Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

On the evaluation of generalized Watson integrals
HTML articles powered by AMS MathViewer

by G. S. Joyce and I. J. Zucker PDF
Proc. Amer. Math. Soc. 133 (2005), 71-81 Request permission

Abstract:

The triple integrals \[ W_1(z_1)=\frac {1}{\pi ^3}\int _0^\pi \int _0^\pi \int _0^\pi \frac {\mathrm {d}\theta _1\mathrm {d}\theta _2\mathrm {d}\theta _3}{1-\frac {z_1}{3} (\cos \theta _1\cos \theta _2+\cos \theta _2\cos \theta _3+\cos \theta _3\cos \theta _1)}\] and \[ W_2(z_2)=\frac {1}{\pi ^3}\int _0^\pi \int _0^\pi \int _0^\pi \frac {\mathrm {d}\theta _1\mathrm {d}\theta _2\mathrm {d}\theta _3}{1-\frac {z_2}{3}(\cos \theta _1+\cos \theta _2+ \cos \theta _3)},\] where $z_1$ and $z_2$ are complex variables in suitably defined cut planes, were first evaluated by Watson in 1939 for the special cases $z_1=1$ and $z_2=1$, respectively. In the present paper simple direct methods are used to prove that $\{W_j(z_j)\colon j=1,2\}$ can be expressed in terms of squares of complete elliptic integrals of the first kind for general values of $z_1$ and $z_2$. It is also shown that $W_1(z_1)$ and $W_2(z_2)$ are related by the transformation formula \[ W_2(z_2)=(1-z_1)^{1/2}W_1(z_1),\] where \[ z_2^2=-z_1\left (\frac {3+z_1}{1-z_1}\right ).\] Thus both of Watson’s results for $\{W_j(1)\colon j=1,2\}$ are contained within a single formula for $W_1(z_1)$.
References
  • W. N. Bailey, (1933), A reducible case of the fourth type of Appell’s hypergeometric functions of two variables, Q. J. Math. Oxford 4, 305–308.
  • Jonathan M. Borwein and Peter B. Borwein, Pi and the AGM, Canadian Mathematical Society Series of Monographs and Advanced Texts, vol. 4, John Wiley & Sons, Inc., New York, 1998. A study in analytic number theory and computational complexity; Reprint of the 1987 original; A Wiley-Interscience Publication. MR 1641658
  • J. M. Borwein and I. J. Zucker, Fast evaluation of the gamma function for small rational fractions using complete elliptic integrals of the first kind, IMA J. Numer. Anal. 12 (1992), no. 4, 519–526. MR 1186733, DOI 10.1093/imanum/12.4.519
  • R. T. Delves and G. S. Joyce, On the Green function for the anisotropic simple cubic lattice, Ann. Physics 291 (2001), no. 1, 71–133. MR 1848300, DOI 10.1006/aphy.2001.6148
  • Giiti Iwata, Evaluation of the Watson integral of a face-centered lattice, Natur. Sci. Rep. Ochanomizu Univ. 20 (1969), 13–18. MR 267143
  • G. S. Joyce, (1972), Lattice Green function for the simple cubic lattice, J. Phys. A: Gen. Phys. 5, L65-L68.
  • G. S. Joyce, On the simple cubic lattice Green function, Philos. Trans. Roy. Soc. London Ser. A 273 (1973), no. 1236, 583–610. MR 591189, DOI 10.1098/rsta.1973.0018
  • G. S. Joyce, On the cubic lattice Green functions, Proc. Roy. Soc. London Ser. A 445 (1994), no. 1924, 463–477. MR 1276913, DOI 10.1098/rspa.1994.0072
  • G. S. Joyce, (1998), On the cubic modular transformation and the cubic lattice Green functions, J. Phys. A: Math. Gen. 31, 5105–5115.
  • G. S. Joyce, Exact evaluation of the simple cubic lattice Green function for a general lattice point, J. Phys. A 35 (2002), no. 46, 9811–9828. MR 1947241, DOI 10.1088/0305-4470/35/46/307
  • Chester Snow, Hypergeometric and Legendre functions with applications to integral equations of potential theory, National Bureau of Standards Applied Mathematics Series, No. 19, U. S. Government Printing Office, Washington, D.C., 1952. MR 0048145
  • H. M. Srivastava and Per W. Karlsson, Multiple Gaussian hypergeometric series, Ellis Horwood Series: Mathematics and its Applications, Ellis Horwood Ltd., Chichester; Halsted Press [John Wiley & Sons, Inc.], New York, 1985. MR 834385
  • Michael Tikson, Tabulation of an integral arising in the theory of cooperative phenomena, J. Research Nat. Bur. Standards 50 (1953), 177–178. MR 0055780, DOI 10.6028/jres.050.027
  • G. N. Watson, Three triple integrals, Quart. J. Math. Oxford Ser. 10 (1939), 266–276. MR 1257, DOI 10.1093/qmath/os-10.1.266
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC (2000): 33-xx
  • Retrieve articles in all journals with MSC (2000): 33-xx
Additional Information
  • G. S. Joyce
  • Affiliation: Wheatstone Physics Laboratory, King’s College, University of London, Strand, London WC2R 2LS, United Kingdom
  • Email: gsj@maxwell.ph.kcl.ac.uk
  • I. J. Zucker
  • Affiliation: Wheatstone Physics Laboratory, King’s College, University of London, Strand, London WC2R 2LS, United Kingdom
  • Email: jz@maxwell.ph.kcl.ac.uk
  • Received by editor(s): March 13, 2003
  • Published electronically: August 24, 2004
  • Communicated by: Jonathan M. Borwein
  • © Copyright 2004 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 133 (2005), 71-81
  • MSC (2000): Primary 33-xx
  • DOI: https://doi.org/10.1090/S0002-9939-04-07447-7
  • MathSciNet review: 2085155