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BLOCH SPACE IN THE UNIT BALL OF Cn

GUANGBIN REN AND CAIFENG TU

(Communicated by Mei-Chi Shaw)

Abstract. In this paper we obtain higher-dimensional versions of the Holland-
Walsh characterization of the Bloch space and the Stroethoff characterization
of the little Bloch space.

1. Introduction

The purpose of this paper is to generalize the characterizations of the Bloch space
and the little Bloch space in the unit disc by Holland-Walsh [6] and Stroethoff [16]
to higher dimensions.

Let B denote the unit ball in Cn. For any holomorphic function f on B and
any z ∈ B, set

Qf(z) = sup
0�=x∈Cn

|〈∇f(z), x̄〉|
(Hz(x, x))1/2

,

where 〈·, ·〉 denotes the usual inner product on Cn, ∇f(z) = ( ∂f
∂z1

(z), . . . , ∂f
∂zn

(z))
is the complex gradient of f and Hz(x, x) is the Bergman metric in B, i.e.,

Hz(x, x) =
n + 1

2
(1 − |z|2)|x|2 + |〈x, z〉|2

(1 − |z|2)2 .

As introduced by Timoney in [17] and [18], the Bloch space B is the set of
holomorphic functions f on B such that

||f ||B = sup
z∈B

Qf (z) < ∞,

and the little Bloch space B0 is the set of holomorphic functions f on B such
that

lim
|z|→1−

Qf(z) = 0.

We refer to [17], [18], [13], [7], [5], [4], [10], and [8] for the various characterizations
of the Bloch and little Bloch spaces in the unit ball of Cn. For example, for any
holomorphic function f on B (see [17], [18]),

(i) f ∈ B if and only if supz∈B (1 − |z|2)|∇f(z)| < ∞;
(ii) f ∈ B0 if and only if (1 − |z|2)|∇f(z)| → 0 as |z| → 1−.
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In 1986 Holland and Walsh [6] gave the following characterization for the Bloch
space B(D) in the unit disc D = {z ∈ C : |z| < 1}.

Theorem A. For any holomorphic function f in D, f ∈ B(D) if and only if

(1.1) sup
z,w∈D

z �=w

(1 − |z|2)1/2(1 − |w|2)1/2

∣∣∣∣f(z) − f(w)
z − w

∣∣∣∣ < ∞.

With the Möbius transformation as a main tool, Stroethoff [16] gave an ele-
mentary proof of this theorem. Recently, using the same approach, Nowak [9]
generalized this result to the Bloch space B in the unit ball B of Cn:

Theorem B. For any holomorphic function f in B, f ∈ B if and only if

(1.2) sup
z,w∈B

z �=w

(1 − |z|2)1/2(1 − |w|2)1/2 |f(z) − f(w)|
|w − Pwz − swQwz| < ∞,

where Pw is the orthogonal projection of Cn onto the subspace spanned by w,
Qw = I − Pw and sw = (1 − |w|2)1/2. Note that I is, as usual, the identity
operator.

Notice that when n = 1, we have Pw = I and Qw = 0, so that the denominator
in (1.2) is exactly |w − z|. Hence, Theorem B is a generalization of Theorem A.

In view of (1.1) and (1.2), a natural question arises whether the following con-
dition gives the characterization of Bloch space in the unit ball:

(1.3) sup
z,w∈B

z �=w

(1 − |z|2)1/2(1 − |w|2)1/2 |f(z) − f(w)|
|z − w| < ∞.

An affirmative answer is obtained in this paper; see Theorem 3.1.
Analogous to the Holland-Walsh characterization for the Bloch space, Stroethoff

[16] gave a membership criterion for the little Bloch space, which is analogous to
Theorem A. We will also extend the result of Stroethoff to higher dimensions; see
Theorem 3.2.

2. Notation and preliminaries

We shall use real techniques to deal with holomorphic functions. For this reason,
we identify Cn with Rm (m = 2n). In general, for any x ∈ Rm we write
x = |x|x′ in polar coordinates, where x′ ∈ ∂B. Especially when x = 0, we set
x′ = (1, 0, . . . , 0).

