ON SYZYGIES OF SEGRE EMBEDDINGS

ELENA RUBEI
(Communicated by Michael Stillman)

Abstract

We study the syzygies of the ideals of the Segre embeddings. Let $d \in \mathbf{N}, d \geq 3$; we prove that the line bundle $\mathcal{O}(1, \ldots, 1)$ on the $P^{1} \times \ldots \times P^{1}$ (d copies) satisfies Property N_{p} of Green-Lazarsfeld if and only if $p \leq 3$. Besides we prove that if we have a projective variety not satisfying Property N_{p} for some p, then the product of it with any other projective variety does not satisfy Property N_{p}. From this we also deduce other corollaries about syzygies of Segre embeddings.

1. Introduction

Let L be a very ample line bundle on a smooth complex projective variety Y and let $\varphi_{L}: Y \rightarrow \mathbf{P}\left(H^{0}(Y, L)^{*}\right)$ be the map associated to L. We recall the definition of Property N_{p} of Green-Lazarsfeld, studied for the first time by Green in [Gr1-2] (see also [G-L], Gr3]):

Let Y be a smooth complex projective variety and let L be a very ample line bundle on Y defining an embedding $\varphi_{L}: Y \hookrightarrow \mathbf{P}=\mathbf{P}\left(H^{0}(Y, L)^{*}\right)$; set $S=S(L)=$ Sym* $H^{0}(L)$, the homogeneous coordinate ring of the projective space \mathbf{P}, and consider the graded S-module $G=G(L)=\bigoplus_{n} H^{0}\left(Y, L^{n}\right)$; let E_{*}

$$
0 \longrightarrow E_{n} \longrightarrow E_{n-1} \longrightarrow \ldots \longrightarrow E_{0} \longrightarrow G \longrightarrow 0
$$

be a minimal graded free resolution of G; the line bundle L satisfies Property N_{p} $(p \in \mathbf{N})$ if and only if

$$
\begin{aligned}
& E_{0}=S \\
& E_{i}=\bigoplus S(-i-1) \quad \text { for } 1 \leq i \leq p
\end{aligned}
$$

(Thus L satisfies Property N_{0} if and only if $Y \subset \mathbf{P}\left(H^{0}(L)^{*}\right)$ is projectively normal, i.e. L is normally generated; L satisfies Property N_{1} if and only if L satisfies Property N_{0} and the homogeneous ideal I of $Y \subset \mathbf{P}\left(H^{0}(L)^{*}\right)$ is generated by quadrics; L satisfies Property N_{2} if and only if L satisfies Property N_{1} and the module of syzygies among quadratic generators $Q_{i} \in I$ is spanned by relations of the form $\sum L_{i} Q_{i}=0$, where L_{i} are linear polynomials; and so on.)

Now let $L=\mathcal{O}_{\mathbf{P}^{n_{1}} \times \ldots \times \mathbf{P}^{n_{d}}}\left(a_{1}, \ldots, a_{d}\right)$, where $d, a_{1}, \ldots, a_{d}, n_{1}, \ldots, n_{d}$ are positive integers. Among the papers on syzygies in this case we quote [B-M, [Gr1-2], $\mathrm{O}-\mathrm{P}$, [J-P-W], G-P], Las], and [P-W]. In the first one, the authors examined the cases in which the resolution is "pure", i.e. the minimal generators of each module of

[^0]syzygies have the same degree. We quote the following results from the other papers:

Case $d=1$, i.e. the case of the Veronese embedding:
Theorem 1 (Green [Gr1-2]). Let a be a positive integer. The line bundle $\mathcal{O}_{\mathbf{P}^{n}}(a)$ satisfies Property N_{a}.

Theorem 2 (Ottaviani-Paoletti (O-P). If $n \geq 2, a \geq 3$ and the bundle $\mathcal{O}_{\mathbf{P}^{n}}(a)$ satisfies Property N_{p}, then $p \leq 3 a-3$.

Theorem 3 (Josefiak-Pragacz-Weyman J-P-W]). The bundle $\mathcal{O}_{\mathbf{P}^{n}}(2)$ satisfies Property N_{p} if and only if $p \leq 5$ when $n \geq 3$ and for all p when $n=2$.
(See $\mathrm{O}-\mathrm{P}]$ for a more complete bibliography.)
Case $d=2$:
Theorem 4 (Gallego-Purnapranja [G-P]). Let $a, b \geq 2$. The line bundle $\mathcal{O}_{\mathbf{P}^{1} \times \mathbf{P}^{1}}(a, b)$ satisfies Property N_{p} if and only if $p \leq 2 a+2 b-3$.
Theorem 5 (Lascoux-Pragacz-Weymann [as, $[\mathrm{P}-\mathrm{W}]$). Let $n_{1}, n_{2} \geq 2$. The line bundle $\mathcal{O}_{\mathbf{P}^{n_{1}} \times \mathbf{P}^{n_{2}}}(1,1)$ satisfies Property N_{p} if and only if $p \leq 3$.

Here we consider $\mathcal{O}(1, \ldots, 1)$ on $\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}(d$ times, for any $d)$. We prove (Section 2):

Theorem 6. The line bundle $\mathcal{O}(1, \ldots, 1)$ on $\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}$ (d times) satisfies Property N_{3} for any d.

Besides we prove (Section 3):
Proposition 7. Let X and Y be two projective varieties and let L be a line bundle on X and M a line bundle on Y. Let $\pi_{X}: X \times Y \rightarrow X$ and $\pi_{Y}: X \times Y \rightarrow Y$ be the canonical projections. Suppose L and M satisfy Property N_{1}. Let $p \geq 2$. If L does not satisfy Property N_{p}, then $\pi_{X}^{*} L \otimes \pi_{Y}^{*} M$ does not satisfy Property N_{p}, either.
Corollary 8. Let a_{1}, \ldots, a_{d} be positive integers with $a_{1} \leq a_{2} \leq \ldots \leq a_{d}$. Suppose $k=\max \left\{i \mid a_{i}=1\right\}$. If $k \geq 3$ the line bundle $\mathcal{O}_{\mathbf{P}^{n_{1}} \times \ldots \times \mathbf{P}^{n_{d}}}\left(a_{1}, \ldots, a_{d}\right)$ does not satisfy Property N_{4} and if $d-k \geq 2$ it does not satisfy Property $N_{2 a_{k+1}+2 a_{k+2}-2}$.

In particular, from Corollary 8 and Theorem 6, we have:
Corollary 9. Let $d \geq 3$. The line bundle $\mathcal{O}_{\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}}(1, \ldots, 1)$ (d times) satisfies Property N_{p} if and only if $p \leq 3$.

2. Proof of Theorem 6

First we have to recall some facts on toric ideals from St].
Let $k \in \mathbf{N}$. Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ be a subset of \mathbf{Z}^{k}. The toric ideal \mathcal{I}_{A} is defined as the ideal in $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ generated as vector space by the binomials

$$
x_{1}^{u_{1}} \ldots x_{n}^{u_{n}}-x_{1}^{v_{1}} \ldots x_{n}^{v_{n}}
$$

for $\left(u_{1}, \ldots, u_{n}\right),\left(v_{1}, . ., v_{n}\right) \in \mathbf{N}^{n}$, with $\sum_{i=1, \ldots, n} u_{i} a_{i}=\sum_{i=1, \ldots, n} v_{i} a_{i}$.
We have that \mathcal{I}_{A} is homogeneous if and only if $\exists \omega \in \mathbf{Q}^{k}$ s.t. $\omega \cdot a_{i}=1$ $\forall i=1, \ldots, n$; the rings $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ and $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right] / \mathcal{I}_{A}$ are multigraded by $\mathbf{N} A$ via $\operatorname{deg} x_{i}=a_{i}$; the element $x_{1}^{u_{1}} \ldots x_{n}^{u_{n}}$ has multidegree $b=\sum_{i} u_{i} a_{i} \in \mathbf{N} A$ and degree $\sum_{i} u_{i}=b \cdot \omega$; we define $\operatorname{deg} b=b \cdot \omega$.

