in [Tam82]. However,
the reasoning in [KT80] and [Tam82] in the most difficult case λ ∈ iR, |λ| < 8, is not
complete as it was pointed out for instance by Leung, [Leu85], p. 9. The problem
is to show that a certain system of non-linear equations (cf. (54) in [Tam82], p. 87)
has a unique solution; see also the remarks in [Haa83], p. 65.

It is the purpose of this note to fill in this gap and to give a rigorous proof of
the following result stated by Tammi [Tam82], p. 90.

Theorem 1.1. Let λ ∈ iR\{0} and let F ∈ S be a support point for the functional
(1.1) over S:

(a) If |λ| ≥ 4e/(e− 1) = 6.3279 . . . and λ = i|λ| (resp. λ = −i|λ|), then F (z) =
iK(−iz) (resp. F (z) = −iK(iz)) where K(z) = z/(1 − z)2 is the Koebe
function.

(b) If 0 < |λ| < 4e/(e− 1), then F is not a rotation of the Koebe function.
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The proof of Theorem 1.1 will be given in Section 2.
The information on the linear functional Lλ provided by Theorem 1.1 can be used

to solve a linear fractional extremal problem on S and leads to a precise statement
about the coeffcient body V3 := {(a2, a3)T : f ∈ S} near the “Koebe-point”:

Corollary 1.2. We have

min
(a2,a3)∈V3

2− Re a2

3− Re a3
= lim inf

a2→2

2− Re a2

3− Re a3
=

1
4
e− 1
e

= 0.15803 . . . ,(1.2)

where the lim inf are taken over all functions of S.

Proof. Using the rotation invariance of S it is easy to see that

min
f∈S

Re(a3 − λa2) = −max
f∈S

Re(a3 + iλa2), λ ∈ C.(1.3)

Therefore, Theorem 1.1 (a) implies

3− Re a3

2− Re a2
≤ 4

e

e− 1
for all f ∈ S, f 6= K, i.e.,

min
(a2,a3)∈V3

2− Re a2

3− Re a3
≥ 1

4
e− 1
e

.(1.4)

Let 0 < λn < 4e/(e− 1) such that limn→∞ λn = 4e/(e− 1). In view of (1.3) and
Theorem 1.1 (b) there are functions Fn(z) = z + a

(n)
2 z2 + a

(n)
3 z3 + · · · ∈ S \ {K}

such that Fn → K locally uniformly in D and

min
f∈S

Re(a3 − λna2) = Re(a(n)
3 − λna(n)

2 ) < 3− 2λn.

In particular, 3− Re a(n)
3 ≥ λn(2− Re a(n)

2 ), i.e.,

lim inf
a2→2

2− Re a2

3− Re a3
≤ lim

n→∞

2− Re a(n)
2

3− Re a(n)
3

≤ lim
n→∞

1
λn

=
1
4
e− 1
e

.(1.5)

The assertion follows now from inequalities (1.4) and (1.5).

In particular, Corollary 1.2 disproves a conjecture of Bombieri [Bom67], p. 51
(see also [BH85], [BH87]), which asserts that

lim inf
am→m

n− Re an
m− Re am

= min
θ∈R

n− sin(nθ)
sin θ

m− sin(mθ)
sin θ

for all m,n ≥ 2,(1.6)

in the case n = 2 and m = 3, because for n = 2 and m = 3 the right-hand side
of (1.6) equals 1/4 which is strictly larger than the bound (e− 1)/(4e) in Corollary
1.2.

2. Proof of Theorem 1.1

The standard method of boundary variation (cf. [SSp50], [Dur83]) shows that
every support point F (z) = z+A2z

2 +A3z
3 + · · · of the functional Lλ, λ ∈ C fixed,

is a solution of the Schiffer differential equation[
zF ′(z)
F (z)

]2 1 +AF (z)
F (z)2

=
1
z2

+
A

z
+B0 +Az + z2,(2.1)
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where

B0 = 2A3 + λA2 > 0, A = 2A2 + λ.(2.2)

In the sequel we will work only with conditions (2.1) and (2.2). It is therefore
convenient to introduce the following terminology; cf. [Pfl88].

Definition 2.1. A function f(z) = z + a2z
2 + · · · ∈ S is called A-admissible

for A ∈ C if f admits a piecewise analytic extension to D such that

z 7→
[
zf ′(z)
f(z)

]2 1 +Af(z)
f(z)2

is positive on |z| = 1 except possibly for one or two points on |z| = 1. If, in addition,
A = 2a2 + λ, then f is called a critical point for the functional Lλ.

