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REGULARITY PROPERTIES OF DISTRIBUTIONS
AND ULTRADISTRIBUTIONS

S. PILIPOVIĆ AND D. SCARPALEZOS

(Communicated by Jonathan M. Borwein)

Abstract. We give necessary and sufficient conditions for a regularized net
of a distribution in an open set Ω which imply that it is a smooth function
or Ck function in Ω. We also give necessary and sufficient conditions for an
ultradistribution to be an ultradifferentiable function of corresponding class.

Introduction

Algebras of generalized functions are usually defined as factor algebras of cer-
tain algebras of sequences (nets) of smooth functions (cf. [1], [2], [3], [8], [11]),
and the classical spaces of functions, distributions and ultradistributions are em-
bedded into the appropriate algebra through their regularizations; they are also
equivalence classes of sequences (nets) of smooth functions. Solutions in algebras
of generalized functions of PDE are also presented by such sequences (nets) and
even differential operators (for example, with singular coefficients) are sometimes
replaced by sequences (nets) of differential operators with smooth coefficients. So
the natural question arises: Under what conditions is a given generalized function
(a generalized solution of PDE) actually a classical function of appropriate class,
distribution, or ultradistribution?

The partial answers to such questions are given in Propositions 1, 2 and more gen-
erally in Theorems 1, 2, respectively, in terms of asymptotic behaviour of sequences
of functions provided that these sequences are evaluated on the ultraproduct ΩN.

Denote by (θn) (respectively, (φn)) a δ-sequence, also called a sequence of molli-
fiers, of smooth functions (respectively, of appropriate ultradifferentiable functions).
Precise definitions will be given in sections 2 and 5, respectively. We will prove:

Proposition 1. (i) Let (Tn) be a regularized sequence of T ∈ E ′(Ω), i.e. Tn =
T ∗ θn, n ∈ N. If (∃m ∈ R)(∀(xn) ∈ ΩN)(∀α ∈ N0)(T (α)

n (xn) = O(nm)), then
T ∈ C∞0 (Ω). (O is the Landau symbol.)

(ii) Let (Tn) be a regularized sequence of T ∈ E ′k(Ω), k ∈ N0. If (∀(xn) ∈
ΩN)(∀α ≤ k)(T (α)

n (xn) = O(1)), then T ∈ Ck0 (Ω).

Let (Mp) be a sequence of positive numbers satisfying conditions (M.1)∗, (M.2)
and (M.3)’. These conditions and the definitions of corresponding ultradistribution
spaces will be given in section 1.
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Proposition 2. Let (Tn) be a regularized sequence of T ∈ E ′(Mp)(Ω), respectively,
T ∈ E ′{Mp}(Ω), of the form Tn = T ∗ φn, n ∈ N, where (φn) is a sequence of
mollifiers of Mp-type such that:

(i) (∃h > 0)(∃m ∈ R)(∀(xn) ∈ ΩN) respectively, (∀h > 0)(∃m ∈ R)(∀(xn) ∈ ΩN)

sup
α∈N0

hα|T (α)
n (xn)|
Mα

= O(eM
∗(mn)).

(ii) (∃b > 0)(∀φ ∈ E{Mp}(Ω)) respectively, (∃b > 0)(∀φ ∈ E(Mp)(Ω))

〈T − Tn, φ〉 = O(e−M
∗(bn)).

Then T ∈ D{Mp}(Ω), respectively, T ∈ D(Mp)(Ω).

Note that in Proposition 1 we can use any regularized sequence, while in Propo-
sition 2 we need a special regularized sequence. This is discussed in section 5.

In relation to distribution theory, our results can also be considered in the frame-
work of asymptotic analysis; cf. [4] and references therein.

1. Regularized sequences and regularity properties

We assume that the reader is familiar with Schwartz’s distribution theory and
its traditional notation. Here, we will recall some basic facts concerning ultradis-
tribution spaces (cf. [6]).

Denote by (Mp) a sequence of positive numbers with M0 = 1 satisfying the
assumptions

(M.1)∗ (M∗p )2 ≤M∗p−1M
∗
p+1, p ∈ N.

(M.2) Mp ≤ AHpMqMp−q, p ∈ N, q ≤ p, for some A > 0 and H > 0.

(M.3)’
∞∑
p=1

Mp−1/Mp ≤ ∞.

Recall, M∗0 = 1,M∗p = Mp/p!,mp = Mp/Mp−1,m
∗
p = M∗p/M

∗
p−1, p ∈ N.

