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ABSTRACT. Some properties of fundamental groups of Riemannian manifolds
M will be studied without a lower bound assumption on Ricci curvature. The
main method is to relate the local packing to global packing instead of using the
Bishop-Gromov relative volume comparison. This method allows us to control
the volume growth of the universal cover M and yields bounds on the number
of generators of 71 (M) in terms of some isoembolic geometric invariants of M.

1. INTRODUCTION

In this article, we discuss the number of generators and the growth of the fun-
damental groups of Riemannian manifolds without curvature restrictions.

Let M™ denote a compact n-dimensional Riemannian manifold without bound-
ary, and let 71 (M, p), d(M), v(M), and ¢(M) denote its fundamental group, diam-
eter, volume, and injectivity radius, respectively. For a finitely generated group G,
mg(G) denotes the minimal number of elements needed to generate the group. The
entropy h(G) of a group is a measurement of the number of distinct words (of a
given length or less) in terms of generators and their inverses, and the entropy of
a manifold h(M) is a measurement of the volume growth of its universal cover; see
Section 2 or [Gr] for their formal definitions.

There are several studies of the fundamental group with lower bounds on Ricci
curvature. Bishop(-Gromov) volume comparison is a basic tool for comparing the
volumes of metric balls used in these results. In Milnor [Mi], the fundamental groups
of manifolds with nonnegative Ricci curvature are shown to have polynomial growth,
in contrast to negative sectional curvature cases in which they have exponential
growth. The positive and nonnegative Ricci curvature cases are studied further
by Anderson [A], and the general case with an arbitrary lower bound on Ricci
curvature is studied qualitatively by Gromov [Grl, chap. 6]. The case of negative

or nonpositive sectional curvature has been studied extensively; see Preismann [P],
Gromoll-Wolf [GW], and Lawson-Yau [LY].

Definition 1.1. The isoembolic volume is defined to be V.(M™) = v(M)/i(M)™
and isoembolic diameter to be d.(M™) = d(M)/i(M) for an n-dimensional Rie-
mannian manifold M.
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Let EY = {M™ : V.(M) < N}. The following results show that a bound on
the isoembolic volume puts a priori topological and geometric restrictions on the
manifolds. In [Be], Berger proved that V.(M"™) > V.(S™(1)) and equality holds
if and only if M™ is isometric to a standard sphere S™(r) of dimension n with
radius . By the work of Croke [C2], M™ is homeomorphic to a sphere S, if
Ve(M™) < Vg(5™(1)) + ¢(n) for a universal constant ¢(n). In 1988, Yamaguchi
proved that EY; has finitely many homotopy equivalence types, [Y]. By the author’s
work [D2], one can estimate a priori upper bound for the number of homotopy types
and the Betti numbers b; (M, F) in terms of V.(M™) for any field F. In particular,
b1 (M,F) < C(n)Ve(M™)? for a universal constant C(n), and a linear inequality is
not possible, [D2].

Even though mg(m;(M,p)) are uniformly bounded on E%;, one cannot deduce
a priori upper bounds on mg(m (M, p)) from the results above. In particular, the
inequality mg(m1 (M, p)) > bi(M,F) by the Hurewicz Isomorphism Theorem is in
the opposite direction.

Theorem 2. For any compact Riemannian manifold M™,

mg(m1 (M, p)) < (cVe(M))H49) < (cV, (M))4eV=(MD
and

h(m1(M,p)) < 14d.(M)logcVe (M)
where ¢ is a constant depending only on the dimension n.

Theorem 2 is a consequence of Theorem 1 which involves controlling the volume
growth of the universal cover by using packing arguments without a lower bound on
the Ricci curvature. Here we briefly introduce the notation and definitions needed
to state Theorem 1. The formal definitions will be given in Section 2. B(p,r)
denotes the metric ball of radius r at p. The packing number N(a,c, M) is the
largest number of disjoint open metric balls of radius ¢ that can be fitted into any
metric ball of radius a in M. N(a, ¢, M) obviously bounds N (b, ¢, M), if b < a. The
crucial Proposition 3.1 is about controlling N(a,c, M) in terms of N(b,c, M) for
6c < b<a.