Therefore, every support point F (z) = z+A2z
2 + · · · for Lλ is A-admissible for

A = 2A2 + λ, i.e., every support point for Lλ is a critical point for Lλ.

Lemma 2.2. If F (z) = z + A2z
2 + · · · ∈ S is a support point for Lλ, then A =

2A2 + λ ∈ C \ (−4, 4).

This follows from the fact that A-admissible functions for A ∈ (−4, 4) are two-
slit mappings whereas support points in S are necessarily one-slit maps; cf. [SSp50]
for details.

In the next lemma we shall consider A-admissible functions for A 6∈ (−4, 4). We
parametrize A in terms of ρ ∈ (0, 1] and φ ∈ (−π, π] by

A = A(ρ, φ) :=
(
ρ+

1
ρ

)
eiφ + 2e−iφ.(2.3)

(This is the parametrization used by Schaeffer and Spencer [SSp50], Chapter XIII.)

Lemma 2.3. If A ∈ C \ (−4, 4), then there exists a uniquely determined A-admis-
sible function fA(z) = z + a2(A)z2 + · · · ∈ S. Moreover C \ fA(D) is an analytic
Jordan arc extending to ∞ and

2a2(A) = 4e−iφ −A log
(
1 + ρ2 + 2ρe−2iφ

)
+A log(1− ρ2) +A log

1 + ρ

1− ρ .(2.4)

Equation (2.4) is exactly formula (13.5.8) in [SSp50] for the part of the coefficient
body V3 which corresponds to one-slit mappings.

We now characterize the critical points of the functional Lλ which are A-admis-
sible for A 6∈ (−4, 4).

Lemma 2.4. If f is a critical point of the functional Lλ for λ ∈ iR which is
A-admissible for A = A(ρ, φ) ∈ C \ (−4, 4), then h(ρ, φ) = 0 where

h(ρ, φ) := (ρ− 1)2 cosφ− 2(ρ+ 1)2 log(1 + ρ) cosφ

+(ρ+ 1)2 cosφ Re(log(1 + ρ2 + 2ρe−2iφ))

+(ρ− 1)2 sinφ Im(log(1 + ρ2 + 2ρe−2iφ)).

(2.5)
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Moreover, λ = ip(ρ, φ), where

p(ρ, φ) = ImA(ρ, φ)− 2 Im a2(A(ρ, φ))

=
(1 + ρ)2

ρ
cosφ Im(log(1 + 2 ρe−2 i φ + ρ2))

+
(1 + ρ)2 − 2 (ρ− 1)2 log(1 − ρ)

ρ
sinφ

+
(ρ− 1)2

ρ
Re(log(1 + 2 ρe−2 i φ + ρ2)) sinφ.

(2.6)

Proof. We know from (2.2) that A = 2a2(A) + λ where a2(A) is given by (2.4).
Taking the real part leads to h(ρ, φ) = 0; taking the imaginary part gives (2.6).

We now consider the equation h(ρ, φ) = 0. Since h(ρ, π ± φ) = −h(ρ, φ) we may
restrict ourselves to the case 0 < ρ ≤ 1 and 0 ≤ φ ≤ π/2. For φ = 0 we have
h(ρ, φ) = 0 if and only if ρ = 1. In this case λ = 0 and there are exactly two
support points, namely K(z) and −K(−z).

Lemma 2.5. If h(ρ, φ) = 0 with 0 < ρ ≤ 1, 0 < φ ≤ π/2, then either :
(a) φ = π/2 and p(ρ, φ) = (1 + ρ)2/ρ ∈ [4,∞), or
(b) φ < π/2. In this case (

√
e − 1)/(

√
e + 1)=̇0.244919 < ρ ≤ 1 and φ = φ(ρ)

is a continuously differentiable and strictly decreasing function of (0, 1] onto
[0, π/2). Moreover the function ρ 7→ p(ρ, φ(ρ)) is continuously differentiable
and strictly decreasing on (0, 1] and takes on its values in [0, 4e/(e− 1)).
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Figure 1. The locus of the zeros of h(ρ, φ) consisting of two curves
in the ρ-φ-plane (on the left) and the values of p as a function of
ρ along these curves (on the right). The thick parts correspond to
the Koebe function z/(1− iz)2.

