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THE FUNDAMENTAL GROUPS OF ONE-DIMENSIONAL
WILD SPACES AND THE HAWAIIAN EARRING

KATSUYA EDA

(Communicated by Ralph Cohen)

Abstract. Let X be a one-dimensional space which contains a copy C of a
circle and let it not be semi-locally simply connected at any point on C. Then
the fundamental group of X cannot be embeddable into a free σ-product of
n-slender groups, for instance, the fundamental group of the Hawaiian earring.
Consequently, any one of the fundamental groups of the Sierpinski gasket, the
Sierpinski curve, and the Menger curve is not embeddable into the fundamental
group of the Hawaiian earring.

1. Introduction and main result

In recent papers [4, 5], the author showed that fundamental groups of certain
wild spaces are embeddable into the fundamental group of the Hawaiian earring H,
i.e. H =

⋃∞
n=1{(x, y) : (x + 1/n)2 + y2 = 1/n2}. There the following question was

left open.

Question. Are the fundamental groups of the Sierpinski gasket, Sierpinski curve
and the Menger curve embeddable into the fundamental group of the Hawaiian
earring?

The same question was also asked by Cannon and Conner [1, Question 3.5.1].
Since they showed that an embedding between one-dimensional spaces induces an
embedding between their fundamental groups, the non-embeddability of the fun-
damental group of the Sierpinski gasket implies those of the fundamental groups of
the others. In the present paper we prove the following theorem, which implies the
negative answer to the above question.

Theorem 1.1. Let X be a one-dimensional space which contains a copy C of a
circle and let it not be semi-locally simply connected at any point on C. Then
the fundamental group π1(X,x0) for x0 ∈ C cannot be embeddable into ××σi∈IGi
for n-slender groups Gi (i ∈ I). Consequently, π1(X,x0) for x0 ∈ C cannot be
embeddable into the fundamental group of the Hawaiian earring.

Supporting definitions will be reviewed in Sections 2 and 3.
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2. Definitions and basic facts about free σ-products

and standard homomorphisms

In this section we review infinitary words, free σ-products, n-slenderness, proper
sequences and standard homomorphisms from [3, 4]. Though these notions are
crucial in the proof of the main result, they are not familiar ones. We refer the
reader to [3] for precise definitions and more basic facts.

Infinite words and the free σ-product of groups. For groups (Gi : i ∈ I)
with Gi∩Gj = {e} (i 6= j), a σ-word W is a map from a countable linearly ordered
set W to

⋃
{Gi : i ∈ I} such that {α ∈ W : W (α) ∈ Gi} is finite for each i ∈ I.

The set of σ-words is denoted by Wσ(Gi : i∈I).
For a finite subset F of I, let WF be the restriction of W to WF = {α ∈ W :

W (α) ∈
⋃
i∈F Gi}, that is, WF (α) = W (α) for α ∈ WF . Then WF is a word of

finite length and is an element of a free product ∗i∈FGi. Then W is regarded as an
element of the inverse limit of free products ∗i∈FGi for finite subsets F of I. That
is, words V and W are equivalent, if VF = WF as elements of ∗i∈FGi for all finite
subsets F of I. Now the concatenation VW corresponds to the multiplication of V
and W in the inverse limit, since (V W )F = VFWF for each finite subset F of I.

Now a free σ-product ××σi∈IGi is the subgroup of the inverse limit of ∗i∈FGi for
all finite subsets F of I consisting of all the elements expressed by σ-words.

(By admitting W to be an arbitrary linear ordering, we get a free complete
product ××i∈IGi [3]. When the index set I is countable, the free complete product
coincides with a free σ-product. Since we only deal with free σ-products in this
paper, we use the notation××σi∈IGi even in case I is countable.)

We simply say a word for a σ-word from now on. We use W as a word and also
an element of a group××σi∈IGi. When we need to make this distinction, we express
an element of a group as [W ]. The notation V = W means the equality as group
elements and V ∼= W means the equality as words.

The combinatorial properties of infinite words. A word V is a subword of a
word W , if W ∼= XV Y for some X and Y . A word W is reduced, if V 6= e for any
non-empty subword V of W and a word W is quasi-reduced, if the reduced word of
W is obtained by multiplying neighboring elements belonging to the same groups
Gi ([3, Definition 1.3]).

As in the case of words of finite length, there exists a unique reduced word of
each word [3, Theorem 1.4].

A word W is cyclically reduced, if W is a single letter, i.e. an element of some
Gi, or WW is reduced.

