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A q-SAMPLING THEOREM RELATED
TO THE q-HANKEL TRANSFORM

L. D. ABREU

(Communicated by Carmen C. Chicone)

Abstract. A q-version of the sampling theorem is derived using the q-Hankel
transform introduced by Koornwinder and Swarttouw. The sampling points
are the zeros of the third Jackson q-Bessel function.

1. Introduction

The classical sampling theorem asserts that every function f in the Paley-Wiener
space defined by

PW =
{

f ∈ L2 (R) : f(x) =
1√
2π

∫ π

−π

eixtu (t) dt, u ∈ L2 (−π, π)
}

can be represented by the interpolation series

f (x) =
∞∑

n=−∞
f (n)

sinπ (x − n)
π (x − n)

.

Hardy’s proof of this fact [4] used properties from the kernel of the Fourier trans-
form. Relying on properties of the Hankel transform kernel, Higgins [5] used the
theory of reproducing kernels to obtain a sampling theorem where the sampling
points are the zeros of the Bessel function. In this note, a q-Bessel analogue of the
sampling theorem is derived by considering the kernel of the q-Hankel transform,
Hν

q , introduced by Koornwinder and Swarttouw [8],

(
Hν

q f
)
(x) =

∫ ∞

0

(xt)
1
2 J (3)

ν

(
xt; q2

)
f (t) dqt

where J
(3)
ν denotes the third Jackson q-Bessel function defined by the power series

(1.1) J (3)
ν (x; q) =

(qν+1; q)∞
(q; q)∞

xν
∞∑

n=0

(−1)n
q

n(n+1)
2

(qν+1; q)n(q; q)n
x2n
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with 0 < q < 1 , (a; q)n = (1 − a) (1 − aq) ...
(
1 − aqn−1

)
and (a; q)∞ = lim

n→∞
(a; q)n.

We are using the definition of the q-integral. The q-integral in the interval (0, 1) is
defined as

(1.2)
∫ 1

0

f (t) dqt = (1 − q)
∞∑

n=0

f (qn) qn

and in the interval (0,∞) as

(1.3)
∫ ∞

0

f (t) dqt = (1 − q)
∞∑

n=−∞
f (qn) qn.

The sampling points will turn out to be qjnν

(
q2

)
, where jnν

(
q2

)
is the nth zero of

J
(3)
ν

(
x; q2

)
. In [2] it was proved that jnν

(
q2

)
= q−n+εn , 0 < εn < 1. This shows

how big is the spacing between the sampling points.

2. Preliminaries on reproducing kernels

Let H be a class of complex-valued functions, defined in a set X ⊂ C, such that
X is a Hilbert space with the norm of L2 (X, µ). g (s, x) is a reproducing kernel to
H if

i) g (t, x) ∈ H for every x ∈ X ;
ii) f (x) = 〈f (t) , g (t, x)〉 for every f ∈ H , x ∈ X.
The next result lists the properties of Hilbert spaces with reproducing kernel

that will be used in the remainder. Properties (a), (c) and (d) are proved in
[5]. Property (b) is a well-known property of the reproducing kernels, of primary
importance, because it relates two different kinds of convergence. A proof of (b)
can be found in [10], together with an introduction to the general theory.

Proposition 1. In the Hilbert space L2 [(a, b) , µ], an operator is defined by

Ku = 〈K (x, t) , u (t)〉L2[(a,b),µ] .

The following properties hold:
(a) If K−1 is bounded, the range of K, denoted by N , is a Hilbert space with

reproducing kernel.
(b) If the sequence {fn} converges strongly to f in the norm of H, with reproduc-

ing kernel g, then {fn} converges pointwise in X to f . The convergence is uniform
in every set of X where g (x, x) is bounded.

(c) If K is an isometry, then g (s, x) = 〈K (s, t) , K (x, t)〉L2[(a,b),µ].
(d) Let {fn} be a complete orthogonal sequence in H and (xn) such that fn (xm) =

δnm. Then

fn (t) =
g (t, xn)

g (xn, xn)
.