For each $b \in \mathbf{N} A$, let Δ_{b} be the simplicial complex on the set $\{1, \ldots, n\}$ defined as follows:

$$
\Delta_{b}=\left\{F \subset\{1, \ldots, n\}: b-\sum_{i \in F} a_{i} \in \mathbf{N} A\right\}
$$

(thus, by identifying $\{1, \ldots, n\}$ with A, we have:

$$
\Delta_{b}=\bigcup_{k \in \mathbf{N}, a_{i_{1}}, \ldots, a_{i_{k}} \in A, a_{i_{1}}+\ldots+a_{i_{k}}=b}\left\langle a_{i_{1}}, \ldots, a_{i_{k}}\right\rangle,
$$

where $\left\langle a_{i_{1}}, \ldots, a_{i_{k}}\right\rangle$ is the simplex generated by $\left.a_{i_{1}}, \ldots, a_{i_{k}}\right)$.
The following theorem studies the syzygies of the ideal \mathcal{I}_{A}; it was proved by Campillo and Marijuan for $k=1$ in [C-M] and by Campillo and Pison for general k and $j=0$ in $\mathrm{C}-\mathrm{P}$; the following more general statement is due to Sturmfels (Theorem 12.12 p. 120 in [St]).
Theorem 10 (see St and also [C-M], $\mathrm{C}-\mathrm{P}$). Let $A=\left\{a_{1}, \ldots, a_{n}\right\}$ be a subset of \mathbf{N}^{k} and \mathcal{I}_{A} be the associated toric ideal. Let $0 \rightarrow E_{n} \rightarrow \ldots \rightarrow E_{1} \rightarrow E_{0} \rightarrow G \rightarrow 0$ be a minimal free resolution of $G=\mathbf{C}\left[x_{1}, \ldots, x_{n}\right] / \mathcal{I}_{A}$ on $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$. Each of the generators of E_{j} has a unique multidegree. The number of the generators of multidegree $b \in \mathbf{N} A$ of E_{j+1} equals the rank of the j-th reduced homology group $\tilde{H}_{j}\left(\Delta_{b}, \mathbf{C}\right)$ of the simplicial complex Δ_{b}.

Notation 11. If α is a chain in a topological space, $\operatorname{sp}(\alpha)$ will denote the support of α, i.e. the union of the supports of the simplexes σ_{i} s.t. $\alpha=\sum_{i} c_{i} \sigma_{i}, c_{i} \in \mathbf{Z}$. If X is a simplicial complex, $s k^{i}(X)$ will denote the i-skeleton of X.

Proof of Theorem [6] If we take $A=A_{d}=\left\{\left(1, \epsilon_{1}, \ldots, \epsilon_{d}\right) \mid \epsilon_{i} \in\{0,1\}\right\}$, we have that $\mathcal{I}_{A_{d}}$ is the ideal of the Segre embedding of $\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}$ (d times), i.e. the ideal of the embedding of $\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}(d$ times $)$ by the line bundle $\mathcal{O}(1, \ldots, 1)$. In fact the ideal of the Segre embedding is generated as vector space by the homogeneous equations of the form

$$
\prod_{\epsilon_{1}, \ldots, \epsilon_{d} \in\{0,1\}} x_{\epsilon_{1}, \ldots, \epsilon_{d}}^{v_{\epsilon_{1}, \ldots, \epsilon_{d}}}-\prod_{\epsilon_{1}, \ldots, \epsilon_{d} \in\{0,1\}} x_{\epsilon_{1}, \ldots, \epsilon_{d}}^{u_{\epsilon_{1}, \ldots, \epsilon_{d}}^{u_{1}}}=0
$$

with $u_{\epsilon_{1}, \ldots, \epsilon_{d}}, v_{\epsilon_{1}, \ldots, \epsilon_{d}} \in \mathbf{N}$ and

$$
\sum_{\epsilon_{1}, \ldots, \epsilon_{d} \in\{0,1\}} v_{\epsilon_{1}, \ldots, \epsilon_{d}}\left(\epsilon_{1}, \ldots, \epsilon_{d}\right)=\sum_{\epsilon_{1}, \ldots, \epsilon_{d} \in\{0,1\}} u_{\epsilon_{1}, \ldots, \epsilon_{d}}\left(\epsilon_{1}, \ldots, \epsilon_{d}\right)
$$

The last condition is equivalent to

$$
\sum_{\epsilon_{1}, \ldots, \epsilon_{d} \in\{0,1\}} v_{\epsilon_{1}, \ldots, \epsilon_{d}}\left(1, \epsilon_{1}, \ldots, \epsilon_{d}\right)=\sum_{\epsilon_{1}, \ldots, \epsilon_{d} \in\{0,1\}} u_{\epsilon_{1}, \ldots, \epsilon_{d}}\left(1, \epsilon_{1}, \ldots, \epsilon_{d}\right)
$$

(the equality of the first coordinate gives the homogeneity).
In this case $\omega=\omega_{d}=(1,0, \ldots, 0)(0$ repeated d times $)$ and $n=2^{d}$.
Let $b \in \mathbf{N} A_{d}$; we have that $\operatorname{deg} b=(=b \cdot \omega)=k$ if and only if b is the sum of k (not necessarily distinct) elements of A_{d}. By identifying the set $\left\{1, \ldots, 2^{d}\right\}$ with A_{d}, we have that, if $k=\operatorname{deg} b, \Delta_{b}=\bigcup_{a_{i_{1}}, \ldots, a_{i_{k}} \in A_{d}, a_{i_{1}}+\ldots+a_{i_{k}}=b}\left\langle a_{i_{1}}, \ldots, a_{i_{k}}\right\rangle$; we say that $\left\langle a_{i_{1}}, \ldots, a_{i_{k}}\right\rangle$ is a degenerate $(k-1)$-simplex if $\exists l, m \in\{1, \ldots, k\}$ with $l \neq m$ s.t. $a_{i_{l}}=a_{i_{m}}$; thus Δ_{b} is equal to the union of the (possibly degenerate) ($k-1$)-simplexes S with vertices in A_{d} such that the sum of the vertices (with multiplicities) of S is b.

By Theorem[10, in order to prove that $\mathcal{O}_{\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}(1, \ldots, 1)}\left(d\right.$ times) satisfies N_{2}, we have to prove that $H_{1}\left(\Delta_{b}\right)=0$ for each $b \in \mathbf{N} A_{d}$ with $\operatorname{deg} b \geq 4$. Analogously in order to prove that $\mathcal{O}_{\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}}(1, \ldots, 1)\left(d\right.$ times) satisfies N_{3}, we have to prove that $H_{2}\left(\Delta_{b}\right)=0$ for each $b \in \mathbf{N} A_{d}$ with $\operatorname{deg} b \geq 5$.

