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Abstract. We show that compact Kähler manifolds of dimension up to four
have a surjective connected Albanese map.

In this short paper, we shall study the Albanese maps on compact Kähler mani-
folds with numerically effective (nef) anticanonical bundles. In particular, we shall
investigate the surjectivity of the Albanese maps on those manifolds.

In [DPS93], Demailly, Peternell and Schneider made the following conjecture:

Conjecture. Let X be a compact Kähler manifold with −KX nef. Then the Al-
banese map α : X → A(X) is surjective.

When X is a projective threefold—this was proved in [DPS93] and the arbitrary
higher dimensional projective cases were settled in [Zh96] by using relative defor-
mation theory and mod p reduction methods. However, in the cases of compact
Kähler manifolds, a new level of sophistication is involved and things become much
more difficult. In this paper, our aim is to prove the above conjecture when X is
of dimension three or four.

Theorem 1. Let X be a compact Kähler manifold of dimension three or four such
that −KX is nef. Then the Albanese map f : X → A(X) is surjective and has
connected fibers.

The proof of Theorem 1 also provides us with the following result:

Theorem 2. Let X be a compact Kähler manifold such that −KX is nef. Then
there is no surjective map f : X → Y to a normal projective variety Y of general
type with dimY ≥ dimX − 2.

Actually the conjecture should be true in a much stronger form:

Conjecture. Let X be a compact Kähler manifold with −KX nef. Then κ(det(F ))
≥ 0 for all coherent subsheaves F ⊂ (Ω1

X)⊗m and all positive integers m.

In particularX should not admit surjective maps onto normal projective varieties
of positive Kodaira dimension.

Proof of Theorem 1. Let Y = A(X). We may assume that f has connected fibers.
It is known that X does not map to a curve of genus 2 or more [DPS93]. Thus, we
may assume that dimY > 1.
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Moreover, since every subvariety of a complex torus is an analytic fibre bundle
over some other variety which is of general type, we may also assume that Y is of
general type [Ue75].

(1) dim Y = dimX . Then f is bimeromorphic, hence κ(X) = κ(Y ), which is
absurd.

(2) dimY = dimX − 1. Let F be the general fiber of f . We distinguish two
cases according to whether F is rational or elliptic (notice that −KF is nef).

(2.1) Suppose F is rational. This case can be ruled out by [DPS93]; alternatively
notice that X must be projective and apply [Zh96].

(2.2) Suppose F is elliptic. Then let C ⊂ Y be a curve obtained as a complete
intersection of general hyperplane sections of Y and consider the elliptic surface
Z = f−1(C)→ C. Let L denote the nef line bundle −KX |Z. The key point is that
f∗(KZ|C) is a nef line bundle and can be written in the form

f∗(KZ|C) = f∗(L∗)−KY |C

where KZ|C denotes the relative canonical sheaf of Z over C. Since KY |C is ample,
the line bundle f∗(L∗) is ample. By virtue of the injective map

f∗f∗(L∗) −→ L∗,

L∗ contains a line bundle which is semiample and neither trivial nor a torsion
element. This clearly contradicts the nefness of L.

(3) dimY = dimX − 2. So the general fiber is now a surface with −KF nef, in
particular κ(F ) ≤ 0. Again let C ⊂ Y be a sufficiently general complete intersection
of hyperplane sections and let Z = f−1(C).

(3.1) Suppose κ(F ) = 0. Then KF ≡ 0. If KF = OF , we argue exactly as in
(2.2). Otherwise we find some m ≥ 2 such that mKF = O. Now f∗(mKZ|C) is nef,
see e.g. [Ue87] and we argue by using L = mKX |Z.

(3.2) If F is rational, then X is projective [Ca81] and the claim follows from
[Zh96].