For a word W ∈ Wσ(Gi : i ∈ I), the i-length li(W ) is the number of elements
of Gi which appear in W. For an element x in the free σ-product ××σi∈IGi, li(x) is
li(W ) for the reduced word W for x [3, p.247].

A sequence (xn : n < ω) of elements of free σ-product××σi∈IGi is called proper, if
for each i ∈ I there exists an m < ω such that elements of Gi do not appear in the
reduced word for xn (n ≥ m). Therefore, a sequence (xn : n < ω) of elements of
a free σ-product is proper, if and only if (xn : n < ω) converges to the identity in
the topology of the inverse limit of discrete groups ∗i∈FGi’s. For a proper sequence
(xn : n < ω) and a linear ordering ≺ on ω, we define an infinite multiplication [3,
Proposition 1.9], i.e. there exists a word W such that:

1. Wm is a reduced word for xm for each m;
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2. W = {(m,α) : α ∈Wm} and W (m,α) = Wm(α);
3. (m,α) < (n, β), if m ≺ n, or m = n and α < β in Wm.

Homomorphisms of free σ-products. A homomorphism h :××σi∈IGi →××σj∈JHj

is a standard homomorphism, if h preserves the infinite multiplication, i.e. h(W ) =
W ′, where W ′ is defined as follows:
• Vα is a reduced word for h(W (α));
• W ′ = Πα∈WVα;
• W ′(α, u) = Vα(u);
• (α, u) < (β, v) if α < β, or α = β and u < v in Vα.
A group G is called n-slender, if any homomorphism from ××σ

n<ωZn factors
through a finitely generated free group by a projection, where Zn is a copy of
the integer group Z. The fact that free groups are n-slender is a basic result due to
G. Higman [7] (see [3, Appendix]). An abelian group A is n-slender if and only if A
is slender and the class of all n-slender groups is closed under forming free products
and restricted direct products [3, Section 3]. There is a nice characterization of
slender abelian groups due to Nunke [8] which says: an abelian group A is slender
if and only if A is torsionfree and does not contain copies of the direct product Zω,
the rational group Q, or the p-adic integer group Jp for any prime p.

The fundamental group of the Hawaiian earring. The fundamental group of
the Hawaiian earring of I-many copies of the circle is isomorphic to ××σi∈IZi, where
Zi ' Z [3].

In particular, the fundamental group of the Hawaiian earring π1(H, o) is iso-
morphic to ××σn<ωZn. Denote a generator of Zn by δn. Then, δn corresponds to
a winding to the n-th circle of H with the base point o = (0, 0) by a canonical
isomorphism. Hence, we identify××σn<ωZn with π1(H, o) under this correspondence.

Then, endomorphisms of the fundamental group of the Hawaiian earring π1(H, o)
are standard homomorphisms if and only if they are induced from continuous maps
[4, Corollary 2.11].

Now that we have reviewed the basic definitions, it is possible for us to to indicate
the lines of thought which will lead to a proof of Theorem 1.1:

In the assumption of Theorem 1.1, a given space X is not semi-locally simply
connected at every point on a circle C. This bad local behavior will allow us to
construct a structure similar to the Hawaiian earring at each point x ∈ C by a map
from H to X (Lemma 3.1).

Suppose the existence of an embedding h : π1(X,x0) → ××σi∈IGi. Then by
composing maps from π1(H, o) to π1(X,x0) we shall obtain an entire “circle” of
homomorphisms from the free σ-product××σn<ωZn = π1(H, o) to××σi∈IGi. Then it all
comes down to analyzing this circle of homomorphisms from××σn<ωZn into ××σi∈IGi.

The general analysis of homomorphisms h :××σn<ωZn →××σi∈IGi has been carried
out in previous papers [3, 4].

The fundamental result, which we shall state in a moment as Lemma 2.3, is that
each such homomorphism is conjugate in ××σi∈IGi to a standard homomorphism.
Futhermore, if the image of the homomorphism is not finitely generated (here we
use the injectivity of the embedding of π1(X,x0) to ××σi∈IGi), then the element u
of ××σi∈IGi which conjugates the homomorphism to a standard homomorphism is
uniquely determined. The three lemmas in this section are all devoted to under-
standing how this element u is recognized, characterized, or controlled.
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Now we have a conjugator ux at each point x on the circle C according to the
circle of homomorphisms. In Section 3, where the argument will be completed, it
will be shown that as we move around the circle C the associated conjugator ux in
××σi∈IGi, which may possibly change according to points x, does not change. But it
is easy to see that, after the complete transversal of the circle, the conjugator must
change precisely by multiplication of a path around the circle itself, a contradiction.