Proof. (a) is obvious. To prove (b) we introduce the functions

g(v, x) := v +
1
2

[L(v, x) + 2 log v] +
v s(x)

4(1 + x)
T (v, x),

q(v, x) :=
2

1− v s(x)− 1
1− vT (v, x) +

v

1− v s(x)L(v, x),
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defined for (v, x) ∈ X := (0, 1)× (−1, 1], where we used the shorthand notations

s(x) :=
√

2− 2x,

T (v, x) := 2
√

2 + 2x arctan
√

1− x2

1+v
1−v + x

,

L(v, x) := log
1+v2

1−v2 + x
1+v2

1−v2 − 1
.

The following estimate for T (v, x) on X will be useful later on:

(1− v)(1 + x)s(x) < T (v, x) <
2(1 + x)s(x)

1+v
1−v + x

.(2.7)

The first inequality in (2.7) may be obtained by comparing the partial derivatives
with respect to v for fixed x, the second one readily follows from arctan y < y
for y > 0.

By the transformation

v = v(ρ) :=
(

1− ρ
1 + ρ

)2

, x = x(φ) := cos 2φ,(2.8)

we define a bijective map (ρ, φ) 7→ (v(ρ), x(φ)) of (0, 1) × (0, π/2] onto X . A
straightforward calculation leads to the relations

h(ρ, φ) = (1 + r)2 cosφ g(v(ρ), x(φ)),

p(ρ, φ) = q(v(ρ), x(φ)),
(2.9)

between h and p and the new functions g and q. We claim that the locus of the
zeros of g(v, x) is a curve γ : t 7→ (t, x(t)), t ∈ (0, 1/e], with

lim
t→0

γ(t) = (0, 1), lim
t→e−1−

γ(t) = (e−1,−1),

where x′(t) < 0 is continuous. The existence of such a curve γ is guaranteed by the
implicit function theorem since the partial derivatives

gv(v, x) = 1 +
s(x)

4(1 + x)
T (v, x),

gx(v, x) =
−1 + v + x− vx+ v

2(1+x)s(x)T (v, x)

2(x2 − 1)
,

(2.10)

of g appear to be positive on (0, 1)× (−1, 1) by (2.7) and

lim
v→0+

g(v, x) =
1
2

log
1 + x

2
< 0, lim

v→1−
g(v, x) = 1,

for fixed x ∈ (−1, 1). A computation of the limits

lim
x→1−

g(v, x) = v, lim
x→−1+

g(v, x) = 1 + log v,

for fixed v proves the statement about the endpoints of γ.
We shall prove now that q(v, x) is increasing on γ. To see this consider

d

dt
q(t, x(t)) = qv(t, x(t)) − qx(t, x(t))

gv(t, x(t))
gx(t, x(t))



3662 RICHARD GREINER AND OLIVER ROTH

where

qv(v, x) =
−T (v, x) + s(x)[2 + L(v, x)]

(1− v)2
,

qx(v, x) =
−T (v, x)− 2v(1+x)

s(x) [2 + L(v, x)]

2(1− v)(1 + x)
.

(2.11)

A straightforward computation involving (2.7) and L(v, x) ≥ 0 shows qv(v, x) > 0
and qx(v, x) < 0 on (0, 1)× (−1, 1). Hence d

dtq(t, x(t)) > 0.
Translating our result via (2.8) and (2.9) back to the functions h(ρ, φ) and p(ρ, φ)

we obtain the assertion.

We deduce from Lemma 2.5 that for λ = ip and p ≥ 4e/(e − 1) the unique
support point for Lλ is the Koebe function iK(−iz). If p ≤ −4e/(e − 1), then,
by symmetry, the unique support point for Lλ is −iK(iz). This proves part (a) of
Theorem 1.1.

To prove part (b), i.e., to show that for 0 < p < 4e/(e− 1), no rotation of the
Koebe function is a support point for Lip, we establish the following:

Lemma 2.6. For 0 < p < 4e/(e− 1) let F0 be the uniquely determined A(ρ, φ(ρ))-
admissible function such that p = p(ρ, φ(ρ)) for some ρ ∈ ((

√
e − 1)/(

√
e + 1), 1).

Then Lip(F0) > Lip(iK(−iz)).

Proof. We adopt the notation from the proof of Lemma 2.5. Using (2.2) we get
2Lip(F0) = B0 − p ImA2 with B0 = 2(ρ+ 1/ρ+ cos 2φ); cf. [SSp50], and, in view
of (2.4) and the transformation (2.8),

ImA2 =
T (v, x)− vL(v, x)s(x)

2(1− v)
− s(x).