(3.3) The difficult case is when κ(F ) = −∞, but F is irrational. In that case F is
a ruled surface over an elliptic curve (given by the projectivization of a semi-stable
rank 2 bundle). By Theorem 3 below, f is a submersion, possibly after a base
change. Moreover there is a P1 bundle structure g : Z → W and an elliptic fiber
bundle structure h : W → C such that f = h◦g. We are going to compute −KW |C .
First note—just for easier calculations—that we may assume (possibly after a finite
étale base change W̃ −→W ) that

Z = P(V )

with a rank 2 vector bundle V on W. Since h : W −→ C is an elliptic submersion,
we have KW |C ≡ 0. Therefore

KZ|C ≡ KZ|W ,

and consequently we have

−KZ|W = L⊗ f∗(KC)

with a nef line bundle L on Z. Now

−KZ|W = OP(V )(2)⊗ g∗detV ∗,
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so that g∗(−KZ|W ) = S2V ⊗detV ∗. The vector bundle S2V ⊗detV ∗ is a nef, since
its tautological bundle −KZ|W is nef. Moreover c1(S2V ⊗ detV ?) = 0, the bundle
S2V ⊗ detV ∗ is numerically flat [DPS93], i.e. its dual is nef, too. On the other
hand, g∗(L) is nef due to the nefness of L (write L = OP(V )(2) ⊗ g∗(L′)) and we
have

g∗(−KZ|W ) = g∗(L)⊗ h∗(KC).

Since g(C) ≥ 2, it is clear that g∗(L)∗ ⊗ h∗(−KC) cannot be nef, a contradiction.
This finishes the proof of Theorem 1.

Theorem 3. Let Z be a compact Kähler threefold and f : Z −→ C be a surjective
map with connected fibers to a smooth curve of genus g ≥ 1. Assume that the general
fiber F has κ(F ) = −∞ and q(F ) = 1. If −KZ|C is nef, then the only singular
fibers of f are multiples of smooth surfaces. In particular, f is smooth after a finite
base change C̃ −→ C. If C is elliptic, the original f is already smooth. Furthermore
there is a smooth minimal surface Y , a P1−bundle structure g : Z −→ Y and an
elliptic fibration h : Y −→ C with at most multiple fibers as singular fibers such
that f = h ◦ g.

Proof. Since −KF is nef, F is a ruled surface over an elliptic curve coming from a
semi-stable vector bundle of rank 2 (this last fact will not play any role).

(1) We show that f : Z −→ C admits a relative contraction ϕ : Z −→ W. By
definition, a relative extremal contraction is a map ϕ such that −KZ|C is ϕ− ample,
W is a normal (Kähler) variety, the relative Picard number drops by 1 and there is
a map g : W → C such that f = g ◦ϕ. In fact, first note that f is locally projective,
since f is locally Moishezon and Z is Kähler [CP98]. Furthermore KZ|C is not
f -nef. Therefore every point y ∈ C has an open Stein neighborhood U such that a
relative extremal contraction ϕU : ZU →WU to some normal complex space exists
[Ka88]. Fix some U. If dimWU = 3, then its center EU—a prime divisor—must be
compact, hence contained in a fiber of f, since the general fiber F of f : Z → C
is minimal. Thus we can extend ϕU to a global relative contraction ϕ : Z →W by
setting ϕ = id outside ZU and gluing. So suppose that dimWU ≤ 2 for all U. Since
the general fiber of ϕU has to be rational, we have dimWU = 2 for all U. Moreover
ϕU |F is the unique P1-bundle structure on F. Therefore all ϕU glue to a relative
contraction ϕ : Z →W with dimW = 2. This proves the existence of ϕ.

(2) Repeating step (1) if ϕ is bimeromorphic (note that X is uniruled), we obtain
a sequence

ϕi : Zi −→ Zi+1

where we set Z0 = Z, Z1 = W , ϕ0 = ϕ and where every ϕi is either a relative
contraction or a flip (note that flips are constructed locally analytically, so there is
no problem with the Kähler situation). We obtain some r such that dimZr+1 ≤ 2.
Since the general fiber F of f is not touched by all these contractions and flips
(note: C is irrational and F does not contain (−1)-curves!) and since q(F ) = 1, we
conclude that dimZr+1 = 2. We set, partly just for simplicity