Our first lemma, whose proof is obvious, will permit the quasi-reduced factoriza-
tion of an arbitrary reduced word as conjugate of a cyclically reduced word. Both
the conjugator and the cyclically reduced word will play important roles in what
follows.

Lemma 2.1 ([4, Lemma 2.4]). For s ∈ ××σi∈IGi, there exist reduced words V and
W such that:
• a = W−1VW ;
• V is cyclically reduced.

If a cyclically reduced word V is not a single letter, it has the useful property
that every non-zero power V n ∼= V V · · ·V is reduced.

The next lemma shows that every homomorphism h : ××n<ωZn → ××σi∈IGi is
conjugate to a standard homomorphism, and it characterizes the conjugator in
terms of the cyclic reductions h(δn) = W−1

n VnWn by Lemma 2.1. In the proof of
[4, Lemma 2.9], it is proved that ([Wn]u−1 : n < ω) is proper, where u is an element
appearing in the next Lemma 2.2. Therefore,

Lemma 2.2 ([4, Lemma 2.9]). Let Gi (i ∈ I) be n-slender groups. Then every
homomorphism h : ××n<ωZn →××σi∈IGi is conjugate to a standard homomorphism
h, that is, there exists a u ∈ ××σi∈IGi such that h(x) = u−1h(x)u for x ∈ ××n<ωZn.
In addition if the set {n < ω : h(δn) 6= e} is infinite, such a u is unique. Here
u satisfies the following: Let h(δn) = W−1

n VnWn for each n, where Vn,Wn are
reduced words and W−1

n VnWn is quasi-reduced. Then, u is a limit of [Wn]’s in the
topology of the inverse limit.

In the proof of Theorem 1.1 in Section 3, as we move from one point x of the circle
C to another, we shall need to know the precise form of certain cyclic reduction
a = W−1VW and particularly to know that certain letters do not disappear under
cancellation. The necessary result appears in the following lemma. A similar result
with a similar proof appeared in [4, Theorem 4.1] (p. 303 of [4]).

Lemma 2.3. Let h :××n<ωZn →××σi∈IGi be conjugate to a standard homomorphism
h, where h(x) = u−1h(x)u, and U be a reduced word for u. If the set {n < ω :
h(δn) 6= e} is infinite, there exists an element y such that the reduced form of h(y)
is U−1WU for a cyclically reduced word W .

Proof. Since (h(δn) : n < ω) is a proper sequence and the set {n < ω : h(δn) 6= e} is
infinite, by Lemma 2.1 we can obtain a proper sequence (un : n < ω) and reduced
words Wn and Vn such that:

(1) h(un) = W−1
n VnWn 6= e;

(2) W−1
n VnWn is quasi-reduced;

(3) VnVn is reduced.
One can extract such un’s from the set of elements of the form δi or δiδj with j
much larger than i.
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Next we construct sequences of natural numbers (jn : n < ω) for indices and
(kn : n < ω) for powers and a sequence of members of I (in : n < ω) by induction.

Let j0 = 0 and choose i0 ∈ I so that li0(V0) > 0. Let k0 = 1. Suppose that
we have in, jn and kn. First choose jn+1 > jn so that lin(h(um)) = 0 for any
m ≥ jn+1. Next choose in+1 ∈ I so that lin+1(Vjn+1) > 0. Finally choose kn+1 so
that kn+1 > lin+1(U) and kn+1 > lin+1(Wjn) + lin+1(Vjn).

We consider the cancellation in the word V 2kn+1
jn

WjnW
−1
jn−1

V
2kn−1+1
jn−1

. Since
lin−1(h(un)) = 0, there is no case when the whole of the left most appearance of
Vjn−1 disappears in the cancellation. By this fact and kn > lin(Wjn−1 )+ lin(Vjn−1),
the left most appearance of V kn+1

jn
remains after the cancellation. Also by a similar

reasoning for V 2kn−1+1
jn−1

Wjn−1W
−1
jn
V 2kn+1
jn

, we can see that the reduced word for
Wjnh(u2kn+1

jn
· · ·u2k0+1

j0
· · ·u2kn+1

jn
)W−1

jn
is of the form

V kn+1
jn

AnV
kn−1
jn−1

· · ·A1Vj0B1 · · ·V kn−1
jn−1

BnV
kn+1
jn

.

