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ON HEIGHTS OF p -ADIC DYNAMICAL SYSTEMS

HUA-CHIEH LI

(Communicated by David E. Rohrlich)

Abstract. When we consider the properties of the iterates of a noninvertible
endomorphism of a formal group, all the roots of iterates of the endomorphism
are simple and the full commuting family contains both invertible and nonin-
vertible series. Experimental evidence seems to suggest that for an invertible
series to commute with a noninvertible series with only simple roots of iterates,
two such commuting power series must be endomorphisms of a single formal
group. Lubin proposed four conjectures to support this conjecture. In this
paper, we provide answers to these four conjectures.

1. introduction

In this paper, we consider analytic transformations of the p-adic open unit disk
with a fixed point at 0. When such a transformation is an endomorphism of a
formal group, the field generated by all roots or fixed points of its iterates is well
known due to the efforts of Lubin and Tate [6] and Serre [10]. In general, when a
transformation does not belong to any formal group, very little is known and so it
is a very interesting area for exploration.

Let K be an algebraic extension of Qp and let O be its integer ring with maximal
ideal M. If K is an algebraic closure of K, we denote by O and M the integral
closure of O in K and the maximal ideal of O, respectively. Recall that K is a
field which is complete with respect to a valuation, v. We normalize the valuation
v such that v(p) = 1.

We say that a series g(x) ∈ O[[x]] is stable if g(0) = 0 and g′(0) is not 0 nor
a root of 1. When g(x) ∈ O[[x]], but not all coefficients of g(x) are in M, then
the lowest degree in which a unit coefficient appears will be called the Weierstrass
degree of g(x), denoted wideg(g). If all coefficients are in M, we will say that
the Weierstrass degree is infinite. If wideg(g) = d < ∞, then according to the
Weierstrass Preparation Theorem, counting multiplicity, there are d roots of g(x)
that are in M.

We can split the study of stable series into two parts: one is wideg(g) > 1 and
the other one is wideg(g) = 1.

The first kind of series are called noninvertible stable series. Let f(x) be a
noninvertible stable series. Because f ′(0) ∈M, it has 0 as an attracting fixed point
and has no other fixed point in M. When a noninvertible series g(x) commutes
with f(x) (in the sense of composition), the set of roots of iterates of f(x) in M
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is equal to the set of roots of iterates of g(x) in M (Lubin [7, Proposition 2.1]).
Therefore, the roots of iterates are of serious interest. It is important to know that
if wideg(f) < ∞, then there are infinitely many elements of M that are roots of
iterates of f(x) (Lubin [7]).

The other type of series is called invertible stable series, because if u(x) ∈ O[[x]]
with u′(0) ∈ O∗, then there exists a series w(x) ∈ O[[x]] such that u ◦ w(x) = x.
Let u(x) be an invertible stable series in O[[x]]. Since u(x) is invertible, it and its
iterates can have no other roots than 0. We denote u◦n(x) the n-fold iteration of
u(x) with itself. The point α ∈ M is a fixed point for u(x) if u(α) = α. The point
α is a periodic point of period n if u◦n(α) = α. The periodic points of u(x) now
play a role parallel to the roots of iterates of a noninvertible series. We assume
that the series u(x) always satisfies u′(0) ∈ 1 +M; finiteness of the residue field
guarantees that any invertible series has an iterate with this property. Let p - m.
It is important to know that if α is a periodic point of period pnm, then it is a
periodic point of period pn (Li [2, Corollary 2.3.2]). Therefore, we only have to
study periodic points whose periods are powers of p.

The studies of these two kinds of series become no longer disjoint in case an
invertible stable series u(x) commutes with a noninvertible stable series f(x). In
fact, in this case the set of periodic points of u(x) in M is the same as the set of
roots of iterates of f(x) in M (Lubin [7, Proposition 3.2]).

When we consider the properties of the iterates of an noninvertible endomor-
phism f(x) of a formal group defined over O, it is easy to show that all the roots of
iterates of f(x) are simple and the full commuting family contains both invertible
and noninvertible stable series. Experimental evidence seems to suggest that for an
invertible stable series to commute with a noninvertible stable series with only sim-
ple roots of iterates, two such commuting power series must be endomorphisms of
a single formal group. Lubin’s Main Theorem 6.3 in [7] supports this conjecture, in
that it says that the only possible finite Weierstrass degree for such a noninvertible
series is a power of p.

Definition 1.1. Let f(x) ∈ O[[x]] be a noninvertible stable series with wideg(f) <
∞. We define the height of f(x) equal to

height(f) =
logp(wideg(f))

v(f ′(0))
.