Y = Zr+1, X = Zr, ψ = ϕr

and let α : Y −→ C denote the induced map.
(3) As in [PS97] we say that a line bundle L on a space Z is almost nef if L·C ≥ 0

for all curves C ⊂ Z with finitely many exceptions, all being rational. Since all
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contractions take place in fibers over C, the arguments of [PS97, 2.1, 2.2] apply
and we conclude that −KX|C is almost nef. We examine the structure of ψ. First
notice that generically, i.e. outside the singularities of Y , ψ is a conic bundle. Let
∆ denote the closure of the discriminant locus. Then we prove that

−(4KY |C + ∆)

is almost nef. Notice that W is Q−Gorenstein with only rational singularities
[KMM85] (see also [KoMiMo92]). So the above claim really makes sense. Now,

ψ∗(K2
X|C) = ψ∗((KX − ψ∗α∗(KC))2) = ψ∗(K2

X − 4(g − 1)F )

= ψ∗(KX)2 + 8(g − 1)α−1(c)

for some c ∈ C. Arguing as in [PS97, 1.16], ψ∗(KX)2 = −(4KY + ∆), hence we
conclude

ψ∗(K2
X|C) = −(4KY |C + ∆),

hence, again as in [PS97, 1.16], −(4KY |C) + ∆ is almost nef.
(4) From (3) we deduce that −4(KY |C + ∆) is the sum of an effective and an

almost nef Q−Cartier Weil divisor. Let

π : Ŷ −→ Y

be the minimal desingularisation. So

−KŶ |C = π∗(−KY |C) +A

with an effective divisor A (possibly 0). Hence −KŶ |C is again the sum of an

effective and an almost nef divisor. Let β : Ŷ −→ C be the induced projection
map. Then β∗(KŶ |C) is a nef line bundle, moreover

β∗β∗(KŶ |C) ⊂ KŶ |C .

So KŶ |C is the sum of an effective and a nef divisor, too. We conclude imme-
diately that KŶ |C ≡ 0, hence that KY |C ≡ 0; moreover ∆ = 0 and A = 0. Now
β∗(KŶ |C) ≡ 0, hence β has only multiple fibers as singular fibers (see e.g. [BPV84]).

In particular Ŷ = Y, so that Y is smooth and minimal and α has at most multiple
singular fibers. Since ∆ = 0, ψ is analytically a P1−bundle.

(5) We show that ϕr−1 cannot exist without destroying the property that
−KZr−1|C is almost nef. In case ϕr−1 contracts a divisor to a point p, we argue as
follows. It is clear that −KZr−1|C is not nef (compute the top self-intersection num-
ber). Let F be the fiber ofX −→ C containing p and denote F̂ its strict transform in
Zr−1. The map F̂ −→ F is the blow-up of some ideal with support p. Now−KZr−1|C
is by assumption almost nef. On the other hand −KZr−1|C = ϕ∗r−1(−KF )−A where
A is a divisor supported on the exceptional locus of F̂ −→ F. Let h : F̃ −→ F̂
be a desingularisation. Since the normalisation of F̂ clearly has at most rational
singularities, we conclude that h∗(ϕ∗r−1(−KF ) − A) is almost nef. This is easily
contradicted by the fact that F is a ruled surface over an elliptic curve, using [PS97,
1.4]. We are left with the case that ϕr−1 is the blow-up of a smooth curve B ⊂ X.
Then [PS97, 4.11] already proves that −KZr−1|C is not nef. If B is contained in a
fiber F , then we immediately compute that −KZr−1 |F̂ = ϕ∗r−1(−KF ) − A, where
F̂ is the strict transform of F and A is exactly supported on the exceptional divisor
of F̂ −→ F. Hence −KZr−1|C is not almost nef [PS97, 1.4]. If finally B maps onto
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C, take any general fiber F and then F̂ is the blow up of F in some disjoint points
and it is obvious that −KZr−1|C is not almost nef.

We therefore conclude that Z = X and the proof of Theorem 3 is complete.
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