The proof is by induction on d. Observe that any $b^{\prime} \in \mathbf{N} A_{d+1}$ with $\operatorname{deg} b^{\prime}=k$ is equal to $\binom{b}{\epsilon}$ for some $b \in \mathbf{N} A_{d}$ with $\operatorname{deg} b=k$ and for some $\varepsilon \in\{0,1, \ldots, k\}$. Then, in order to prove N_{2} we suppose (by induction) that $H_{1}\left(\Delta_{b}\right)=0 \forall b \in \mathbf{N} A_{d}$ with $\operatorname{deg} b=k, k \geq 4$, and we show that $H_{1}\left(\Delta_{\binom{b}{\varepsilon}}\right)=0$ for $\varepsilon \in\{0, \ldots, k\}$ and in order to prove N_{3} we suppose (by induction) that $H_{2}\left(\Delta_{b}\right)=0 \forall b \in \mathbf{N} A_{d}$ with $\operatorname{deg} b=k$, $k \geq 5$, and we show that $H_{2}\left(\Delta_{\binom{b}{\varepsilon}}\right)=0$ for $\varepsilon \in\{0, \ldots, k\}$.

Observe that, if $\varepsilon \in\{0, k\}(k:=\operatorname{deg} b)$, then obviously $\Delta_{\binom{b}{\varepsilon}}$ and Δ_{b} are isomorphic; besides $\Delta_{\binom{b}{k-\varepsilon}}$ is isomorphic to $\Delta_{\binom{b}{\varepsilon}} \forall \varepsilon \in\{0, \ldots, k\}$ (the isomorphism is given by substituting 0 with 1 and 1 with 0 in the last coordinate). Thus we may consider only the cases $\varepsilon \in\left\{1, \ldots,\left[\frac{k}{2}\right]\right\}$.

First we need some preliminary notation and lemmas.
Notation 12. Let $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle$ be a (possibly degenerate) k-1-simplex, $a_{i} \in A_{d}$. Let $\varepsilon \in\{0, \ldots, k\}$. We denote

$$
S_{\varepsilon}^{\prime}=\bigcup_{\substack{\left(\chi_{1}, \ldots, \chi_{k}\right) \text { s.t. } \\ \text { and exactly } \varepsilon \text { of } \chi_{j} \in\{0,1\} \text { for } j=1, \ldots, k \\ \chi_{1}, \ldots, \chi_{k} \text { are equal to } 1}}\left\langle\binom{ a_{1}}{\chi_{1}}, \ldots,\binom{a_{k}}{\chi_{k}}\right\rangle .
$$

Example 13. Let $S=\left\langle a_{1}, a_{2}, a_{3}, a_{4}\right\rangle$ be a (possibly degenerate) tetrahedron, $a_{i} \in$ A_{d}. The set S_{1}^{\prime} is the union of the four (possibly degenerate) tetrahedrons

$$
\begin{array}{ll}
\left\langle\binom{ a_{1}}{1},\binom{a_{2}}{0},\binom{a_{3}}{0},\binom{a_{4}}{0}\right\rangle, & \left\langle\binom{ a_{1}}{0},\binom{a_{2}}{1},\binom{a_{3}}{0},\binom{a_{4}}{0}\right\rangle, \\
\left\langle\binom{ a_{1}}{0},\binom{a_{2}}{0},\binom{a_{3}}{1},\binom{a_{4}}{0}\right\rangle, & \left\langle\binom{ a_{1}}{0},\binom{a_{2}}{0},\binom{a_{3}}{0},\binom{a_{4}}{1}\right\rangle .
\end{array}
$$

Thus S_{1}^{\prime} can be obtained from S by "constructing a tetrahedron on every one of the four faces of $S "$ and considering the union of these four tetrahedrons. The set S_{2}^{\prime} is the union of the following six (possibly degenerate) tetrahedrons:

$$
\begin{array}{ll}
\left\langle\binom{ a_{1}}{0},\binom{a_{2}}{0},\binom{a_{3}}{1},\binom{a_{4}}{1}\right\rangle, & \left\langle\binom{ a_{1}}{0},\binom{a_{2}}{1},\binom{a_{3}}{0},\binom{a_{4}}{1}\right\rangle, \\
\left\langle\binom{ a_{1}}{0},\binom{a_{2}}{1},\binom{a_{3}}{1},\binom{a_{4}}{0}\right\rangle, & \left\langle\binom{ a_{1}}{1},\binom{a_{2}}{0},\binom{a_{3}}{0},\binom{a_{4}}{1}\right\rangle, \\
\left\langle\binom{ a_{1}}{1},\binom{a_{2}}{0},\binom{a_{3}}{1},\binom{a_{4}}{0}\right\rangle, & \left\langle\binom{ a_{1}}{1},\binom{a_{2}}{1},\binom{a_{3}}{0},\binom{a_{4}}{0}\right\rangle .
\end{array}
$$

Then S_{2}^{\prime} can be obtained from S by "constructing a tetrahedron on every one of the six edges of $S^{\prime \prime}$ and considering the union of these six tetrahedrons (see Figure 1, representing S_{ε}^{\prime} in the case S is not degenerate).

Let $b \in \mathbf{N} A_{d}$ with $\operatorname{deg} b=k$ and $\varepsilon \in\{0, \ldots, k\}$. Obviously

$$
\Delta_{\binom{b}{\varepsilon}}=\bigcup_{S=\left\langle a_{1}, \ldots, a_{k}\right\rangle} \bigcup_{\text {with }} S_{a_{1}+\ldots+a_{k}=b}^{\prime}
$$

Figure 1.
Note to Figure 1. In the representation of S_{2}^{\prime}, for the sake of simplicity, we do not represent the tetrahedrons $\left\langle\binom{ a_{1}}{0},\binom{a_{2}}{1},\binom{a_{3}}{0},\binom{a_{4}}{1}\right\rangle$ and $\left\langle\binom{ a_{1}}{1},\binom{a_{2}}{0},\binom{a_{3}}{1},\binom{a_{4}}{0}\right\rangle$.

Notation 14. Let $b \in \mathbf{N} A_{d}$ with $\operatorname{deg} b=k$. For $l \in \mathbf{N}, 0 \leq l \leq k-1$, let

$$
\left.F^{l}\left(\Delta_{b}\right)=\bigcup_{a_{1}, \ldots, a_{k} \in A_{d}} \bigcup_{a_{1}+\mathrm{t} .} a_{1}+\ldots+a_{k}=b \quad i_{0}, \ldots, i_{l} \in\{1, \ldots, k\}<1\binom{a_{i_{0}}}{0}, \ldots,\binom{a_{i_{l}}}{0}\right\rangle
$$

Observe that $F^{l}\left(\Delta_{b}\right) \subseteq \Delta_{\binom{b}{\varepsilon}}$ iff $k-\varepsilon \geq l+1$.
The idea of the proof is to consider an l-cycle (for $l=1,2$) in $\Delta_{\binom{b}{\varepsilon}}$ and to show that it is homologous to an l-cycle in $F^{l}\left(\Delta_{b}\right)$ and then to show that it is homologous to 0 by using that $H_{l}\left(\Delta_{b}\right)=0$.
Remark 15. Let $S=\left\langle a_{1}, \ldots, a_{k}\right\rangle, a_{i} \in A_{d}$. If $k \geq 4$ and $1 \leq \varepsilon \leq k-2$, the set S_{ε}^{\prime} contains the cone with vertex $\binom{a_{l}}{1}$ on the border of $\left\langle\binom{ a_{i_{1}}}{0},\binom{a_{i_{2}}}{0},\binom{a_{i_{3}}}{0}\right\rangle$ for any $i_{1}, i_{2}, i_{3}, l \in\{1, \ldots, k\}$, with $l \neq i_{j}$ for $j=1,2,3$. This is true in particular if $k \geq 4$ and $\varepsilon \in\left\{1, \ldots,\left[\frac{k}{2}\right]\right\}$.