By the symmetric lemma,

(2.1) ||y|w − y′| = ||w|y − w′|, ∀ y, w ∈ R
m,

which can be verified by squaring both sides and expanding through the inner
product. The same reasoning leads to

||y|w − (1 − |w|2)y′| = ||w|y − (1 − |w|2)w′|,

so that

(2.2) ||y|2w − (1 − |w|2)y| = |y|||w|y − (1 − |w|2)w′|.
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We regard B as the real unit ball in Rm. For any a ∈ B, denote by
ϕa the Möbius transformation in the real unit ball in Rm. It is an involution
automorphism of B such that ϕa(0) = a and ϕa(a) = 0, which is of the form

(2.3) ϕa(x) =
|x − a|2a − (1 − |a|2)(x − a)

||a|x − a′|2 , a, x ∈ B.

We refer the reader to [1] for further properties of the Möbius transformations in
the real unit ball.

For any a, x ∈ B, from (2.3) and (2.2) with w = a and y = x − a we have

(2.4) |ϕa(x)| =
|x − a|

||a|x − a′| ,

such that

(2.5) 1 − |ϕa(x)|2 =
(1 − |x|2)(1 − |a|2)

||a|x − a′|2 .

Combining (2.4) with (2.5), we immediately get the following identity.

Lemma 2.1. For any z, w ∈ B with z �= w,

(2.6)
1 − |ϕz(w)|2
|ϕz(w)|2 =

(1 − |z|2)(1 − |w|2)
|w − z|2 .

For any a ∈ B and δ ∈ (0, 1), we denote

E(a, δ) = {x ∈ B : |ϕa(x)| < δ},
B(a, δ) = {x ∈ B : |x − a| < δ}.

Clearly, E(a, δ) = ϕa(B(0, δ)). It is easy to see that

(2.7) B(a,
δ

2
(1 − |a|2)) ⊂ E(a, δ).

In fact, for any x ∈ B(a, δ
2 (1 − |a|2)), from (2.4) we have

|ϕa(x)| =
|x − a|

||a|x − a′| ≤
|x − a|

|a′| − |a||x| ≤
|x − a|
1 − |a| < δ,

which implies x ∈ E(a, δ), as desired.
In the real unit ball B of Rm, we consider the measure

dτ(w) = (1 − |w|2)−mdw,

where dw is the normalized Lebesgue measure on B. It is an invariant measure
on B under the Möbius transformations in (2.3) (see [1]). We will apply the fact
that τ(E(a, δ)) is independent of a ∈ B; indeed,

(2.8) τ(E(a, δ)) = τ(B(0, δ)) = m

∫ δ

0

tm−1(1 − t2)−mdt.

As usual, constants are denoted by the same letter C, which will be independent
of the particular functions under consideration. We will often indicate variables in
the subscript on which C depends.
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3. Main results

In this section, we give a natural extension of the Holland-Walsh characterization
of the Bloch space to the unit ball. An analogous little Bloch version also holds
true. Our main results are the following theorems.

Theorem 3.1. For any holomorphic function f on B, f ∈ B if and only if

(3.1) S(f) := sup
z,w∈B

z �=w

(1 − |z|2)1/2(1 − |w|2)1/2 |f(z) − f(w)|
|z − w| < ∞.

Moreover, the two seminorms supz∈B(1 − |z|2)|∇f(z)| and S(f) are equivalent.

Theorem 3.2. For any holomorphic function f on B, f ∈ B0 if and only if

(3.2) lim
|z|→1−

sup
w∈B
w �=z

(1 − |z|2)1/2(1 − |w|2)1/2 |f(z) − f(w)|
|z − w| = 0.

Proof of Theorem 3.1. Assume that f ∈ B. For any z, w ∈ B, we have

f(z) − f(w) =
∫ 1

0

df

dt
(tz + (1 − t)w)dt

=
n∑

k=1

(zk − wk)
∫ 1

0

∂f

∂zk
(tz + (1 − t)w)dt.

By the Cauchy-Schwarz inequality and the obvious inequality | ∂f
∂zk

| ≤ |∇f |, we
have

|f(z) − f(w)| ≤

√√√√ n∑
k=1

|zk − wk|2
√√√√ n∑

k=1

(∫ 1

0

| ∂f

∂zk
(tz + (1 − t)w)|dt

)2

.