Theorem 1. Let M™ be a complete Riemannian manifold of dimension n with the
Riemannian universal covering map WV : M — M. Let R be such that ¥p € M,
B(p, R, M) is simply connected in M; that is, every closed curve in B(p, R, M) is
contractible in M. Let N(R,R/7; M) = Ny. Then, for ¥(p) = p,

card(9~"(p) N B(p,a,M)) < NS/~ va > R.
Consequently, if M™ is compact with diameter d(M), then
mg(m (M, p)) < Ng*“*0/F
and the entropies satisfy
h(M) < 7(log No)/R
and

h(mi (M, p)) < 14(log No)d(M)/R.
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2. BASIC NOTATION AND DEFINITIONS

We refer to [BC], [CE] and [GKM] for basic Riemannian geometry. Let (M™, g)
denote an n-dimensional compact Riemannian manifold unless otherwise specified.
das(.,.) is the Riemannian distance function. For X C M, let card(X), X°, X and
v(X) denote the cardinality, interior, closure and Riemannian volume of X.

Definition 2.1. (i) B(p,7) = {z € M : dy(z, p) < r} and B(p,r) = {z € M :
dy(z, p) <7}

(ii) The packing number N (a, ¢, M) is defined to be the supremum of the number
of disjoint open metric balls of radius ¢ inside each open metric ball of radius a in
M.

Definition 2.2 ([Grl 5B]). Let G be a finitely generated group.

(i) The minimal number of generators is defined to be mg(G) = inf{card(H) :
H C G and H generates G}.

(ii) The entropy of a finite generating set H of G is h(H) = 1itrgi£fw,
where N(t, H) is the number of distinct words of length at most ¢ by using gener-
ators from H and their inverses. The entropy of G is h(G) = igfh(H), where H

runs through the generating subsets of G.
(iii) Let M™ be a complete manifold of dimension n, with the Riemannian uni-
versal covering map ¥ : M — M. The entropy of M is defined to be h(M) =

htm inf M ; that is, a measurement of the volume growth of the universal
COver.

Definition 2.3. Let A C B be both connected and let i be the inclusion map. A
is said to be simply connected in B, if every closed curve in A is contractible in B;
that is, i.(m1 (A4, a)) = 0.

3. PROOFS OF THE THEOREMS

Proposition 3.1. For any complete Riemannian manifold M and Ya > b > 6¢ >

0, one has N(a,c, M) < N(b,c, M)*, where k is the smallest integer > ‘g:gi.

Proof. Let a metric ball B(p,a) and a maximal family 7 = {B(q,c) : ¢ € Q} of
disjoint open balls inside B(p,a) be given. Define
Q(R)={q€Q: Blg,c) C B(p, R)}

for R > 0. Fix any R with b < R < a, and choose any ¢ € Q(R+ b — 6¢) — Q(R).
Let p’ be a point on any minimal geodesic from p to g such that d(q,p’) = b—3c, so
that d(p,p’) < R—3c and B(p',2¢) C B(p, R—c). There exists a ¢ in QN B(p’, 2¢),
for otherwise, the addition of B(p/,c) to F would contradict the maximality of F.
Furthermore,

d(p,q') < d(p,p’) +d(p',q') < R — ¢, hence B(¢',c) C B(p,R) and ¢’ € Q(R),

d(q,q') < d(q,p") +d(p',¢') <b— ¢, hence B(q,c) C B(q',b),
Vg € Q(R+b—6¢c) — Q(R)I¢ € Q(R) such that B(q,c) C B(¢,b),

(4,
rd(Q(R))(N (b, ¢) — 1),
d(Q(R))N(b, c)-

card(Q(R +b—6¢) — Q(R))

<
card(Q(R +b—6¢)) <
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Since card(Q(b)) < N(b,c), it follows that card(F) = card(Q(a)) < N(b,c)*,

where k is the smallest integer > % +1= ‘Zigi-
p is arbitrary and F is maximal, hence N (a,c, M) < N (b, c, M)F. O

Proof of Theorem 1. Let U : M — M be the Riemannian universal covering map
and G = 71 (M,p). Choose any p € ¥!(p) and let G = {g; : i € A} act on
U—L(p) = {g:p: i € A} by deck transformations.

