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AN ANALYTICITY CRITERION
FOR REGULARIZED SEMIGROUPS

QUAN ZHENG AND YONGSHENG ZHAO

(Communicated by Joseph A. Ball)

Abstract. A generalization of Kato’s analyticity criterion for C0-semigroups
to exponentially bounded regularized semigroups is given by using the method
of Laplace transforms.

The motivation for this note is that Liu [4] and Kantorovitz [2] proved an ana-
lyticity criterion for semigroups and contraction semigroups, respectively. In fact,
Liu’s result was known earlier by Kato [3, p. 492]. On the other hand, regularized
semigroups have received much attention since 1987 (see, e.g. [1] and the references
therein). In this note, we will generalize Kato’s result to exponentially bounded
regularized semigroups.

In Kato [3], the analyticity criterion for semigroups was derived from the resol-
vent growth characterization of generators of analytic semigroups. Other proofs
were given by Liu [4] and Kantorovitz [2]. The latter, for example, is based on an
exponential formula of semigroups and the use of normal families, while the present
proof is based on a characterization of Laplace transforms of abstract analytic func-
tions with growth restrictions [5].

Let B(X) be the set of all bounded linear operators from a Banach space X into
itself. By D(A) and R(A) we denote the domain and range of a linear operator
A, respectively. For an injective operator C in B(X), we denote by ρC(A) :=
{λ ∈ C : λ − A is injective and R(C) ⊂ R(λ − A)} its C-resolvent set and by
RC(λ,A) := (λ −A)−1C (λ ∈ ρC(A)) its C-resolvent. Set

∆α := {λ ∈ C : | argλ| < α} \ {0}

and

∆′α = {λ ∈ C : | argλ| ≤ α},

where 0 < α ≤ π. Moreover, Mβ denotes a constant that depends only on β.

Definition 1. Let C be an injective operator in B(X). A strongly continuous
family T : [0,∞) → B(X) is called an (exponentially bounded) C-regularized
semigroup if T (0) = C, T (t + s)C = T (t)T (s) (t, s ≥ 0), and ‖T (t)‖ ≤ Meωt
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(t ≥ 0) for some constants M ≥ 0, ω ∈ R. Its generator, A, is defined by

D(A) =
{
x ∈ X : lim

t↓0
(T (t)x− Cx)/t exists and is in R(C)

}
,

Ax = C−1 lim
t↓0

(T (t)x− Cx)/t for x ∈ D(A).

We refer to [1, 6] for the following lemma, which will be used to conclude that
A generates a C-regularized semigroup.

Lemma 1. A linear operator A is the generator of a C-regularized semigroup if
and only if A = C−1AC, (ω,∞) ⊂ ρC(A), and there exists a strongly continuous
family {T (t)}t≥0 with ‖T (t)‖ ≤ Meωt (t ≥ 0) for some constants M ≥ 0, ω ∈ R
such that

RC(λ,A) =
∫ ∞

0

e−λtT (t)xdt for λ > ω, x ∈ X.

Definition 2. A C-regularized semigroup {T (t)}t≥0 is called an analytic C-regular-
ized semigroup if

(a) t 7→ T (t) can be extended analytically to ∆α for some α ∈ (0, π/2];
(b) for every β ∈ (0, α), there exist constants Mβ ≥ 0, ω ∈ R such that ‖T (t)‖ ≤

Mβe
ωRe t for t ∈ ∆β ;

(c) t 7→ T (t) is strongly continuous in ∆′β for every β ∈ (0, α).

In this case, we write (A, T (·)) ∈ HC(ω, α), where A is the generator of {T (t)}t≥0.

The following lemma can be found in [7], which is a modification of Neubrander’s
result [5].

Lemma 2. Let ω ∈ R, α ∈ (0, π/2] and F : (ω,∞) → X. Then the following
statements are equivalent :

(a) F is analytic in ω + ∆α+π/2, and ‖(λ − ω)F (λ)‖ ≤ Mβ (λ ∈ ∆β+π/2) for
every β ∈ (0, α).

(b) There exists an analytic function h : ∆α → X with ‖h(t)‖ ≤ Mβe
ωRe t (t ∈

∆β) for every β ∈ (0, α) such that

F (λ) =
∫ ∞

0

e−λth(t) dt for λ > ω.

The main result of this note is the following.

Theorem. Let ω ∈ R and α ∈ (0, π/2]. Then (A, T (·)) ∈ HC(ω, α) if and only if
the following statements hold :

(a) For every θ ∈ (−α, α), eiθA generates a C-regularized semigroup {Tθ(t)}t≥0.
(b) For every β ∈ (0, α), there exists a constant Mβ ≥ 0 such that ‖Tθ(t)‖ ≤

Mβe
ωt cos θ for t ≥ 0 and |θ| ≤ β.

(c) For every β ∈ (0, α), x ∈ X, limt↓0 sup|θ|≤β ‖Tθ(t)x− Cx‖ = 0.