≤ |z − w|
√

n

∫ 1

0

|(∇f)(tz + (1 − t)w)|dt.

By the result of Timoney [17], the seminorms supz∈B(1−|z|2)|∇f(z)| and ||f ||B
are equivalent. Thus, (1− |tz + (1− t)w|2)|∇f(tz + (1− t)w)| ≤ C||f ||B for some
absolute constant C > 0. This implies

|f(z) − f(w)|
|z − w| ≤

√
nC||f ||B

∫ 1

0

1
1 − |tz + (1 − t)w|2 dt.

Now by the triangle inequality, |tz + (1 − t)w| ≤ t|z| + (1 − t)|w|, we have
1 − |tz + (1 − t)w| ≥ 1 − t|z| − (1 − t)|w|

= (1 − t)(1 − |w|) + t(1 − |z|).
Thus for any 0 < t < 1 and z, w ∈ B, we have 1−|tz+(1− t)w| ≥ (1− t)(1−|w|)
and 1 − |tz + (1 − t)w| ≥ t(1 − |z|), such that

1 − |tz + (1 − t)w| ≥
√

(1 − t)(|1 − |w|)
√

t(|1 − |z|).
Therefore,∫ 1

0

1
1 − |tz + (1 − t)w|dt ≤

∫ 1

0

1√
(1 − t)(|1 − |w|)

√
t(|1 − |z|)

dt

= π
1

(1 − |w|)1/2(1 − |z|)1/2
.
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Noticing that 1 − |tz + (1 − t)w|2 ≥ 1 − |tz + (1 − t)w| for any 0 < t < 1 and
z, w ∈ B, we finally obtain

(3.3) (1 − |z|2)1/2(1 − |w|2)1/2 |f(z)− f(w)|
|z − w| ≤ π

√
nC||f ||B.

This proves the necessity.
Now suppose that f is holomorphic and (3.1) is satisfied. We will show that

f ∈ B.
We identify Cn with R2n and adopt the notation from section 2. Fix δ ∈ (0, 1).

Since f is harmonic, it follows from a well-known result for harmonic functions
(see [14, Appendix C. 3] or [11, p. 504]) that

(1 − |z|2)|∇f(z)| ≤ C

∫
B(z, δ

2 (1−|z|2))
|f(w)|dτ(w)

for any z ∈ B. Combining this result with (2.7), we have

(1 − |z|2)|∇f(z)| ≤ C

∫
E(z,δ)

|f(w)|dτ(w), ∀ z ∈ B.

Now fixing z ∈ B and replacing f by f − f(z), we get

(3.4) (1 − |z|2)|∇f(z)| ≤ C

∫
E(z,δ)

|f(w) − f(z)|dτ(w).

Therefore, from (2.8),

(1 − |z|2)|∇f(z)| ≤ C sup
w∈E(z,δ)

|f(w) − f(z)| = C sup
w∈E(z,δ)

w �=z

|f(w) − f(z)|.

Notice that for any w ∈ E(z, δ), we have |ϕz(w)| ≤ δ, such that√
1 − |ϕz(w)|2
|ϕz(w)| ≥

√
1 − δ2

δ
.

It follows from Lemma 2.1 that

(3.5)
(1 − |z|2)1/2(1 − |w|2)1/2

|w − z| ≥
√

1 − δ2

δ
, ∀ w ∈ E(z, δ).

Consequently,

(3.6) (1 − |z|2)|∇f(z)| ≤ C sup
w∈E(z,δ)

w �=z

(1 − |z|2)1/2(1 − |w|2)1/2

|z − w| |f(z) − f(w)|.

Since the supremum in (3.6) can be controlled by the quantity in (3.1), we have

(1 − |z|2)|∇f(z)| ≤ C S(f) < ∞
for any z ∈ B. This fact implies that f ∈ B.