If $k \geq 5$ and $1 \leq \varepsilon \leq k-3$, the set S_{ε}^{\prime} contains the cone with vertex $\binom{a_{l}}{1}$ on the border of $\left\langle\binom{ a_{i_{1}}}{0}, \ldots,\binom{a_{i_{4}}}{0}\right\rangle$ for any $i_{1}, \ldots, i_{4}, l \in\{1, \ldots, k\}$ with $l \neq i_{j}$ for $j=1,2,3,4$. This is true in particular if $k \geq 5$ and $\varepsilon \in\left\{1, \ldots,\left[\frac{k}{2}\right]\right\}$.
Definition 16. For any $c \in \mathbf{N} A_{d}$ with $\operatorname{deg} c=s$ and $\varepsilon \in\{1, \ldots, s\}$, we define $R_{c, \varepsilon}$ to be the following set:

$$
\bigcup_{\substack{\alpha_{1}, \ldots, \alpha_{s} \in A_{d} \\ \text { s.t. } \alpha_{1}+\ldots+\alpha_{s}=c}} \bigcup_{\substack{i_{1}, \ldots, i_{s-1} \in\{1, \ldots, s\} \\ i_{l} \neq i_{m}}}\left\langle\binom{\alpha_{i_{1}}}{1}, \ldots,\binom{\alpha_{i_{\varepsilon-1}}}{1},\binom{\alpha_{i_{\varepsilon}}}{0}, \ldots,\binom{\alpha_{i_{s-1}}}{0}\right\rangle
$$

Lemma 17. Let $c \in \mathbf{N} A_{d}$ with $\operatorname{deg} c=s$. We have that $\tilde{H}_{i}\left(\Delta_{(\underset{\varepsilon-1}{c})}\right)=0$ implies $\tilde{H}_{i}\left(R_{c, \varepsilon}\right)=0$ if we are in one of the following cases: a) $i=0, s \geq 3$, $\varepsilon \in\left\{1, \ldots,\left[\frac{s+1}{2}\right]\right\}$; b) $i=1, s \geq 4, \varepsilon \in\left\{1, \ldots,\left[\frac{s+1}{2}\right]\right\}$.
Proof. Observe that $R_{c, \varepsilon} \subseteq \Delta_{\binom{c}{\varepsilon-1}}$. Since $\tilde{H}_{i}\left(\Delta_{\binom{c}{\varepsilon-1}}\right)=0$, we have

$$
\tilde{H}_{i}\left(s k^{i+1}\left(\Delta_{\left(\begin{array}{c}
c-1
\end{array}\right)}\right)\right)=0 .
$$

Obviously $s k^{i+1}\left(R_{c, \varepsilon}\right) \subseteq s k^{i+1}\left(\Delta_{\binom{c}{\varepsilon-1}}\right)$. We want to show $\tilde{H}_{i}\left(s k^{i+1}\left(R_{c, \varepsilon}\right)\right)=0$. Let β be an i-cycle in $s k^{i+1}\left(R_{c, \varepsilon}\right)$. Since $\tilde{H}_{i}\left(s k^{i+1}\left(\Delta_{\binom{c}{\varepsilon-1}}\right)\right)=0$, there exists an
$(i+1)$-chain η in $s k^{i+1}\left(\Delta_{\binom{c}{\varepsilon-1}}\right)$ s.t. $\partial \eta=\beta$. Suppose $s p(\eta)=\bigcup_{j} F_{j}$, where F_{j} are $(i+1)$-simplexes in $s k^{i+1}\left(\Delta_{\binom{c}{\varepsilon-1}}\right)$; consider now an $(i+1)$-chain ψ in $s k^{i+1}\left(R_{c, \varepsilon}\right)$ whose support is $\bigcup_{j} \hat{F}_{j}$, where $\hat{F}_{j}=F_{j}$ if $F_{j} \subseteq s k^{i+1}\left(R_{c, \varepsilon}\right)$ and \hat{F}_{j} is a cone on the border of F_{j} if $F_{j} \nsubseteq s k^{i+1}\left(R_{c, \varepsilon}\right)$, in such way that $\partial \psi=\beta$ (observe that in our cases such cones exist, in fact: $R_{c, \varepsilon}$ is the union of the (possibly degenerate) ($s-2$)simplexes "obtained from the (possibly degenerate) $(s-1)$-simplexes of $\Delta_{\binom{c}{\varepsilon-1}}$ by taking off a vertex whose last coordinate is $0 "$; in the case $i=0$ one can check that the 1 -simplexes s.t. the last coordinate of a vertex and the last coordinate of the other vertex are 1,1 or 1,0 are contained in $R_{c, \varepsilon}$, while for a 1 -simplex F s.t. the last coordinate of each vertex is 0 , there exists a cone, \hat{F}, on the border of F with $\hat{F} \subseteq R_{c, \varepsilon}$, since $s \geq 3$; analogously case b$)$). Thus we proved $\tilde{H}_{i}\left(s k^{i+1}\left(R_{c, \varepsilon}\right)\right)=0$. Thus $\tilde{H}_{i}\left(R_{c, \varepsilon}\right)=0$.

Proof that $\mathcal{O}_{\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}}(1, \ldots, 1)$ satisfies property N_{2}.

Lemma 18. Let $b \in \mathbf{N} A_{d}, \operatorname{deg} b=k, k \geq 4$ and $\varepsilon \in\left\{1, \ldots,\left[\frac{k}{2}\right]\right\}$. Every $1-$ cycle γ in $\Delta_{\binom{b}{\varepsilon}}$ is homologous to a 1 -cycle in $F^{1}\left(\Delta_{b}\right)$ (which is $\subseteq \Delta_{\binom{b}{\varepsilon}}$ since $k-\varepsilon \geq 2$).

Proof. Obviously we can suppose $s p(\gamma) \subseteq s k^{1}\left(\Delta_{\binom{b}{\varepsilon}}\right)$. The proof is by induction on the cardinality of $\left(s p(\gamma) \cap s k^{0}\left(\Delta_{\binom{b}{\varepsilon}}\right)\right)-F^{1}\left(\Delta_{b}\right)$, i.e. we will prove that γ is homologous to a 1-cycle $\tilde{\gamma}$ s.t.

$$
\sharp\left(\left(s p(\tilde{\gamma}) \cap s k^{0}\left(\Delta_{\binom{b}{\varepsilon}}\right)\right)-F^{1}\left(\Delta_{b}\right)\right)<\sharp\left(\left(s p(\gamma) \cap s k^{0}\left(\Delta_{\binom{b}{\varepsilon}}\right)\right)-F^{1}\left(\Delta_{b}\right)\right) .
$$

First we remark that if $P,\binom{a}{1} \in s k^{0}\left(\Delta_{\binom{b}{\varepsilon}}\right)$ and $\left\langle P,\binom{a}{1}\right\rangle \subseteq \Delta_{\binom{b}{\varepsilon}}$, then $P \in R_{b-a, \varepsilon}$ (*).