We remark that if f(x) is an endomorphism of a formal group, then height(f)
would be the height of the formal group.

Let u(x) ∈ O[[x]] be an invertible stable series with u′(0) ≡ 1 (mod M). Denote
in(u) = wideg(u◦p

n

(x)− x). Notice that if in(u) <∞, then in(u) is the number of
periodic points of u(x) of period pn, counting multiplicity. Sen’s theorem [9] shows
that when in(u) <∞ then in−1(u) ≡ in(u) (mod pn). Keating [1], using local class
field theory, says that under certain circumstance we have in(u) = 2+bp+ · · ·+bpn,
for some 0 < b < p. When u(x) commutes with a noninvertible stable series
f(x) with wideg(f) < ∞, it is important to know that in(u) < ∞ for all n and
in(u)→∞ as n→∞. In fact, according to Lubin [7], Corollary 4.3.1, we have that
if in(u) = ∞ for some n, then u(x) has only finitely many periodic points in M.
However, u(x) must have infinitely many periodic points in M, because the set of
periodic points of u(x) inM is the same as the set of roots of iterates of f(x) inM
and there are infinitely many roots of iterates of f(x) in M, since wideg(f) < ∞.
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In this case, we have an effective method to compute in(u). Theorem 3.9 in [3] says
that there exist M and a positive integer λ such that when n > M ,

in+1(u)− in(u)
in(u)− in−1(u)

= pλ.

Definition 1.2. Let u(x) ∈ O[[x]] be an invertible stable series with u′(0) ≡ 1
(mod M). We say that the Height of u(x) exists if the value of

logp

(
wideg(u◦p

r

(x) − x)
wideg(u◦pr−1(x)− x)

)
stabilizes as r→∞ and denote by Height(u) the stable value.

We remark that if u(x) is an automorphism of a formal group, then Height(u)
would be the height of the formal group.

Throughout this paper the power series f(x) and u(x) always satisfy the following
assumptions:
• f(x) ∈ O[[x]] is a noninvertible stable series with finite Weierstrass degree,
• all roots of iterates of f(x) are simple,
• u(x) ∈ O[[x]] is an invertible stable series with u′(0) ≡ 1 (mod M), and
• u(x) and f(x) commute.
Motivated by the general properties of formal groups, Lubin [8] made the fol-

lowing four conjectures.

Conjecture 1. height(f) is an integer.

We remark that if the roots of iterates of f(x) are not always simple, then this
conjecture is not true. For instance, for p = 2, f(x) = 4x + x2 commutes with
u(x) = 9x+ 6x2 + x3, but we have height(f) equal to 1/2.

Conjecture 2. Height(u) exists.

Note that even in the formal group case, wideg(u◦p
r

(x)− x)/wideg(u◦p
r−1

(x)− x)
is not constant until r gets large enough.

Conjecture 3. height(f) = Height(u).

Conjecture 4. wideg(u◦p
r

(x)− x) is always a power of p.

We remark that these conjectures are automatically true if f(x) and u(x) are
endomorphisms of a formal group. In this paper, we will show that Conjectures 1,
2 and 3 are always true and Conjecture 4 is true when K is unramified over Qp.

2. Proof of Conjecture 2

Lubin’s fourth conjecture says that if an invertible series u(x) commutes with a
noninvertible series, then wideg(u◦p

n

(x) − x) is a power of p for all n. In section
4, we will prove that this is always true if u(x) is a power series over the ring of
integers of an unramified extension of Qp. In the general case, we have the following
result which says that wideg(u◦p

n

(x) − x) is a power of p for n sufficiently large.

Lemma 2.1. There exists a constant C (depending only on f(x)) such that if
v(u′(0)− 1) > C, then wideg(u◦p

n

(x) − x) is a power of p for all n. Furthermore,
if v(f ′(0)) = v(u′(0)− 1), then wideg(f) = wideg(u(x) − x).

Proof. See Li [4], Theorem 4.1 and Corollary 4.1.1.
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In fact, given any invertible series u(x) with u′(0)− 1 ∈ M and u′(0) not a root
of 1, since (u◦p

n

)′(0) = (u′(0))p
n

, we have that v((u◦p
n

)′(0)− 1)→ ∞ as n → ∞.
Hence, Lemma 2.1 says that wideg(u◦p

n

(x) − x) is a power of p for n sufficiently
large.

Theorem 2.2 (Conjecture 2). There exists an integer λ such that

wideg(u◦p
n

(x)− x) = pλ · wideg(u◦p
n−1

(x)− x),

for all n sufficiently large. In particular, Height(u) exists and equals λ.