We will suppose N ⊂ L2 (X, µ), and this implies K bounded. K−1 is a transfor-
mation of N over L2 [(a, b) , µ], also bounded.

3. A q-sampling theorem

We introduce a q-Bessel version of the Paley-Wiener space, and call it PW ν
q :

(3.1)

PW ν
q =

{
f ∈ L2

q (0,∞) : f (x) =
∫ 1

0

(tx)
1
2 J (3)

ν

(
xt; q2

)
u (t) dqt, u ∈ L2

q (0, 1)
}

.



q-SAMPLING 1199

The notation L2
q (0, 1) stands for the Hilbert space associated to the measure of the

q-integral in (0, 1). In [8] the following inversion formula was proved:

(3.2) f (t) =
∫ ∞

0

(xt)
1
2

(
Hν

q f
)
(x)J (3)

ν

(
xt; q2

)
dqx =

(
Hν

q

(
Hν

q f
))

(t) .

Let f ∈ L2
q (0,∞) such that

(
Hν

q f
)
(q−n) = 0 , n = 1, 2, .... Then f ∈ PW ν

q . To
see this use the formula (3.2) and compare (1.2) and (1.3) to write f as an element
of PW ν

q .
Now, in the language of the preceding section, consider X = (0,∞), (a, b) = (0, 1)

and the kernel K (x, t) = (xt)
1
2 J

(3)
ν

(
xt; q2

)
. The corresponding operator K is

(Ku) (x) = 〈K (x, t) , u (t)〉L2
q(0,1) =

∫ 1

0

(xt)
1
2 J (3)

ν

(
xt; q2

)
u (t) dqt.

By (3.2), Hν
q is a self-inverse operator and consequently, an isometry. Thus, K is

also an isometry. The range of K, N , is the set of functions f ∈ L2
q (0,∞) such

that f = Ku for some u ∈ L2
q (0, 1). By (3.1), N = PW ν

q . In the next lemma, the
reproducing kernel of the space PW ν

q is evaluated.

Lemma 1. The set PW ν
q is a Hilbert space with reproducing kernel given by

(3.3)

g (s, x)=(1−q) qv (xs)
1
2 [xJ

(3)
ν+1

(
x; q2

)
J

(3)
ν

(
sq−1; q2

)
−sJ

(3)
ν+1

(
s; q2

)
J

(3)
ν

(
xq−1; q2

)
]

x2 − s2
.

Proof. By Proposition 1 (a), PW ν
q is a space with reproducing kernel g (s, x). From

Proposition 1 (c), since K is an isometry,

g (s, x) = 〈K (s, t) , K (x, t)〉L2
q(0,1) =

∫ 1

0

t (xs)
1
2 J (3)

ν

(
xt; q2

)
J (3)

ν

(
st; q2

)
dqt.

In [7], the following formula was proved:

(3.4)
(
a2 − b2

) ∫ z

0

tJ (3)
ν

(
aqt; q2

)
J (3)

ν

(
bqt; q2

)
dqt

= (1 − q) qν−1z
[
aJ

(3)
ν+1

(
aqz; q2

)
J (3)

ν

(
bz; q2

)
− bJ

(3)
ν+1

(
bqz; q2

)
J (3)

ν

(
az; q2

)]
.

Setting z = 1, a = xq−1 and b = sq−1 in (3.4), (3.3) follows. �

The q-sampling theorem can now be stated and proved.

Theorem 1. If f ∈ PW ν
q , then f has the unique representation

(3.5) f (x) =
∞∑

n=1

f
(
qjnν

(
q2

)) 2
(
xqjnν

(
q2

)) 1
2 J

(3)
ν

(
x; q2

)
d
dx

[
J

(3)
ν (x; q2)

]
x=qjnν(q2)

(x2 − q2j2
nν (q2))

where
(
jnν

(
q2

))
denotes the sequence of positive zeros of J

(3)
ν

(
x; q2

)
. The series

converges uniformly in compact subsets of (0,∞).