In fact, $\left\langle P,\binom{a}{1}\right\rangle \subseteq \Delta_{\binom{b}{\varepsilon}}$, then $P \in \Delta_{\binom{b-a}{\varepsilon-1}}$; we recall that $R_{b-a, \varepsilon}$ is

$$
\bigcup_{\substack{\alpha_{1}, \ldots, \alpha_{k-1} \in A_{d} \\ \text { s.t. } \alpha_{1}+\ldots+\alpha_{k-1}=b-a}} \bigcup_{\substack{i_{1}, \ldots, i_{k-2} \in\{1, \ldots, k-1\} \\ i_{l} \neq i_{m}}}\left\langle\binom{\alpha_{i_{1}}}{1}, \ldots,\binom{\alpha_{i_{\varepsilon-1}}}{1},\binom{\alpha_{i_{\varepsilon}}}{0}, \ldots,\binom{\alpha_{i_{k-2}}}{0}\right\rangle
$$

i.e. $R_{b-a, \varepsilon}$ is the union of the (possibly degenerate) $(k-3)$-simplexes "obtained from the (possibly degenerate) $(k-2)$-simplexes of $\Delta_{\substack{b-a \\ \varepsilon-1}}^{\substack{b-1}}$ by taking off a vertex whose last coordinate is 0 "; then, if the last coordinate of P is 1 , we may conclude at once that $P \in R_{b-a, \varepsilon}$; also if the last coordinate of P is 0 , we may conclude that $P \in R_{b-a, \varepsilon}$, because the number of the vertices whose last coordinate is 0 in a (possibly degenerate) $(k-2)$-simplex of $\Delta_{\binom{b-a}{\varepsilon-1}}$ is $k-1-(\varepsilon-1) \geq 2$.

Now let $\binom{a}{1} \in\left(s p(\gamma) \cap s k^{0}\left(\Delta_{\binom{b}{\varepsilon}}\right)\right)-F^{1}\left(\Delta_{b}\right),\left(a \in A_{d}\right)$. Intuitively we want to modify slightly γ to obtain a homologous 1-cycle $\tilde{\gamma}$ passing through $\binom{a}{0}$ instead of $\binom{a}{1}$.

Let $\mathcal{S}_{\binom{a}{1}}$ be the set of all 1-simplexes τ of γ s.t. $\operatorname{sp}(\tau) \ni\binom{a}{1}$. We can suppose that every 1-simplex $\tau \in \mathcal{S}_{\binom{a}{1}}$ be s.t. $\operatorname{sp}(\tau)$ be a 1 -simplex of $\Delta_{\binom{b}{\varepsilon}}$ and $\tau:[0,1] \rightarrow \Delta_{\binom{b}{\varepsilon}}$ be injective.

For $\tau \in \mathcal{S}_{\binom{a}{1}}$, let $\tau^{\prime}:[0,1] \rightarrow \Delta_{\binom{b}{\varepsilon}}$ be a 1-simplex s.t. $\tau^{\prime}(\epsilon)=\tau(\epsilon)$ if $\tau(\epsilon) \neq\binom{ a}{1}$

By remark $(*)$, we have that $\operatorname{sp}(\alpha) \subseteq C$, where C is the union of the two cones $\left\langle\binom{ a}{1}, R_{b-a, \varepsilon}\right\rangle$ and $\left\langle\binom{ a}{0}, R_{b-a, \varepsilon}\right\rangle$. Observe that $C \subseteq \Delta_{\binom{b}{\varepsilon}}$. We state that $H_{1}(C)=0$: by Theorem 10, since $\mathcal{O}_{\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}}(1, \ldots, 1)$ (d times) satisfies Property $N_{1} \forall d$, we have $\tilde{H}_{0}\left(\Delta_{g}\right)=0 \forall g \in \mathbf{N} A_{d}$ with $\operatorname{deg} g \geq 3, \forall d$ (this can easily be proved directly without using that $\mathcal{O}_{\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}}(1, \ldots, 1)$ satisfies Property $\left.N_{1}\right)$; then $\tilde{H}_{0}\left(\Delta_{\binom{b-a}{\varepsilon-1}}\right)=0$; thus $\tilde{H}_{0}\left(R_{b-a, \varepsilon}\right)=0$ by Lemma 17; we have $\tilde{H}_{i}(C)=\tilde{H}_{i-1}\left(R_{b-a, \varepsilon}\right)$; thus $H_{1}(C)=$ $\tilde{H}_{0}\left(R_{b-a, \varepsilon}\right)=0$. Thus we have that α is homologous to 0 . Thus γ is homologous to $\gamma+\alpha$.

Obviously the support of $\tilde{\gamma}:=\gamma+\alpha$ can be obtained from $s p(\gamma)$ by substituting $\operatorname{sp}(\tau)$ with $\operatorname{sp}\left(\tau^{\prime}\right) \forall \tau \in \mathcal{S}_{\binom{a}{1}}$. Then

$$
\sharp\left(\left(s p(\tilde{\gamma}) \cap s k^{0}\left(\Delta_{\binom{b}{\varepsilon}}\right)\right)-F^{1}\left(\Delta_{b}\right)\right)<\sharp\left(\left(s p(\gamma) \cap s k^{0}\left(\Delta_{\binom{b}{\varepsilon}}\right)\right)-F^{1}\left(\Delta_{b}\right)\right) ;
$$

thus we conclude the proof of Lemma 18 .
In order to prove that $\mathcal{O}_{\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}}(1, \ldots, 1)(d$ times $)$ satisfies N_{2} for any d, we suppose (by induction) that $H_{1}\left(\Delta_{b}\right)=0 \forall b \in \mathbf{N} A_{d}$ with $\operatorname{deg} b=k, k \geq 4$, and we show that $H_{1}\left(\Delta_{\binom{b}{\varepsilon}}\right)=0$ for $\varepsilon \in\left\{1, \ldots,\left[\frac{k}{2}\right]\right\}$.

Cases $\varepsilon \leq k-3$. We know that every 1-cycle γ in $\Delta_{\binom{b}{\varepsilon}}$ is homologous to a 1 -cycle in $F^{1}\left(\Delta_{b}\right)$ by Lemma 18, Thus, since $F^{2}\left(\Delta_{b}\right) \subseteq \Delta_{\binom{b}{\varepsilon}}$ and $H_{1}\left(F^{2}\left(\Delta_{b}\right)\right)=0$ (because, by induction hypothesis, $H_{1}\left(\Delta_{b}\right)=0$), we have that $H_{1}\left(\Delta_{\binom{b}{\varepsilon}}\right)=0$.

Cases $\varepsilon>k-3$. These cases are slightly more difficult. By Lemma 18 every 1cycle γ in $\Delta_{\binom{b}{\varepsilon}}$ is homologous to a 1-cycle γ^{\prime} in $F^{1}\left(\Delta_{b}\right)$. But in these cases we have not the inclusion $F^{2}\left(\Delta_{b}\right) \subseteq \Delta_{\binom{b}{\varepsilon}}$, thus we have to conclude the proof in another way.