(M.1)∗ implies the well-known condition (M.1) of [6].
We refer the reader to [6], [7] and [9] for the analysis of these conditions.
The associated function M and the growth function M∗ related to (Mp)p are

defined by

M(t) = sup
p∈N0

ln
tp

Mp
, M∗(t) = sup

p∈N0

ln
tp

M∗p
, t > 0.

We use the convention M(x) = M(|x|), M∗(x) = M∗(|x|), x ∈ R (cf. [6]).
Let Ω be an open set in R. Then K ⊂⊂ Ω means that K (or its closure) is a

compact subset of Ω. Recall, for ϕ ∈ C∞(Ω),

‖ϕ‖K,h,Mp = sup
x∈K,α∈N0

hα | ϕ(α)(x) |
Mα

, h > 0, K ⊂⊂ Ω.

Denote by EMp,h(K) the space of smooth functions on Ω for which the above
seminorm is finite and by DMp,h(K) its subspace consisting of smooth functions
supported by K.

Define

E(Mp)(Ω) = proj lim
K→Ω

proj lim
h→∞

EMp,h(K) = proj lim
K→Ω

E(Mp)(K),

E{Mp}(Ω) = proj lim
K→Ω

ind lim
h→0
EMp,h(K) = proj lim

K→Ω
E{Mp}(K),
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D(Mp)(Ω) = ind lim
K→Ω

proj lim
h→∞

DMp,h(K) = ind lim
K→Ω

D(Mp)(K),

D{Mp}(Ω) = ind lim
K→Ω

ind lim
h→0
DMp,h(K) = ind lim

K→Ω
indD{Mp}(K).

(K → Ω means that K runs over all compact sets exhausting Ω.)
Their strong duals are spaces of compactly supported and general Beurling and

Roumieu ultradistributions, respectively (cf. [6]).

2.

Let T ∈ D′(Ω), suppT = K ⊂⊂ Ω, θ ∈ D,
∫
θ(x)dx = 1 and θn(x) =

nθ(nx), n ∈ N. Let Tn(x) = T ∗ θn(x), n ∈ N. For any ψ ∈ E we have

〈Tn − T, ψ〉 = 〈T, ψ ∗ θ̌n − ψ〉 = O(n−1).

This is clear because, by Taylor’s formula, one has (for some C > 0, some compact
set K1,K1 ⊃ K and k ∈ N)

|〈T ∗ θn − T, ψ〉| ≤ C|ψ ∗ θ̌n − ψ|K1,k

≤ C|
∫

(ψ(x− y)− ψ(x))θ̌n(ny)ndy|K1,k ≤ Cn−1.

Thus, any regularized sequence for a distribution T satisfies condition b) of (i)
and (ii) in Theorem 1 given below.

3.

In this section we prove more general assertions than the ones in Proposition 1.

Theorem 1. (i) Let (fn) be a sequence of C∞ functions on Ω supported by a
compact set K ⊂⊂ Ω and T ∈ D′(Ω), suppT ⊂ K. Assume:
a) (∃m ∈ R)(∀(xn) ∈ ΩN)(∀α ∈ N)(f (α)

n (xn) = O(nm)).
b) (∃b > 0)(∀φ ∈ E(Ω))(〈T − fn, φ〉 = O(n−b)).

Then T ∈ C∞(Ω).
(ii) Let (fn) be a sequence of Ck functions on Ω (k ∈ N is fixed) supported by

K ⊂⊂ Ω and T ∈ D′(Ω), suppT ⊂ K. Assume:
a) (∀(xn) ∈ ΩN)(∀α ≤ k)(f (α)

n (xn) = O(1)).
b) (∃b > 0)(∀φ ∈ Ek(Ω))(〈T − fn, φ〉 = O(n−b)).

Then T ∈ Ck(Ω).

Remark 1. (i) If T ∈ C∞0 (Ω), respectively, T ∈ Ck0 (Ω), then one can prove that
conditions in (i), respectively, (ii), hold for T and its regularized sequence
(Tn).

(ii) Proposition 1 follows from Theorem 1.

Proof. (i) Hypothesis a) is equivalent to

sup
x∈Ω
|f (α)
n (x)| = O(nm), for every α ∈ N.

In fact, if it is not so, then there would exist some α ∈ N such that

(∀C > 0)(∃nC ∈ N)(∃xC ∈ Ω)(|f (α)
nC (xC)| > CnmC ).

By choosing C = N ∈ N, we have a sequence (xN ) such that

|f (α)
nN (xN )| > NnmN , n ∈ N.
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Putting yn = xN , nN ≤ n < nN+1 (assuming that (nN )N is increasing) we see that
there does not exist C > 0 such that

|f (α)
n (yn)| ≤ Cnm, n ∈ N.