Thus we have to show that

Lip(F0)− Lip(iK(−iz)) = 2
1 + v

1− v + x− q(v, x)
2

ImA2 − 2q(v, x) + 3(2.12)

is non-negative for all (v, x) ∈ X with g(v, x) = 0. In fact, we will prove this for all
(v, x) ∈ X . Let us denote the expression (2.12) by R(v, x). Then we have

R(v, x) =
1

4(1− v)2

[
v2s(x)2L(v, x)2 − 2vs(x)T (v, x)L(v, x) + T (v, x)2

−2s(x)v[4 − 4v − 2s(x) + vs(x)]L(v, x)
+2[4− 4v − 2s(x) + vs(x)]T (v, x)
+4(1− v)[5− v + x− 4s(x) + s(x)2 − vx]

]
.

A straightforward calculation leads to

4(1− v)2R(v, x) = [T (v, x)− vs(x)L(v, x)]2 + 2[c1(v, x)a(v, x) + c0(v, x)],(2.13)

where

a(v, x) := T (v, x)− vs(x)L(v, x),

c1(v, x) := 4(1− v)− (2− v)s(x),

c0(v, x) := (1− v)[2 − s(x)][2(3− v)− (1 + v)s(x)].
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Obviously, c0(v, x) > 0 for all (v, x) ∈ X . Furthermore, L(v, x) ≥ 0 in X , since

Lv(v, x) = −2
1 + x

v(1 + x) + v3(1 − x)
≤ 0, lim

v→1
L(v, x) = 0.

Thus, the relations

av(v, x) = −s(x)L(v, x), lim
v→1

a(v, x) = 0,

show also a(v, x) ≥ 0. In view of equation (2.13) it remains to prove that
c1(v, x)a(v, x) + c0(v, x) ≥ 0 for all (v, x) ∈ X that satisfy c1(v, x) < 0, i.e.
v > 2[2 − s(x)]/[4 − s(x)]. We denote the set of all such points by ∆ and show
below that the partial derivative(

a+
c0
c1

)
v

(v, x) = −s(x)L(v, x)− 4− s(x)2

4− s(x)

+
s(x)[2− s(x)][16 − 10s(x) + 3s(x)2]
[4− s(x)][4 − 4v − 2s(x) + vs(x)]2

(2.14)

is positive for all (v, x) ∈ ∆. Then the obvious limit relation

lim
v→1

[
a(v, x) +

c0(v, x)
c1(v, x)

]
= 0

shows a(v, x) + c0(v, x)/c1(v, x) is negative in ∆. Thus c1(v, x)a(v, x) + c0(v, x) is
positive for all (v, x) ∈ ∆.

To complete the proof we have to show that (2.14) is positive for all (v, x) ∈ ∆.
First, we use the estimates

L(v, x) = log

(
1 +

1 + x
1+v2

1−v2 − 1

)
≤ 1 + x

1+v2

1−v2 − 1
= −4− s(x)2

4

(
1− 1

v2

)
and 16− 10s+ 3s2 ≥ 2(2 + s) to obtain(

a+
c0
c1

)
v

(v, x) ≥ − [2− s(x)]3[2 + s(x)]
4[4− s(x)]

+ s(x)[4 − s(x)2]

×
(

2
[4− s(x)][4 − 4v − 2s(x) + vs(x)]2

− 1
4v2

)
.

Let us denote this lower bound by P (v, x). The partial derivative of P with respect
to v turns out to be

Pv(v, x) =
[4− s(x)2]s(x)[s(x) − 2](v − 2)

2v3[4− 4v − 2s(x) + vs(x)]3
Q(v, s(x))(2.15)

where

Q(v, s) := v2s2 − 10v2s− 4vs2 + 28v2 + 28vs+ 4s2 − 40v − 16s+ 16.

In (2.15), the denominator is negative, since (v, x) ∈ ∆, and the numerator is obvi-
ously non-negative. Since the critical values of Q are Q(0, 2) = 0 and Q(2, 6) = 48,
a limit argument shows that Q(v, s) ≥ 0 for all (v, s) ∈ R2. Thus P is monotonously
decreasing as a function of v. Finally, using

P (1, x) =
[2− s(x)]2[2 + s(x)]

s(x)[4 − s(x)]
> 0

we conclude that P (v, x) > 0 for all (v, x) ∈ ∆.
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