In the case D(A) = X, (A, T (·)) ∈ HC(ω, α) if and only if conditions (a) and (b)
are satisfied.

Proof. We assume without loss of generality that ω = 0. Otherwise we will replace
(A, T (t)) ∈ HC(ω, α) by (A1, T1(t)) ∈ HC(0, α), where A1 = A − ω and T1(t) =
e−ωtT (t) (t ∈ ∆α).
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“⇒” For every θ ∈ (−α, α), let Tθ(t) = T (eiθt) (t ≥ 0), then {Tθ(t)}t≥0 is a
C-regularized semigroup and satisfies (b) and (c). It remains to show that eiθA is
the generator of {Tθ(t)}t≥0. By Lemma 1 and the properties of Laplace transforms
we have that ∆π/2 ⊂ ρC(A) and

RC(λ,A)x =
∫ ∞

0

e−λtT (t)xdt for Reλ > 0, x ∈ X.

In particular, for λ > 0, we have λe−iθ ∈ ρC(A) and

RC(λe−iθ, A)x =
∫ ∞

0

exp(−λe−iθt)T (t)xdt for x ∈ X.

It therefore follows from Definition 2 that (0,∞) ⊂ ρC(eiθA) and

RC(λ, eiθA)x =
∫

Γθ

e−λzT (eiθz)xdz

=
∫ ∞

0

e−λtTθ(t)xdt for λ > 0, x ∈ X,
(∗)

where Γθ = {te−iθ : t ≥ 0}. Also, by Lemma 1 we conclude that eiθA is the
generator of {Tθ(t)}t≥0.

“⇐” For every θ ∈ (−α, α), by Lemma 1 we have that ∆π/2 ⊂ ρC(eiθA) and

RC(λ, eiθA)x =
∫ ∞

0

e−λtTθ(t)xdt for Reλ > 0, x ∈ X.(∗∗)

Consequently

ρC(A) ⊃
⋃
|θ|<α

{λ ∈ C \ {0} : −θ − π/2 < argλ < −θ + π/2} = ∆α+π/2

and, by (∗∗), RC(·, A) : ∆α+π/2 → B(X) is analytic. Also, for λ ∈ ∆β+π/2

(0 < β < α), we can choose |θ| < β such that eiθλ ∈ ∆π/2 and thus, by (∗∗) and
(b),

‖RC(λ,A)‖ = ‖RC(eiθλ, eiθA)‖ ≤Mβ/|λ|.

Now, by Lemma 2, there exists an analytic function T : ∆α → B(X) with ‖T (t)‖ ≤
Mβ (t ∈ ∆β) such that

RC(λ,A) =
∫ ∞

0

e−λtT (t) dt for Reλ > 0.

Similarly to the proof of (∗), we obtain that

RC(λ, eiθA)x =
∫ ∞

0

e−λtT (teiθ)xdt for λ > 0.(∗∗∗)

Combining (∗∗), (∗∗∗) and the uniqueness of Laplace transforms we find that
T (teiθ) = Tθ(t) for t ≥ 0 and |θ| < α, and therefore (A, T (·)) ∈ HC(ω, α) fol-
lows from conditions (a)–(c).

Finally, if D(A) = X , then we only need to show that statements (a) and (b)
imply statement (c). In fact, from the proof of the implication “⇐” and a property
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of regularized semigroups [1, Theorem 3.4(d)] we deduce that

lim
∆′β3t→0

‖T (t)x− Cx‖ = lim
∆′β3t→0

∥∥∥∥∥
∫ |t|

0

Tθ(s)(eiθA)xds

∥∥∥∥∥
≤Mβ lim

∆′β3t→0
|t| ‖Ax‖

= 0 for x ∈ D(A),

where θ = arg t. Since D(A) = X , statement (c) follows now from statement
(b).

When D(A) = X , from Lemma 2 and the proof of the Theorem we have the
following Corollary, in which the equivalence of statements (a) and (c) is due to [7,
Corollary 3].

Corollary. Let D(A) = X,ω ∈ R and α ∈ (0, π/2]. Then the following statements
are equivalent :

(a) (A, T (·)) ∈ HC(α, ω).
(b) (ω,∞) ⊂ ρC(A), A = C−1AC, and there exists an analytic function T (·) :

∆α → B(X) such that ‖T (t)‖ ≤Mβe
ωRe t (t ∈ ∆β) for every β ∈ (0, α), and

RC(λ,A) =
∫∞

0
e−λtT (t) dt for λ > ω.

(c) ω + ∆α+π/2 ⊂ ρC(A), A = C−1AC, and RC(λ,A) is analytic in ω + ∆α+π/2

and satisfies ‖(λ−ω)RC(λ,A)‖ ≤Mβ (λ ∈ ω+ ∆β+π/2) for every β ∈ (0, α).
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