From the above proof we can easily see that the two seminorms of the Bloch
space B, supz∈B (1 − |z|2)|∇f(z)| and S(f), are equivalent. This completes the
proof of Theorem 3.1. �

Proof of Theorem 3.2. Assume that f ∈ B0. Let ft(z) = f(tz), t ∈ (0, 1). By
(3.3), we have

(1 − |z|2)1/2(1 − |w|2)1/2 |(f − ft)(z) − (f − ft)(w)|
|z − w| ≤ C||f − ft||B
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and

(1 − |z|2)1/2(1 − |w|2)1/2 |ft(z) − ft(w)|
|z − w|

= t
(1 − |z|2)1/2(1 − |w|2)1/2

(1 − |tz|2)1/2(1 − |tw|2)1/2
(1 − |tz|2)1/2(1 − |tw|2)1/2 |f(tz) − f(tw)|

|tz − tw|

≤ C
t

1 − t2
(1 − |z|2)1/2||f ||B.

By the triangle inequality, we thus obtain

sup
w∈B
w �=z

(1−|z|2)1/2(1−|w|2)1/2 |f(z) − f(w)|
|z − w| ≤ C

t

1 − t2
(1−|z|2)1/2||f ||B + ||f −ft||B.

In the above inequality, first letting |z| → 1−, the first term on the right side
converges to 0, and then letting t → 1−, the second term on the right side also
converges to 0 (see [18]).

Now suppose that f is holomorphic and (3.2) is satisfied. We will show that
f ∈ B0. By (3.2), for any given ε > 0, there exists δ ∈ (0, 1) such that

sup
w∈B
w �=z

(1 − |z|2)1/2(1 − |w|2)1/2 |f(z) − f(w)|
|z − w| < ε,

whenever |z| > δ. In particular,

sup
w∈E(z,δ)

w �=z

(1 − |z|2)1/2(1 − |w|2)1/2 |f(z)− f(w)|
|z − w| < ε,

whenever |z| > δ. Combining this with (3.6), we get

(1 − |z|2)|∇f(z)| < Cε

for any |z| > δ, which means (1−|z|2)|∇f(z)| → 0 as |z| → 1−. This completes
the proof. �

4. Extensions of Theorems 3.1 and 3.2

We conclude the paper by giving extensions of Theorems 3.1 and 3.2.

Theorem 4.1. Let f be a continuously differentiable function on B satisfying

|∇f(z)| ≤ Cn
1

(1 − |z|2)2n+1

∫
B(z, 1

4 (1−|z|2))
|f(w)|dw

for any z ∈ B. Then
sup
z∈B

(1 − |z|2)|∇f(z)| < ∞

if and only if

sup
z,w∈B

z �=w

(1 − |z|2)1/2(1 − |w|2)1/2 |f(z) − f(w)|
|z − w| < ∞.



BLOCH SPACE IN THE UNIT BALL OF C
n 725

Theorem 4.2. Let f be a continuously differentiable function on B satisfying

|∇f(z)| ≤ Cn
1

(1 − |z|2)2n+1

∫
B(z, 1

4 (1−|z|2))
|f(w)|dw

for any z ∈ B. Then

lim
|z|→1−

sup
z∈B

(1 − |z|2)|∇f(z)| = 0

if and only if

lim
|z|→1−

sup
w∈B
w �=z

(1 − |z|2)1/2(1 − |w|2)1/2 |f(z) − f(w)|
|z − w| = 0.

Since the proofs of Theorems 4.1 and 4.2 are similar to the proofs of Theorems
3.1 and 3.2, respectively, they are here omitted.

Example 4.3. Any M-harmonic function or more generally 
α,β-harmonic func-
tion satisfies the condition of Theorems 4.1 and 4.2 ([3, p. 675]).

Remark 4.4. One anonymous referee suggested another approach to the proof of
the necessity of Theorem 3.1. More precisely, from the maximum modulus theorem
he showed that for any function f holomorphic in B and z ∈ B,

(1 − |z|2)|∇f(z)|

≤ Cn max{|f(w) − f(z)| : w ∈ B(z,
1
4
(1 − |z|2))}

= Cn max{|f(w) − f(z)| : for all w so that |w − z| =
1
4
(1 − |z|2)}

≤ 8Cn max{|f(w) − f(z)| (1 − |z|2)1/2(1 − |w|2)1/2

|w − z| : |w − z| =
1
4
(1 − |z|2)}

≤ 8Cn max{|f(w) − f(z)| (1 − |z|2)1/2(1 − |w|2)1/2

|w − z| : for all w ∈ B}.

Thus (3.1) implies f ∈ B.
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