Therefore, h(u2kn+1
jn

· · ·u2k0+1
j0

· · ·u2kn+1
jn

) is expressed as a quasi-reduced word

W−1
jn
V knjn AnV

kn−1
jn−1

· · ·A1Vj0B1 · · ·V kn−1
jn−1

BnV
kn+1
jn

Wjn .

Let W be the reduced word for

h(· · ·u2kn+1
jn

· · ·u2k1+1
j1

u2k0+1
j0

u2k1+1
j1

· · ·u2kn+1
jn

· · · ).

Since h is a standard homomorphism, W is of the form

· · ·V knjn · · ·V
k1
j1
A1Vj0B1V

k1
j1
· · ·V knjn · · · .

Therefore U−1 · · ·V knjn · · ·V
k1
j1
A1Vj0B1V

k1
j1
· · ·V knjn · · ·U is the reduced word for

h(· · ·u2kn+1
jn

· · ·u2k1+1
j1

u2k0+1
j0

u2k1+1
j1

· · ·u2kn+1
jn

· · · ) by the condition kn+1 > ljn(U).
To see that WW is reduced, consider the letter Rn of Gin which is the right most

appearance in W−1
jn
V 2kn+1
jn

Wjn and the letter Ln of Gin which is the left most one in
W−1
jn
V 2kn+1
jn

Wjn . Then the same letters are the right most appearance and the left
most one in W . Now let Rl

n and Lr
n be the corresponding appearances in the left W

ofWW and in the rightW of WW respectively. Suppose that there is a cancellation
of letters of Gin in WW . Then Rl

n and Lrn are cancelled and consequently Rl
n+1

and Lrn+1 are cancelled and also every letter between Rl
n and Lrn disappears after

the cancellation. We consider letters of Gin+1 appearing between Rl
n and Lrn. If

Rn+1 is in Wjn+1 , we have a word of the next form in an intermediate stage of
the cancellation: W ′−1Rl

n+1L
r
n+1W

′, where ULrn+1W
′ ∼= Wjn+1 for some word U .

Then a cancellation of Vjn+1Vjn+1 should occur, which is a contradiction. Otherwise,
that is, when Rn+1 is in Vjn+1 , we express Vjn+1 as xLyRz, where L and R are the
left most appearance and the right most appearance of letters in Gin+1 . Since
Vjn+1Vjn+1 is reduced, ZX is a reduced word and non-empty. Since every letter
between Rl

n and Lrn disappears in the cancellation, we have a word of the next form
as an intermediate stage of the cancellation: · · ·RZXLyRl

n+1L
l
n+1yRZXL · · · .

Hence, ZXZX = e, which contradicts that ××σi∈IGi is torsion-free.
Now, · · ·u2kn+1

jn
· · ·u2k1+1

j1
u2k0+1
j0

u2k1+1
j1

· · ·u2kn+1
jn

· · · is the desired y.
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3. Proof of Theorem 1.1

A path f is a continuous map from [0, 1] to X and a loop is a path with f(0) =
f(1). For a path f , we define a path f− by f−(t) = f(1 − t). For paths f and g
with f(1) = g(0), let fg : [0, 1]→ X be a path defined by

fg(t) =

{
f(2t) for 0 ≤ t ≤ 1/2,
g(2t− 1) for 1/2 ≤ t ≤ 1.

For a loop f with the base point x ∈ X , [f ] ∈ π1(X,x) denotes the homotopy
class relative to {0, 1} containing f . For a path p from x to x0, ϕp denotes the
canonical isomorphism from π1(X,x) → π1(X,x0), i.e. ϕp([f ]) = [p−fp], where
[p−fp] = [(p−f)p] = [p−(fp)]. A space X is semi-locally simply connected at x, if
there exists a neighborhood U of x such that any loop in U with the base point x
is null homotopic relative to {0, 1}.

Lemma 3.1. Let X be a one-dimensional metric space and not semi-locally simply
connected at a point x. Then there exists a continuous map f : H → X such that
f(o) = x and the image of f∗ : π1(H, o) → π1(X,x) is not finitely generated and
particularly f∗(δn) 6= e for n < ω.

Proof. There exist loops fn with end point x such that [fn] 6= e and Im(fn) converge
to x. Let f : H→ X be the map defined by

f(
1
n

(cos 2πt− 1),
1
n

sin 2πt) = fn(t)

for 0 ≤ t ≤ 1 and 1 ≤ n < ω. Then Im(f∗) ≤ π1(X,x0) is not finitely generated by
[2, Lemma 3.5].

Proof of Theorem 1.1. To prove the theorem by contradiction, let h : π1(X,x0)→
××σi∈IGi be an injective homomorphism.