Since $H_{1}\left(F^{2}\left(\Delta_{b}\right)\right)=0$, there exists a 2 -chain μ in $F^{2}\left(\Delta_{b}\right)$ s.t. $\partial \mu=\gamma^{\prime}$. Let $s p(\mu)=\bigcup_{i} F_{i}, F_{i}$ triangles in $F^{2}\left(\Delta_{b}\right)$. Consider a 2 -chain ψ in $\Delta_{\binom{b}{\varepsilon}}$ whose support is $\bigcup_{i} \hat{F}_{i}$, where \hat{F}_{i} is a cone $\subseteq \Delta_{\binom{b}{\varepsilon}}$ on the border of F_{i} (there exists by Remark [15), in such way that $\partial \psi=\gamma^{\prime}$; thus $\left[\gamma^{\prime}\right]=0$ in $H_{1}\left(\Delta_{\binom{b}{\varepsilon}}\right)$, thus $[\gamma]=0$ in $H_{1}\left(\Delta_{\binom{b}{\varepsilon}}\right)$. Thus $H_{1}\left(\Delta_{\binom{b}{\varepsilon}}\right)=0$.

Proof that $\mathcal{O}_{\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}}(1, \ldots, 1)$ satisfies property N_{3}.
Lemma 19. Let $b \in \mathbf{N} A_{d}$ with $\operatorname{deg} b=k$ and $\varepsilon \in\left\{1, \ldots,\left[\frac{k}{2}\right]\right\}$. If $k \geq 5$, every 2 -cycle μ in $\Delta_{\binom{b}{\varepsilon}}$ is homologous to a 2-cycle in $F^{2}\left(\Delta_{b}\right)\left(\right.$ which is $\subseteq \Delta_{\binom{b}{\varepsilon}}$ since $k-\varepsilon \geq 3)$.
Proof. Obviously we can suppose that $s p(\mu) \subseteq s k^{2}\left(\Delta_{\binom{b}{\varepsilon}}\right)$. The proof is by induction on the cardinality of $\left(s p(\mu) \cap s k^{0}\left(\Delta_{\binom{b}{\varepsilon}}\right)\right)-F^{2}\left(\Delta_{b}\right)$, i.e. we will prove that μ is homologous to a 2-cycle $\tilde{\mu}$ s.t. $\sharp\left(\left(s p(\tilde{\mu}) \cap s k^{0}\left(\Delta_{\binom{b}{\varepsilon}}\right)\right)-F^{2}\left(\Delta_{b}\right)\right)<$ $\sharp\left(\left(s p(\mu) \cap s k^{0}\left(\Delta_{\binom{b}{\varepsilon}}\right)\right)-F^{2}\left(\Delta_{b}\right)\right)$.

We remark that if $P, Q,\binom{a}{1} \in s k^{0}\left(\Delta_{\binom{b}{\varepsilon}}\right)$ and $\left\langle P, Q,\binom{a}{1}\right\rangle \subseteq \Delta_{\binom{b}{\varepsilon}}$, then $\langle P, Q\rangle \subseteq$ $R_{b-a, \varepsilon}$.

In fact $\left\langle P, Q,\binom{a}{1}\right\rangle \subseteq \Delta_{\binom{b}{\varepsilon}}$; then $\langle P, Q\rangle \subseteq \Delta_{\binom{b-a}{\varepsilon-1}}$. Since $R_{b-a, \varepsilon}$ is the union of the (possibly degenerate) $(k-3)$-simplexes "obtained from the (possibly degenerate) $(k-2)$-simplexes of $\Delta_{\binom{b-a}{\varepsilon-1}}$ by taking off a vertex whose last coordinate is 0 " and
since the number of the vertices whose last coordinate is 0 in a (possibly degenerate) $(k-2)$-simplex of $\Delta_{\binom{b-a}{\varepsilon-1}}$ is $k-1-(\varepsilon-1) \geq 3$, we have $\langle P, Q\rangle \subseteq R_{b-a, \varepsilon}$.

Let $\mathcal{S}_{\binom{a}{1}}$ be the set of all 2-simplexes $\tau:\langle(0,0),(0,1),(1,0)\rangle \rightarrow \Delta_{\binom{b}{\varepsilon}}$ of μ s.t. $\operatorname{sp}(\tau) \ni\binom{a}{1}$. We can suppose that every 2 -simplex $\tau \in \mathcal{S}_{\binom{a}{1}}$ be s.t. $\operatorname{sp}(\tau)$ be a 2-simplex of $\Delta_{\binom{b}{\varepsilon}}, \tau(\epsilon) \in s k^{0}\left(\Delta_{\binom{b}{\varepsilon}}\right)$ for $\epsilon \in\{(0,0),(0,1),(1,0)\}$ and τ : $\langle(0,0),(0,1),(1,0)\rangle \rightarrow \Delta_{\binom{b}{\varepsilon}}$ be injective.

For $\tau \in \mathcal{S}_{\binom{a}{1}}$ let $\tau^{\prime}:\langle(0,0),(0,1),(1,0)\rangle \rightarrow \Delta_{\binom{b}{\varepsilon}}$ be a 2-simplex s.t. $\tau^{\prime}(\epsilon)=\tau(\epsilon)$ if $\tau(\epsilon) \neq\binom{ a}{1}$ and $\tau^{\prime}(\epsilon)=\binom{a}{0}$ if $\tau(\epsilon)=\binom{a}{1}$ for $\epsilon \in\{(0,0),(0,1),(1,0)\}$. Let α be the 2 -cycle $\sum_{\tau \in \mathcal{S}_{\binom{a}{1}}\left(-\tau+\tau^{\prime}\right) \text {. } . ~ . ~ . ~}^{\text {a }}$

By remark $(*)$, we have that $\operatorname{sp}(\alpha) \subseteq C$, where C is the union of the two cones $\left\langle\binom{ a}{1}, R_{b-a, \varepsilon}\right\rangle$ and $\left\langle\binom{ a}{0}, R_{b-a, \varepsilon}\right\rangle$. Observe that $C \subseteq \Delta_{\binom{b}{\varepsilon} \text {. We state that }}$ $H_{2}(C)=0$: we have already proved that $\mathcal{O}_{\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}(1, \ldots, 1) \text { satisfies Property } N_{2}, ~}^{\text {Pr }}$ i.e. $H_{1}\left(\Delta_{g}\right)=0 \forall g$ with $\operatorname{deg} g \geq 4$; thus $H_{1}\left(\Delta_{\binom{b-a}{\varepsilon-1}}\right)=0$; then $H_{1}\left(R_{b-a, \varepsilon}\right)=0$ by Lemma 17; we have $\tilde{H}_{i}(C)=\tilde{H}_{i-1}\left(R_{b-a, \varepsilon}\right)$; thus $H_{2}(C)=H_{1}\left(R_{b-a, \varepsilon}\right)=0$. Thus we have that α is homologous to 0 . Thus μ is homologous to $\mu+\alpha$.

The support of the cycle $\tilde{\mu}:=\mu+\alpha$ can be obtained from $s p(\mu)$ by substituting $\operatorname{sp}(\tau)$ with $\operatorname{sp}\left(\tau^{\prime}\right) \forall \tau \in \mathcal{S}_{\binom{a}{1}}$. Then

$$
\sharp\left(\left(s p(\tilde{\mu}) \cap s k^{0}\left(\Delta_{\binom{b}{\varepsilon}}\right)\right)-F^{2}\left(\Delta_{b}\right)\right)<\sharp\left(\left(s p(\mu) \cap s k^{0}\left(\Delta_{\binom{b}{\varepsilon}}\right)\right)-F^{2}\left(\Delta_{b}\right)\right) ;
$$

thus we conclude the proof of Lemma 19,
In order to prove that $\mathcal{O}_{\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}}(1, \ldots, 1)(d$ times $)$ satisfies N_{3} for any d, we suppose (by induction) that $H_{2}\left(\Delta_{b}\right)=0 \forall b \in \mathbf{N} A_{d}$ with $\operatorname{deg} b=k, k \geq 5$ and we show that $H_{2}\left(\Delta_{\binom{b}{\varepsilon}}\right)=0$ for $\varepsilon \in\left\{1, \ldots,\left[\frac{k}{2}\right]\right\}$.