Proof. Let in = wideg(u◦p
n

(x) − x). Recall that since u(x) commutes with a
noninvertible series, there exists an integer λ such that (in+1− in)/(in− in−1) = pλ

for all n sufficiently large. By Lemma 2.1, for n large enough, in+1, in and in−1

are all powers of p. This implies that in = pλin−1, for all n large enough. Thus,

wideg(u◦p
n

(x) − x)/wideg(u◦p
n−1

(x) − x) = in/in−1 = pλ,

for n large enough. Hence, wideg(u◦p
n

(x) − x)/wideg(u◦p
n−1

(x) − x) stabilizes as
n→∞ and Height(u) = λ.

3. Proof of Conjectures 1 and 3

We first show that the definition of the height of a noninvertible series is well
defined. Because we are mainly interested in the roots of iterates and periodic
points of stable series, it is natural to say that two series g(x) and h(x) in O[[x]]
are in the same dynamical system if h ◦ g = g ◦ h. The following result shows that
if two noninvertible series are in the same dynamical system, then they have the
same height.

Lemma 3.1. Let h(x), g(x) ∈ O[[x]] be noninvertible stable series such that h◦g =
g ◦ h. Then height(h) = height(g).

Proof. Since h ◦ g = g ◦ h, by [5, Corollary 3.2.1], we have that

wideg(g)v(h′(0)) = wideg(h)v(g′(0)).

Taking logp on both sides, we have that

height(h) = logp(wideg(h))/v(h′(0)) = logp(wideg(g))/v(g′(0)) = height(g).

Theorem 3.2 (Conjectures 1 and 3). height(f) is an integer and height(f) =
Height(u).

Proof. Suppose that a ∈ M and v(a) > v(p)/(p − 1) = 1/(p− 1). Then it is easy
to show that v((1 + a)p − 1) = v(pa) = v(a) + 1. By induction, we have that
v((1 + a)p

n − 1) = v(a) + n. Hence, if n is large enough and m > n, then

v((u◦p
m

)′(0)− 1) = v((u◦p
n

)′(0)− 1) + (m− n).

Choose n large enough and m > n such that r · v(f ′(0)) = v((f◦r)′(0)) =
v((u◦p

n

)′(0) − 1) and s · v(f ′(0)) = v((f◦s)′(0)) = v((u◦p
m

)′(0) − 1) for some r
and s. Since both f◦r(x) and f◦s(x) commute with u(x), by Lemma 2.1, we have
that wideg(f◦r(x)) = in and wideg(f◦s(x)) = im. Also because both f◦r(x) and
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f◦s(x) commute with f(x), by Lemma 3.1, we have that height(f) = height(f◦r) =
height(f◦s). Hence,

logp(in)
v((u◦pn)′(0)− 1)

= height(f◦r) = height(f◦s) =
logp(im)

v((u◦pm)′(0)− 1)
.

Substitute im = pλ(m−n)in and v((u◦p
m

)′(0)−1) = v((u◦p
n

)′(0)−1) + (m−n) into
the equality. We have that

λ =
logp(in)

v((u◦pn)′(0)− 1)
= height(f◦r) = height(f).

This shows that height(f) is an integer and height(f) = λ = Height(u).

4. Proof of Conjecture 4: The unramified case

In this section, we will show that Lubin’s fourth conjecture is true when u(x) is
a power series over the ring of integers of an unramified extension of Qp.

Let K be an unramified extension of Qp and let A be the residue ring O/M2.
Let ũ(x) and f̃(x) be the corresponding series of u(x) and f(x) over the residue
ring A, respectively.

We begin with some necessary notation:
• Let in and jn be the lowest degree of the terms of u◦p

n

(x)−x with coefficient
in O∗ and M\M2, respectively.
• Let S0 be the set of degrees of terms of f(x) whose coefficients are in O∗

and let S1 be the set of degrees of terms of f(x) whose coefficients are in
M\M2. Thus, writing f(x) =

∑∞
i=1 aix

i, then i ∈ S0 if v(ai) = 0 and i ∈ S1

if v(ai) = 1.
• Given a positive integer n, we denote o(n) the highest exponent of the power

of p dividing n, i.e. n = tpo(n) where p - t.
• Let s0 be the smallest number in S0 with o(s0) = inf{o(s) | s ∈ S0} and let
s1 be the smallest number in S1 with o(s1) = inf{o(s) | s ∈ S1} or let s1 =∞
if S1 is empty.

We remark that Lubin’s main theorem in [7] says that wideg(f(x)) = s0 = po(s0).