Proof. Consider the sequence {fn (x)} defined by

fn (x) =
(
xqjnν

(
q2

)) 1
2 J (3)

ν

(
qxjnν

(
q2

)
; q2

)
.
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It was proved in [1] that {fn (x)} is a complete orthogonal sequence in L2
q (0, 1).

Taking into account that K is an isometry, the sequence (Kfn) (x) is also orthogonal
and complete in PW ν

q . Now set

Fn (x) =
(Kfn) (x)

(Kfn) (qjnν (q2))
.

The orthogonality of {fn (x)} implies

(3.6) Fn

(
qjmν

(
q2

))
= δnm.

Proposition 1 (d) allows us to write

Fn (x) =
g

(
x, qjnν

(
q2

))
g (qjnν (q2) , qjnν (q2))

.

Substituting in (3.3) yields

Fn (x) =
2

(
xqjnν(q2)

) 1
2 J

(3)
ν

(
x; q2

)
d
dx

[
J

(3)
ν (x; q2)

]
x=qjnν(q2)

(x2 − q2j2
nν(q2))

.

Fn (x) is an orthonormal complete sequence in N . Thus, every f ∈ PW ν
q has a

unique series expansion in the form

(3.7) f (x) =
∞∑

n=1

anFn (x)

where an are the Fourier coefficients of f in {Fn (x)}. The series in (3.7) is conver-
gent in the norm of L2

q (0, 1) and also in the norm of PW ν
q . The real-valued function

g (x, x) is continuous, thus bounded in every compact subset of (0,∞) . It follows
from Proposition 1 (b) that (3.7) converges uniformly in compact subsets of (0,∞).
Finally, setting x = qjnν

(
q2

)
in (3.7), (3.6) implies f

(
qjmν

(
q2

))
= am and thus,

(3.7) can be written in the form (3.5). �

4. Application

The following formula is a consequence of the product representation for the
classical Bessel function:

(4.1)
d
dxJν (x)
Jν (x)

= 2x

∞∑
n=1

1
j2
nν − x2

+
ν

x
.

Using the recurrence x d
dxJν (x) − νJν (x) = −xJν+1 (x), (4.1) becomes

(4.2)
Jν+1 (x)
Jν (x)

= −2x

∞∑
n=1

1
j2
nν − x2

where jnν stands for the zeros of Jν (x). In the case of the q-analogues of the Bessel
function, this analysis cannot be done, for there are no formulas to establish a simple
relation between a q-Bessel function and its derivative. While the q-analogue of (4.1)
is very simple to derive from the Hadamard factorization theorem or using residues,
the q-analogue of (4.2) is harder to obtain. In [6], Ismail studied the second Jackson
q-Bessel function, J

(2)
ν (x; q), and found such a q-analogue using the orthogonality
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measure of the modified q-Lommel polynomials associated to J
(2)
ν (x; q). Kvitsinsky

[9] found a recurrence relation for the coefficients hn in the identity

(4.3)
J

(3)
ν+1 (x; q)

J
(3)
ν (x; q)

=
∞∑

n=1

hnx2n−1.

In this section an explicit formula for the coefficients hn will be obtained as a special
case of the expansion of a particular function as a sampling series. Preliminary to
this expansion, a q-integral formula connecting two q-Bessel functions of different
orders is established.

Lemma 2. For y > 0, ν > − 1
2 and x ∈ R, the following relation holds:

(4.4)
(q; q)∞
(qy; q)∞

x−yJ
(3)
ν+y(x; q) =

∫ 1

0

t
ν
2

(tq; q)∞
(tqy; q)∞

J (3)
ν (xt

1
2 ; q)dqt.

Proof. The q-analogues of the gamma and beta functions will be critical in the
proof. According to [3, 1.10], the q-gamma function, Γq(x), is defined by

(4.5) Γq(x) =
(q; q)∞
(qx; q)∞

(1 − q)1−x

and the q-beta function, βq(x, y), by

(4.6) βq(x, y) =
Γq(x)Γq(y)
Γq(x + y)

.