For a path p with p(0) = x0, let ps be paths such that ps(t) = p(ts) for 0 ≤ s, t ≤
1. Suppose that X is not semi-locally simply connected at each point x on Im(p).
We choose loops gn with the base point ps(1) so that gn’s are not null homotopic
and the images of gn converge to ps(1) = p(s) and define fs : H→ X as in the proof
of Lemma 3.1. Apply Lemmas 2.2 and 3.1 to h ·ϕp−s · fs∗; then we get us ∈××σi∈IGi
such that h · ϕp−s · fs∗(x) = u−1

s h(x)us for a standard homomorphism h.
First we show that us does not depend on particular gn’s. Let g′n’s and u′s

be other choices. We have a homomorphism h : ××n<ωZn → π1(X,x0) such that
h(δ2n) = [psgnp−s ] and h(δ2n+1) = [psg′np

−
s ]. The restrictions of h to ××n<ωZ2n and

××n<ωZ2n+1 give us us and u′s. There is u such that h is conjugate to a standard
homomorphism by u. Then, by the uniqueness in Lemma 2.2 for the restrictions of
h, us = u = u′s holds. Therefore we have a map s 7→ us from [0, 1] to a topological
group××σi∈IGi.

Next we show that this map s 7→ us is continuous. Suppose that sn’s converge
to s. Here we may assume that the images of fsn converge to s, since we may
choose gn’s with small images. For each n, there is xn such that the reduced word
for h · ϕp−sn · fsn∗(xn) is of the form U−1

n WnUn, where Un is the reduced word for
usn by Lemma 2.3. Then there are loops g′′n with the base point p(sn) such that
[psng′′np

−
sn ] = ϕp−sn · fsn∗(xn) and the images of g′′n’s converge to s. By Lemma 2.2

we conclude that us is a limit of usn .
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(A2)(A1)

Figure A.

(B2)(B1)

Figure B.

Since the topology ××σi∈IGi is 0-dimensional, us = u0 for all 0 ≤ s ≤ 1, that is,
the map s 7→ us is constant.

Finally we deduce a contradiction from this last statement. Take x ∈ C so that
x 6= x0 and also two paths p and q from x0 to x in C so that the intersection of
the images of p and q are just two points x0 and x. Take loops ln with the base
point x so that [ln] 6= e and the images of ln’s converge to x. Then there exist
standard homomorphisms h0, h1 : ××n<ωZn → ××σi∈IGi and u ∈ ××σi∈IGi such that
h([plnp−]) = u−1h0(δn)u and h([qlnq−]) = u−1h1(δn)u for n < ω. Let a = [pq−];
then a 6= e and [qlnq−] = [qp−][plnp−][pq−] = a−1[plnp−]a hold. Therefore, h1(y) =
h(a)−1h0(y)h(a) holds for y ∈××n<ωZn. Since h0(δn) 6= e for n < ω and h(a) 6= e,
h1 cannot be a standard homomorphism, which is a contradiction.

Remark 3.2. Here, we demonstrate spaces which have similar shapes, but funda-
mental groups of one kind can be embeddable to that of the Hawaiian earring and
on the other hand those of another kind cannot be embeddable. In Figures A and
B, we have drawn only finitely many triangles and tetrahedra, but actually there
are infinitely many ones and the spaces are Peano continua.

In [5], we showed that the fundamental groups of spaces in Figure A are em-
beddable into the one of the Hawaiian earring. Each triangle or tetrahedron is
similar to the whole space respectively. On the other hand, in the present paper
we have shown that the fundamental groups of spaces in Figure B, which are well-
known fractals, cannot be embeddable into the fundamental group of the Hawaiian
earring. There are continuous surjections from (A1) to (B1) and from (A2) to
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(B2), say f1 and f2, which make certain intervals to one-points and patch trian-
gles or tetrahedra. Here we show that these continuous surjections induce injective
homomorphisms between fundamental groups. For a one-dimensional space X , a
canonical homomorphism from the fundamental group to the first Čech homotopy
group is injective [6]. On the other hand there are natural isomorphisms between
the first Čech homotopy groups of (A1) and (B1), and (A2) and (B2), respectively,
which are induced from f1 and f2 and hence commute with the induced homomor-
phisms f1∗ and f2∗. Therefore, f1∗ and f2∗ are injective also between fundamental
groups.

We refer the reader to [4] for other wild spaces fundamental groups which can
be embeddable into that of the Hawaiian earring.
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