Lemma 4.1. If v(u′(0) − 1) ≥ 2, then jn = in−1 and jn < in, for all n ≥ 1. If
v(u′(0)− 1) = 1, then jn = in−1 and jn < in, for all n ≥ 2.

Proof. Suppose u′(0) − 1 ∈ M2. Then we can write u(x) ≡ x + pg(x) + bxi

(mod M2, xi+1), where i = wideg(u(x) − x), b ∈ O∗ and g(x) ∈ O[x] with lowest
degree at least 2. By a simple calculation, we have that u◦2(x) ≡ x+ 2pg(x) + 2bxi

(mod M2, xi+1). By induction, u◦p(x) ≡ x + pbxi (mod M2, xi+1). Hence, jn =
in−1 and jn < in for all n ≥ 1. If v(u′(0) − 1) = 1, because (u◦p)′(0) − 1 =
u′(0)p − 1 ∈M2, we have that jn = in−1 and jn < in for all n ≥ 2.

Lemma 4.2. If v(u′(0)− 1) ≥ 2, then the lowest degree of ũ◦p
n ◦ f̃ − f̃ is po(s0)jn,

for all n ≥ 1. If v(u′(0)− 1) = 1, then the lowest degree of ũ◦p
n ◦ f̃ − f̃ is po(s0)jn,

for all n ≥ 2.

Proof. Consider (p h(x) + cxt)r where h(x) ∈ O[[x]], h(0) = 0, c ∈ O∗ and t ≥
2. The lowest degree of (p h(x) + cxt)r modM is tr and the lowest degree of
(p h(x)+cxt)r modM2 is greater than t(r−1). Therefore the term bjx

j of u◦p
n

(x)−
x with v(bj) = 1 contributes a power series of lowest degree po(s0)j in ũ◦p

n ◦ f̃ − f̃
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and the term bix
i of u◦p

n

(x)−x with v(bi) = 0 contributes a power series of lowest
degree greater than po(s0)(i−1) in ũ◦p

n ◦ f̃ − f̃ . By the definitions of in and jn and
by Lemma 4.1, the lemma follows.

We remark that after taking iterates of f(x), we can always suppose that o(s1) >
0. In fact, suppose that f(x) =

∑∞
i=1 aix

i. Consider f ◦ f . If v(ai) = 1, then every
non-zero term of ai(

∑
i′ ai′x

i′ )i modM2 is contributed by some ai′xi
′

with i′ ∈ S0.
Since o(i′) ≥ o(s0) > 0 for every i′ ∈ S0, every non-zero term of ai(

∑
i′ ai′x

i′ )i mod
M2 has degree m which satisfies o(m) > 0. If v(ai) = 0, then every non-zero term
of ai(

∑
i′ ai′x

i′ )i mod M2 is also contributed by some ai′xi
′

with i′ ∈ S0. The
terms ajxj with v(aj) ≥ 1 cannot happen, because o(i) ≥ o(s0) > 0. Therefore,
the degrees of terms of f ◦ f whose coefficients are inM\M2 are all divisible by p.

Lemma 4.3. Suppose that o(s1) > 0. Then for n large enough, the lowest degree
of f̃ ◦ ũ◦pn(x)− f̃(x) is

s0 + (in − 1)po(s0)−1 if o(s1) > o(s0)− 1 or
if o(s1) = o(s0)− 1 and s1 > s0,

s1 + (in − 1)po(s1) otherwise.

Proof. For r > 0, consider (x + pg(x) + bxi)tp
r

where g(x) ∈ O[[x]], b ∈ O∗, i > 1
and p - t. We have

(x+ pg(x) + bxi)tp
r

≡ xtp
r

+ tbp
r

xp
r(t−1)+ipr (mod M, higher degree).

Therefore, if s ∈ S1, then the term asx
s of f(x) contributes a power series of lowest

degree s + (in − 1)po(s) in f̃ ◦ ũ◦pn(x) − f̃(x). Notice that for s1 6= s ∈ S1, we
always have o(s) ≥ o(s1) and if o(s) = o(s1), then s > s1. Because in → ∞ as
n → ∞, if o(s) > o(s1), then s + (in − 1)po(s) > s1 + (in − 1)po(s1) for n large
enough. Therefore, the lowest degree of f̃ ◦ ũ◦pn(x)− f̃ (x) contributed by all terms
asx

s of f(x) with s ∈ S1 is equal to s1 + (in − 1)po(s1) when n is large enough.
For s ∈ S0, because s0 = po(s0) and o(s0) > 0, we always have that o(s) ≥ o(s0)

and s > s0. Therefore, for the lowest degree contributed by asx
s with s ∈ S0, we

only have to consider for r > 0,

(x+ pg(x) + bxi)p
r

≡ xp
r

+
(
pr

pr−1

)
bp
r−1

xp
r−1(p−1)+ipr−1

(mod M2, higher degree).