Cases $\varepsilon \leq k-4$. We have that every 2 -cycle μ in $\Delta_{\binom{b}{\varepsilon}}$ is homologous to a 2 cycle $\tilde{\mu}$ in $F^{2}\left(\Delta_{b}\right)$ by Lemma 19 Since $H_{2}\left(F^{3}\left(\Delta_{b}\right)\right)=0$ (because, by induction hypothesis, $H_{2}\left(\Delta_{b}\right)=0$), we have that $[\tilde{\mu}]=0$ in $H_{2}\left(F^{3}\left(\Delta_{b}\right)\right)=0$. Since in these cases $F^{3}\left(\Delta_{b}\right) \subseteq \Delta_{\binom{b}{\varepsilon}}$, we may conclude that $[\mu]=[\tilde{\mu}]=0$ in $H_{2}\left(\Delta_{\binom{b}{\varepsilon}}\right)$, thus $H_{2}\left(\Delta_{\binom{b}{\varepsilon}}\right)=0$.

Cases $\varepsilon>k-4$. We have that every 2-cycle μ in $\Delta_{\binom{b}{\varepsilon}}$ is homologous to a 2cycle $\tilde{\mu}$ in $F^{2}\left(\Delta_{b}\right)$ by Lemma 19, Since $H_{2}\left(F^{3}\left(\Delta_{b}\right)\right)=0$ (because $H_{2}\left(\Delta_{b}\right)=0$), we have that $[\tilde{\mu}]=0$ in $H_{2}\left(F^{3}\left(\Delta_{b}\right)\right)=0$. But in these cases we have not the inclusion $F^{3}\left(\Delta_{b}\right) \subseteq \Delta_{\binom{b}{\varepsilon}}$, thus we may not conclude at once. Since $H_{2}\left(F^{3}\left(\Delta_{b}\right)\right)=0$, there exists a 3-chain ν in $F^{3}\left(\Delta_{b}\right)$ s.t. $\partial \nu=\tilde{\mu}$. We have that $\operatorname{sp}(\nu)=\bigcup_{i} F_{i}, F_{i}$ tetrahedrons in $F^{3}\left(\Delta_{b}\right)$. Consider a 3-chain ψ in $\Delta_{\substack{b \\ \varepsilon}}^{b}$ whose support is $\bigcup_{i} \hat{F}_{i}$, where \hat{F}_{i} is a cone $\subseteq \Delta_{\binom{b}{\varepsilon}}$ on the border of F_{i} (there exists by Remark (15), in such a way that $\partial \psi=\tilde{\mu}$; thus $[\tilde{\mu}]=0$ in $H_{2}\left(\Delta_{\binom{b}{\varepsilon}}\right)$, thus $[\mu]=0$ in $H_{2}\left(\Delta_{\binom{b}{\varepsilon}}\right)$. Then we may conclude that $H_{2}\left(\Delta_{\binom{b}{\varepsilon}}\right)=0$.

This completes the proof of Theorem 6

3. Proof of Proposition 7

Let X and Y be two projective varieties and L a very ample line bundle on X and M a very ample line bundle on Y. Let $\left\{\sigma_{0}, \ldots, \sigma_{k}\right\}$ be a basis of $H^{0}(X, L)$ and
let $\left\{s_{0}, \ldots, s_{l}\right\}$ be a basis of $H^{0}(Y, M)$; we can suppose $\exists \bar{y} \in Y$ s.t. $s_{0}(\bar{y}) \neq 0$, $s_{j}(\bar{y})=0$ for $j \neq 0$; let $t_{i, j}$ be the coordinates corresponding to $\left\{\sigma_{i} \otimes s_{j}\right\}_{i, j}$ of the embedding of $X \times Y$ by $\pi_{X}^{*} L \otimes \pi_{Y}^{*} M$ (where π. is the projection on \cdot) and let t_{i} be the coordinates corresponding to $\left\{\sigma_{0}, \ldots, \sigma_{k}\right\}$ of the embedding of X by L.

Remark 20. By setting $t_{i, j}=0$ for $j \neq 0$ in an equation of $X \times Y$ and then taking off the last index (a 0) of each variable, we get an equation of X (to prove this, use $\bar{y})$.

Remark 21. Let M be a graded module on $\mathbf{C}\left[x_{1}, \ldots, x_{n}\right]$ with a minimal set of generators of degree s; then a subset of elements of degree s of M can be extended to a minimal set of generators if and only if these elements are linearly independent on \mathbf{C}.

Proof of Proposition 7. Suppose L satisfies Property N_{p-1} but not N_{p}. We want to show $\pi_{X}^{*} L \otimes \pi_{Y}^{*} M$ does not satisfy Property N_{p}; we can suppose $\pi_{X}^{*} L \otimes \pi_{Y}^{*} M$ satisfies Property N_{p-1}. Let l_{m} and q_{m} be the ranks of the m-module of a minimal free graded resolution respectively of $G(L)$ and of $G\left(\pi_{X}^{*} L \otimes \pi_{Y}^{*} M\right)$. Let $\left\{g_{j}^{m}\right\}_{j=1, \ldots, l_{m}}$ be a minimal set of generators of the m-module E_{m} of a minimal resolution of $G(L)$,

$$
\ldots \rightarrow E_{m} \rightarrow E_{m-1} \rightarrow \ldots \rightarrow E_{0} \rightarrow G(L) \rightarrow 0
$$

Since L satisfies Property N_{p-1} but not N_{p}, there exists a syzygy S of $\left(g_{1}^{p-1}, \ldots\right.$, $g_{l_{p-1}}^{p-1}$), s.t. S is not generated by linear syzygies of $\left(g_{1}^{p-1}, \ldots, g_{l_{p-1}}^{p-1}\right)$. Add a 0 to the indices of the variables appearing in S and call \tilde{S} the so-obtained vector of polynomials; let $\tilde{S}^{\prime}=(\tilde{S}, 0, \ldots, 0)$ with 0 repeated $q_{p-1}-l_{p-1}$ times.

Obviously by adding a 0 to the indices of each variable appearing in the equations of X, we get equations of $X \times Y$ and by adding a 0 to the indices of every variable appearing in the syzygies of X we get syzygies of $X \times Y$.