By taking N > C, this inequality does not hold for yn, n > N, which contradicts
the hypothesis.

Let a = b/2. By assumption b), we have

〈na(T − fn), φ〉 = O(n−a), φ ∈ E(Ω), n ∈ N.

Thus, (na(T − fn)) is a sequence in E ′(Ω) converging to 0 as n→∞. This implies
that the convergence of this sequence takes place in some Ck(ω̄), where ω is an
open bounded set such that K ⊂⊂ ω ⊂⊂ Ω and that (na(T − fn)) is a bounded
sequence in the dual space (Ck(ω̄))′. By the Banach-Steinhaus theorem, we have

(∃C > 0)(∀ψ ∈ E(Ω))(∀n ∈ N)(|na〈T − fn, ψ〉| ≤ C||ψ||ω̄,k)

(|ψ|ω̄,k = supx∈ω̄,p≤k |ψ(p)(x)|).
If ψy = e−iy·, we have ||ψy||ω̄,k ≤ C(1 + |y|)k. For Fourier transforms T̂ and f̂n,

this implies

|na(T̂ − f̂n)(ξ)| ≤ C(1 + |ξ|)k, ξ ∈ R, n ∈ N.

(C denotes positive constants which can be different.)
Note that f̂n ∈ S(R), n ∈ N. We have the following estimates coming from the

hypothesis on (fn). For every r > 0, there exists Cr > 0 such that

|f̂n(ξ)| ≤ Crnm(1 + |ξ|)−r , ξ ∈ R, n ∈ N.
Thus, for ξ ∈ R, n ∈ N,

|T̂ (ξ)| ≤ n−aC(1 + |ξ|)k + nmCr(1 + |ξ|)−r .
Now, for given ξ ∈ R we choose n such that

n−1 = [(1 + |ξ|)
−p−k
a ].

By putting this in the previous inequality, we obtain

|T̂ (ξ)| ≤ C((1 + |ξ|)−p + (1 + |ξ|)
p+k
a −r), ξ ∈ R.

Choose r such that p+k
a − r < −p. Thus, we conclude that T̂ is of rapid decrease.

The above evaluation can be repeated for any derivative of T̂ . This implies that
T̂ ∈ S(R) and that T is a smooth function.

(ii) The proof is similar to the proof of assertion (i). We will point out the
differences.

The hypothesis a) is equivalent to supx∈Ω |f
(α)
n (x)| = O(1), for every α ≤ k.

With a = b/2, assumption b) implies

〈na(T − fn), φ〉 = O(n−a), φ ∈ Ek(Ω), n ∈ N,

and that (na(T − fn)) is a sequence in E ′k(Ω) which converges to 0. This implies
(again by the use of the Banach-Steinhaus theorem and the Paley-Wiener theorem;
cf. [5])

|na(T̂ − f̂n)(ξ)| ≤ C(1 + |ξ|)k, ξ ∈ R, n ∈ N.
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Assumptions on (fn) imply

|f̂n(ξ)| ≤ C(1 + |ξ|)k, ξ ∈ R, n ∈ N.
With ξ ∈ R, n ∈ N and suitable C > 0 we have,

|T̂ (ξ)| ≤ n−aC(1 + |ξ|)k + C(1 + |ξ|)−k.

By choosing n = n(ξ) such that n−1 = [(1 + |ξ|)−2k], we obtain

|T̂ (ξ)| ≤ C(1 + |ξ|)−k, ξ ∈ R.

By the Paley-Wiener theorem, we have T ∈ Ck(Ω).

Remark 2. If T is not a compactly supported distribution, we use a partition of
unity and obtain a criterion for the local regularity.

4.

With arguments similar to those in section 3, by using the Banach-Steinhaus
theorem and Paley-Wiener type theorems for ultradifferentiable functions and ul-
tradistributions (cf. [6], [7]), we can prove Theorem 2, which includes Proposition
2.

Theorem 2. (i) Let (fn) be a sequence in E{Mp}(Ω), respectively, E(Mp)(Ω),
supported by K ⊂⊂ Ω and T ∈ E ′{Mp}(Ω), respectively, T ∈ E ′(Mp)(Ω),
suppT ⊂ K. Assume:
a) (∃h > 0)(∃m ∈ R)(∀(xn) ∈ ΩN) respectively, (∀h > 0)(∃m ∈ R)(∀(xn) ∈

ΩN),

sup
α∈N0

hα|f (α)
n (xn)|
Mα

= O(eM
∗(mn)).

b) (∃b > 0)(∀φ ∈ E{Mp}(Ω)) respectively, (∃b > 0)(∀φ ∈ E(Mp)(Ω)),

〈T − fn, φ〉 = O(e−M
∗(bn)).