Notice that
(
pr

pr−1

)
≡ p (mod p2). Hence, the lowest degree of f̃ ◦ ũ◦pn(x) − f̃(x)

contributed by all terms asxs of f(x) with s ∈ S0 is equal to s0 + (in − 1)po(s0)−1.
Notice that for n large enough, s1 + (in − 1)po(s1) equals s0 + (in − 1)po(s0)−1

only if o(s1) = o(s0) − 1. This implies s1 = s0, which is absurd. Therefore, the
lowest degree of f̃ ◦ ũ◦pn(x)− f̃(x) is min{s0 + (in− 1)po(s0)−1, s1 + (in− 1)po(s1)},
when n is large enough. Our lemma follows.

Lemma 4.4. Suppose that s1 = po(s1) and 0 < o(s1) < o(s0). Then the lowest
degree of f̃ ◦ ũ◦pn(x)− f̃(x) is po(s1)in, for all n ≥ 0.

Proof. Because s1 = po(s1), by the definition of s1, we always have o(s) ≥ s1 and
s > s1, for every s ∈ S1 which is not equal to s1. This implies that s+(in−1)po(s) >
s1 + (in − 1)po(s1) for all n. Therefore, the lowest degree of f̃ ◦ ũ◦pn(x) − f̃(x)
contributed by all terms asxs of f(x) with s ∈ S1 is equal to s1+(in−1)po(s1), for all
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n. From the proof of Lemma 4.3, we know that the lowest degree of f̃◦ũ◦pn(x)−f̃(x)
contributed by all terms asxs of f(x) with s ∈ S0 is equal to s0 + (in − 1)po(s0)−1,
for all n. Because o(s1) ≤ o(s0) − 1, we have that s1 = po(s1) < po(s0) = s0. This
implies that s1 + (in − 1)po(s1) < s0 + (in − 1)po(s0)−1, for all n, and so the lowest
degree of f̃ ◦ ũ◦pn(x) − f̃(x) equals s1 + (in − 1)po(s1) = po(s1)in, for all n.

Theorem 4.5. Let K be an unramified extension of Qp and let O be its integer
ring with maximal ideal M. Let u(x) be an invertible stable series in O[[x]] with
u′(0) ≡ 1 (mod M). Suppose that u(x) commutes with a noninvertible stable series
which has finite Weierstrass degree and has only simple roots of iterates. Then
wideg(u◦p

n

(x) − x) is a power of p for all n ≥ 0.

Proof. Without loss of generality, we assume that f(x) with o(s1) > 0 commutes
with u(x). Because ũ◦p

n ◦ f̃ − f̃ = f̃ ◦ ũ◦pn − f̃ for all n, by Lemma 4.2 and Lemma
4.3, we know that when n is large enough,

po(s0)jn =


s0 + (in − 1)po(s0)−1 if o(s1) > o(s0)− 1 or

if o(s1) = o(s0)− 1 and s1 > s0,

s1 + (in − 1)po(s1) otherwise.

Since s0 = wideg(f(x)) = po(s0) and both in and jn = in−1 are powers of p when
n is large enough, we must have po(s0)jn = s1 + (in − 1)po(s1) and this implies that
o(s1) ≤ o(s0)− 1. This also implies that s1 = po(s1), because jn and in are powers
of p for all n large enough and s1 is independent of n.

Now, suppose that u′(0)− 1 ∈ M2. By Lemma 4.1, we have that jn = in−1 and
jn < in for all n ≥ 1. Because o(s1) ≤ o(s0)− 1 and s1 = po(s1), by Lemma 4.2 and
Lemma 4.4, we have that po(s0)in−1 = po(s1)in for all n ≥ 1. Because in is a power
of p for n large enough, this implies that in is a power of p for all n ≥ 0.

For the case v(u′(0) − 1) = 1, the lowest degree of f̃ ◦ ũ − f̃ is i0po(s1) and the
lowest degree of ũ ◦ f̃ − f̃ is po(s0). Hence, we have that i0 is a power of p. Because
(u◦p)′(0)−1 = u′(0)p−1 ∈M2, by the argument above, we have that in is a power
of p for n ≥ 1.

Remark 4.6. In the ramified case, by similar argument, we can show that in is a
power of p for all n ≥ 0, if v(u′(0)− 1) ≥ v(p) = 1.
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