The following basic facts which were used or proved in [Mi] and [Grl, chap. 5] can
also be found in [D1]. W = M -cutlocus(p) is an open, dense and contractible subset
of M, [CE]. Vg; € G,3 an open contractible subset W; of M such that g;p € Wi,
U | W; is an isometry of W; onto W, W; N W, = 0 if g; # g;, v(W;) = v(M), and
Uiea W; = M. If M is compact, then H = {9: € G: W; N Wy # (0} is a generating
set for G, where p € Wy. For compact M, Vg; € H, g;p € B(p,2d(M); M).

If A is a path-connected subset of M and ¥ | A is not one-to-one, then W(A)
contains a closed curve v which has a non-closed lift to M and 0 # [] € 1 (M, q).
By the hypothesis, Vrr < Rand ¢ € M, U | B(q,7; M) is one-to-one and an isometry,
and v(B(q,7; M)) = o(B(¥(q), r; M).

card(Y='(p) N B(p,a; M)) =1,if 0 < a < R.

Let a > R be fixed, set ¢ = % and choose a maximal family F = {B(q,c) : ¢ € Q}
of disjoint open balls inside B(p, a+c¢; M ). From the maximality of F, it follows that
B(p, a; M) C quQ B(q, 2c, M) Since the restrictions of ¥ to metric balls of radius
R are isometries, N(R,¢; M) = N(R,c; M) = Ny. Given two distinct elements g1p
and gop of U1 (p)NB(p, a; M), one has g1p € B(g;,,2¢; M) and gop € B(qs,, 2¢; M)
for qi, # @, of Q, otherwise, ¥ | B(g;,,2c; M) will not be one-to-one. Hence,
Vg € Q, B(q,2¢, M) contains at most one element of U—1(p)n B(ﬁ,a;M). By
Proposition 3.1,

card(¥~*(p) N B(p, a; M)) < card(Q) < N(a+ ¢,c, M)

a

+c—6¢ Za _
R—6c <N0R 5.

< N(R,c,M)

If M is compact, then 71 (M, p) can be generated by loops of length at most
2d(M) by above. By taking a = 2d(M) in the above inequality yields
mg(m (M, p)) < Ny "0/,

Any word of length at most k constructed by using loops of length at most 2d(M)
has a lift to the universal cover starting at p and with length at most 2kd(M). So,
the end point is in B(p, 2kd(M); M). This proves that

h(m1 (M, p)) < 14d(M)(log No)/R.
For the entropy of M, h(M) < 7(log Ny)/R follows
v(B(p, a; M)) < card(¥~ (p) N B(p, a+ d(M); M))v(M)
< Ng(aer(M))/RU(M).
|

Proposition 3.2. Let R, V,v > 0 be given. For any compact Riemannian manifold
M, ifv(M) <V,Vp e M, B(p,R) is contractible in M, and v(B(p, R/7)) > v, then
mg(mi (M, p)) < LYMIM/R < [AL yhere L = V/v.
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Proof. Clearly, Ny = N(R,R/7; M) < % = L. Let p and ¢ be a pair of furthest
points of M, that is, d(p,q) = d(M). Choose any normal geodesic 7 from p to g,
with v(0) = p. Let p; = v((2i — 1)R/7) for 1 < i < s so that d(ps,q) < R/7 and
hence 2sR > d(M). The balls B(p;, R/7) are disjoint, since a nonempty intersection
of B(p;, R/7) and B(p;, R/7) contradicts the minimality of v between p; and p;.
This implies sv < V. By Theorem 1,

14d(M)/R 4s 4y
v v v

O
Proof of Theorem 2. If r < i(M)/2, then v(B(p,r; M™)) > r"2" 1o _n="al™

n

by Croke [Cr], where a,, = v(S™(1)). Hence, by taking v(M) =V and R = i(M),

one uses % = d.(M) and Ny < % = L < V,(M)c in Proposition 3.2 to conclude
the proof, where ¢ = 2(7/2)"a;, " n"a 1. O

The method we developed above yields the following for noncompact manifolds.

Theorem 3. Let M be a noncompact Riemannian manifold and G 4 be any sub-
group of w1 (M, p) generated by loops of length at most A. Let R be such that Vp €
B(p, A, M), B(p, R, M) is simply connected in M. Let No=N (R, R/7; B(p, A, M)).
Then

mg(Ga) < No* P and h(G4) < TA(log No)/R.