Then T ∈ D{Mp}(Ω), respectively, T ∈ D(Mp)(Ω).

Proof. Hypothesis a) is equivalent to

sup
x∈Ω

hα

Mα
|f (α)
n (x)| = O(eM

∗(mn)).

Since

|ξα
∫
R
e−iξxfn(x)dx| = |

∫
R
e−ixξf (α)

n (x)dx| ≤ C sup
x∈K
|f (α)
n (x)|, ξ ∈ R,

the definition of the associated function M implies that there exists Ch > 0 such
that

|f̂n(ξ)| ≤ CheM
∗(mn)e−M(hξ), ξ ∈ R, ε ∈ (0, 1), n ∈ N.(1)

Let ϕ ∈ E{Mp}(R). Put Sn = eM
∗(an)(T − fn, ) where we choose a < b such

that condition b) implies Sn → 0 in E ′{Mp}(Ω) as n → ∞. By [6], there exists a
compact set K1 ⊃ K such that for every k1 > 0 there exists C1 > 0 such that

|〈Sn, ϕ〉| ≤ C1‖ϕ‖K1,k1,Mp , ϕ ∈ E(Mp)(R).(2)
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Therefore, (2) holds for every ϕ ∈ Ek1,Mp(K1). Note,

‖eiξx‖K1,k1,Mp ≤ eM(k1ξ), ξ ∈ R.(3)

Thus, by (2) and (3), and by letting φ(x) = eiξx, x ∈ R, it follows that there exists
C > 0 such that

|Ŝn(ξ)| = eM
∗(an)|T̂ (ξ)− Ĝε(ξ)| ≤ CeM(k1ξ), ξ ∈ R, n ∈ N.

This and (1) imply

|T̂ (ξ)| ≤ C(e−M
∗(an)+M(k1ξ) + eM

∗(rn)−M(hξ)), ξ ∈ R, n ∈ N.(4)

Let

n =
[
M∗−1(M((h− δ)ξ))

r

]
, ξ ∈ R.(5)

Note that M∗−1(M((h − δ)ξ)) → ∞ as |ξ| → ∞. We choose constants δ < h and
k1 in (5) as follows. By (M.2), we have that there exist C > 0 and c > 0 such that

e−M
∗( ar t) ≤ Ce−cM∗(t), t > 0

(cf. [6]). This implies that we have to choose k1 such that there exists s1 > 0 such
that

−cM((h− ρ)ξ) +M(k1ξ) ≤ −M(s1ξ), ξ ∈ R.

Again, this is possible by (M.2). With this δ, k1 and s1 and by putting n of the
form (5), we have

e−M
∗(an)+M(k1ξ) ≤ e−M(s1ξ),

eM
∗(rn)−M(hξ) ≤ eM((h−δ)ξ)−M(hξ), ξ ∈ R.

This implies that for (4) there exist s > 0 and Cs > 0 such that

|T̂ (ξ)| ≤ Cse−M(sξ), ξ ∈ R.

By Lemma 3.3 and Theorem 9.1 in [6], this implies that T ∈ E{Mp}(R), supp T ⊂
K.

5.

We finish with the following question:
Does there exist a sequence of mollifiers (φn) in an appropriate space of ultrad-

ifferentiable functions such that condition (ii) of Proposition 2 holds?
We have proved in [11] the following result:

Proposition 3. Let φ be a mollifier of {p!1+ρ}-type.
Let f ∈ E ′(Mp)(Ω). Then for every b > 0,

〈f ∗ φn − f, ψ〉 = O(e−M
∗(bn)), ψ ∈ D(

Mp

p!1+ρ )(Ω).

If f ∈ E ′{Mp}(Ω), then for every b > 0,

〈f ∗ φn − f, ψ〉 = O(e−M
∗(bn)), ψ ∈ D{

Mp

p!1+ρ }(Ω).
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The sequence of mollifiers (φn) is defined as follows:
Let θ ∈ D{p!1+ρ}(R) be equal to one in a neighbourhood of zero. Then, its Fourier

transformation φ = F(θ) = θ̂ satisfies∫
R

φ(t)dt = 1,
∫
R

tnφ(t)dt = 0, n = 1, 2, ....

Moreover, φ satisfies

σh,p!1+ρ(φ) = sup
x∈R,k,p∈N0

(1 + |x|)k|φ(p)(x)|
hk+pk!1+ρp!1+ρ

<∞ for some h > 0 (cf. [10]).

Then φ is called the mollifier of {p!1+ρ}-type; φ = nφ(n·) is a sequence of mollifiers.
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