Add a 0 to the indices of the variables appearing in g_{j}^{m} and call \tilde{g}_{j}^{m} the soobtained vector of polynomials for $j=1, \ldots, l_{m}$; set $f_{j}^{1}=\tilde{g}_{j}^{1}$ for $j=1, \ldots, l_{1}$ and $f_{j}^{m}=\left(\tilde{g}_{j}^{m}, 0, \ldots, 0\right)\left(0\right.$ repeated $q_{m-1}-l_{m-1}$ times) for $j=1, \ldots, l_{m}$ and $2 \leq m \leq$ $p-1 ; f_{j}^{m}$ for $j=1, \ldots, l_{m}$ are vectors of linear polynomials for $2 \leq m \leq p-1$ and they are quadratic if $m=1$. Thus, by induction on m and by Remark 21, one can extend this set to a minimal set of generators $\left\{f_{j}^{m}\right\}_{j=1, \ldots, q_{m}}$, of the m-module of a minimal resolution of $G\left(\pi_{X}^{*} L \otimes \pi_{Y}^{*} M\right)$ for $m \leq p-1$ (we recall that we supposed $\pi_{X}^{*} L \otimes \pi_{Y}^{*} M$ satisfies Property N_{p-1}); we can do it in such way that, when we set $t_{i, j}=0$ for $j \neq 0$, we have that f_{j}^{1} is zero for $j=l_{1}+1, \ldots, q_{1}$ and the r-th coordinate of f_{j}^{m} is zero for $r \leq l_{m-1}$ and $j=l_{m}+1, \ldots, q_{m}$ (we can prove this by induction on m, by using Remark 20 for the case $m=1$: it is sufficient to subtract linear combination of f_{j}^{m} for $j=1, \ldots, l_{m}$ to f_{j}^{m} for $\left.j=l_{m}+1, \ldots, q_{m}\right)$.

Obviously \tilde{S}^{\prime} is a syzygy of $\left(f_{1}^{p-1}, \ldots, f_{q_{p-1}}^{p-1}\right)$.
If $\pi_{X}^{*} L \otimes \pi_{Y}^{*} M$ satisfies Property N_{p}, then \tilde{S}^{\prime} would be generated by linear syzygies of $\left(f_{1}^{p-1}, \ldots, f_{q_{p-1}}^{p-1}\right)$.

We state that \tilde{S}^{\prime} cannot be generated by linear syzygies of $\left(f_{1}^{p-1}, \ldots, f_{q_{p-1}}^{p-1}\right)$. In fact, if it were, say $\tilde{S}^{\prime}=\sum_{\alpha} S_{\alpha}\left(S_{\alpha}\right.$ linear syzygies of $\left.\left(f_{1}^{p-1}, \ldots, f_{q_{p-1}}^{p-1}\right)\right)$, we set $t_{i, j}=0$ for $j \neq 0$ in each member of the equality $\tilde{S}^{\prime}=\sum_{\alpha} S_{\alpha}$ and, by taking off the last index (a 0) of every variable and considering only the first l_{p-1} coordinates of S and S_{α}, one would obtain that S would be generated by linear syzygies of
$\left(g_{1}^{p-1}, \ldots, g_{l_{p-1}}^{p-1}\right)$ (observe that by setting $t_{i, j}=0$ for $j \neq 0$ in S_{α} and taking the first l_{p-1} coordinates, we get a syzygy of $\left.\left(f_{1}^{p-1}, \ldots, f_{l_{p-1}}^{p-1}\right)\right)$.

But S cannot be generated by linear syzygies by assumption.
The line bundle $\mathcal{O}_{\mathbf{P}^{1} \times \mathbf{P}^{1} \times \mathbf{P}^{1}}(1,1,1)$ does not satisfy Property N_{4}; precisely the resolution, with the notation of Introduction, is

$$
0 \rightarrow S(-6) \rightarrow S(-4)^{9} \rightarrow S(-3)^{16} \rightarrow S(-2)^{9} \rightarrow S \rightarrow G \rightarrow 0
$$

This has been proved by Barcanescu and Manolache in $\mathrm{B}-\mathrm{M}$ and can be seen also by using the program Macaulay [B-S] (to see only that $\mathcal{O}_{\mathbf{P}^{1} \times \mathbf{P}^{1} \times \mathbf{P}^{1}}(1,1,1)$ does not satisfy Property N_{4}, it is sufficient to use the autoduality of the resolution; see (B-M).

From this and from Proposition 7 we deduce that $\mathcal{O}_{\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}}(1, \ldots, 1)$ (d times) does not satisfy Property N_{4} for $d \geq 3$. By also using Gallego-Purnapranja's Theorem4. we deduce that, if a_{1}, \ldots, a_{d} are integer numbers with $a_{1} \leq a_{2} \leq \ldots \leq a_{d}$ and $a_{1}=\ldots=a_{k}=1$, the line bundle $\mathcal{O}_{\mathbf{P}^{1} \times \ldots \times \mathbf{P}^{1}}\left(a_{1}, \ldots, a_{d}\right)$ does not satisfy Property N_{4} if $k \geq 3$ and it does not satisfy Property $N_{2 a_{k+1}+2 a_{k+2}-2}$ if $d-k \geq 2$.

With the same argument as in the Remark in part II, Section 2 of [Gr1-2] we deduce Corollary 8

Acknowledgements

I thank G. Ottaviani for several helpful conversations and above all for the valuable suggestion to study syzygies of Segre embeddings. I thank also G. Anzidei and C. Brandigi for some discussions and the referee for some comments.

References

[B-M] S. Barcanescu, N. Manolache Betti numbers of Segre-Veronese singularities Rev. Roumaine Math. Pures Appl. 26 no.4, 549-565 (1981) MR 82j:13029
[B-S] D. Bayer, M. Stillman Macaulay: A system for computation in algebraic geometry and commutative algebra. It can be downloaded from math.columbia.edu/bayer/macaulay via anonymous ftp.
[C-M] A. Campillo, C. Marijuan Higher relations for a numerical semigroup Sem. Theorie Nombres Bordeaux 3, 249-260 (1991) MR 93d:13027
[C-P] A. Campillo, P. Pison L'ideal d'un semigroupe de type fini Comptes Rendus Acad. Sci. Paris Serie I, 316, 1303-1306 (1993) MR 94b:20055
[G-P] F.J. Gallego, B.P. Purnaprajna Some results on rational surfaces and Fano varieties J. Reine Angew Math. 538, 25-55 (2001)
[Gr1-2] M. Green Koszul cohomology and the geometry of projective varieties I,II J. Differ. Geom. 20, 125-171, 279-289 (1984) MR 85e:14022 MR 86j:14011
[Gr3] M. Green Koszul cohomology and geometry, in: M. Cornalba et al. (eds), Lectures on Riemann Surfaces, World Scientific Press (1989) MR 91k:14012
[G-L] M. Green, R. Lazarsfeld On the projective normality of complete linear series on an algebraic curve Invent. Math. 83, 73-90 (1986) MR 87g:14022
[J-P-W] T. Josefiak, P. Pragacz, J.Weyman Resolutions of determinantal varieties and tensor complexes associated with symmetric and antisymmetric matrices Asterisque 87-88, 109189 (1981) MR 83j:14044
[Las] A. Lascoux Syzygies des variétés determinantales Adv. in Math. 30, 202-237 (1978) MR 80j:14043
[O-P] G. Ottaviani, R. Paoletti Syzygies of Veronese embeddings Compositio Mathematica 125, 31-37 (2001) CMP 2001:09
[P-W] P. Pragacz, J.Weyman Complexes associated with trace and evalutation. Another approach to Lascoux's resolution Adv. Math. 57, 163-207 (1985) MR 87f:14030
[St] B. Sturmfels, Gröbner bases and convex polytopes, University Lecture Series American Mathematical Society 8 (1996). MR 97b:13034

Dipartimento di Matematica "U. Dini", via Morgagni 67/A, 50134 Firenze, Italia
E-mail address: rubei@math.unifi.it

[^0]: Received by the editors December 20, 2000 and, in revised form, July 13, 2001.
 2000 Mathematics Subject Classification. Primary 14M25, 13D02.