The proof of Theorem 3 follows the proof of Theorem 1, with the fact that
U(B(p, A, M)) C (B(p, A, M).

ACKNOWLEDGEMENT

I would like to thank the referee for his/her insightful and helpful comments.

REFERENCES

[A] M. Anderson, On the topology of complete manifolds of non-negative Ricci curvature,
Topology, 29 Vol 1 (1990) 41-45. MR [91b:53041

[Be] M. Berger, Une borne inferieure pour le volume d’une variete Riemannienne en fonction

du rayon d’injectivite, Ann. Inst. Fourier, Grenoble, 30 (1980), 259-265. MR [82b:53047

[BC] R. L. Bishop and R. J. Crittenden, Geometry of Manifolds, Academic Press, 1964. MR
29:6401

[CE] J. Cheeger and D. G. Ebin, Comparison Theorems in Riemannian Geometry, North
Holland Mathematical Library, 9, 1975. MR [56:16538

[Cr] C. Croke, Some isoperimetric inequalities and eigenvalue estimates, Ann. Sci. Ecole Norm.
Sup., 13 (1980) 419-435. MR 83d:58068

[C2] C. Croke, An isoembolic pinching theorem, Inventiones Mathematicae, 92 (1988) 385-387.
MR 89e:53061

[D1] O. C. Durumeric, Manifolds with almost equal diameter and injectivity radius, Jour. of
Differential Geometry, 19 (1984) 453-474. MR [86j:53061
[D2] O. C. Durumeric, Finiteness theorems, average volume and curvature, Amer. Jour. of

Math., 111 (1989) 973-990. MR [91a:53063

[GKM] D. Gromoll, W. Klingenberg and W. Meyer, Riemannsche Geometrie im Grossen, Lecture
notes in Mathematics No. 55, Springer-Verlag, 2nd Edition, 1975. MR [51:1651

[GW] D. Gromoll and J. Wolf, Some relations between the metric structure and the algebraic
structure of the fundamental group in manifolds of nonpositive curvature, Bull. Amer.
Math. Soc. T7(4) (1971) 545-552. MR 43:6841

[Gr] M. Gromov, Structures Metriques pour les Varietes Riemanniennes (J. LaFontaine and
P. Pansu, eds.), CEDIC, Paris, 1981. MR 85e:53051


http://www.ams.org/mathscinet-getitem?mr=91b:53041
http://www.ams.org/mathscinet-getitem?mr=82b:53047
http://www.ams.org/mathscinet-getitem?mr=29:6401
http://www.ams.org/mathscinet-getitem?mr=56:16538
http://www.ams.org/mathscinet-getitem?mr=83d:58068
http://www.ams.org/mathscinet-getitem?mr=89e:53061
http://www.ams.org/mathscinet-getitem?mr=86j:53061
http://www.ams.org/mathscinet-getitem?mr=91a:53063
http://www.ams.org/mathscinet-getitem?mr=51:1651
http://www.ams.org/mathscinet-getitem?mr=43:6841
http://www.ams.org/mathscinet-getitem?mr=85e:53051

590 OGUZ C. DURUMERIC

[LY] H. B. Lawson and S. T. Yau, On compact manifolds of nonpositive curvature, Jour. of
Diff. Geometry, 7 (1972), 211-228. MR [48:12402
[Mi] J. Milnor, A note on curvature and fundamental group, J. of Diff. Geom., 2 (1968), 1-7.

MR 38:636

[P] A. Preismann, Quelques proprietes globales des espaces de Riemann, Comment Math.
Helvetici, 15 (1943), 175-216.

Y] T. Yamaguchi, Homotopy type finiteness theorems for certain precompact families of Rie-

mannian manifolds, Proc. Amer. Math. Soc., 102, No. 3 (1988) 660-666. MR [89d:53088

DEPARTMENT OF MATHEMATICS, UNIVERSITY OF IowA, IowAa CiTy, IowA 52242
E-mail address: odurumer@blue.weeg.uiowa.edu


http://www.ams.org/mathscinet-getitem?mr=48:12402
http://www.ams.org/mathscinet-getitem?mr=38:636
http://www.ams.org/mathscinet-getitem?mr=89d:53088

	1. Introduction
	2. Basic notation and definitions
	3. Proofs of the theorems
	Acknowledgement
	References