The q-beta function has the q-integral representation

(4.7) βq(x, y) =
∫ 1

0

tx−1 (tq; q)∞
(tqy; q)∞

dqt, Re(x) > 0, y �= 0,−1,−2, ....

Using the series representation (1.1) and the q-integral representation (4.7), it is
easy to see that, if ν > − 1

2 and y > 0,∫ 1

0

t
ν
2

(tq; q)∞
(tqy; q)∞

J (3)
ν (xt

1
2 ; q)dqt

= xν (qν+1; q)∞
(q; q)∞

∞∑
k=0

(−1)k
q

k(k+1)
2

(q; q)k(qν+1; q)k
x2kβq(k + ν + 1, y).(4.8)

Now use (4.5) and (4.6) to express βq(k+ν +1, y) as a quotient of infinite products.
Then, some algebraic manipulations using the formula (a; q)∞ = (a; q)n (aqn; q)∞
allow us to see that the right-hand member of (4.8) is equal to the left-hand member
of identity (4.4). �

Before moving to the next theorem, it is convenient to point out that, from the
definition (1.2), one can verify the relation:

(4.9)
∫ 1

0

f(t
1
2 )dq2 t = (1 + q)

∫ 1

0

tf (t) dqt.

Theorem 2. If u > ν > − 1
2 , the following identity holds:

(4.10) xν−u J
(3)
u

(
x; q2

)
J

(3)
ν (x; q2)

= −2
∞∑

n=1

(
qjnν

(
q2

))ν−u+1
J

(3)
u

(
qjnν

(
q2

)
; q2

)
d
dx

[
J

(3)
ν (x; q2)

]
x=qjnν(q2)

(q2j2
nν (q2) − x2)

.
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Proof. Setting y = u − ν in (4.4) and replacing q by q2, the result is, if u > ν,

(q2; q2)∞
(q2u−2ν ; q2)∞

xν−uJ (3)
u (x; q2) =

∫ 1

0

t
ν
2

(tq2; q2)∞
(tq2u−2ν ; q2)∞

J (3)
ν (xt

1
2 ; q2)dq2t.

Taking (4.9) into account, this can be rewritten as
(4.11)

(q2; q2)∞
(q2u−2ν ; q2)∞

xν−uJ (3)
u (x; q2) = (1 + q)

∫ 1

0

tν+1 (t2q2; q2)∞
(t2q2u−2ν ; q2)∞

J (3)
ν (xt; q2)dqt.

Considering

u (t) = tν+ 1
2
(1 + q)

(
q2u−2ν ; q2

)
∞

(
t2q2; q2

)
∞

(q2; q2)∞ (t2q2u−2ν ; q2)∞
,

relation (4.11) yields

xν−u+ 1
2 J (3)

u

(
x; q2

)
=

∫ 1

0

(tx)
1
2 J (3)

ν (xt; q2)u (t) dqt.

Thus,
f (x) = xν−u+ 1

2 J (3)
u

(
x; q2

)
∈ PW ν

q .

Now it is possible to apply Theorem 1 to f . The result of this application is
(4.10). �

Taking u = ν + 1 in (4.10) and replacing q2 by q, the result is the analogue of
(4.2) previously mentioned:

(4.12)
J

(3)
ν+1 (x; q)

J
(3)
ν (x; q)

= −2x

∞∑
n=1

J
(3)
ν+1

(
q

1
2 jnν (q) ; q

)
d
dx

[
J

(3)
ν (x; q)

]
x=q

1
2 jnν(q)

1
qj2

nν (q) − x2
.

Expanding 1/
(
j2
nν (q) − x2

)
in power series of x and substituting in (4.12), the

coefficients hn in (4.3) can be seen to be

hn =
∞∑

k=1

J
(3)
ν+1

(
q

1
2 jkν (q) ; q

)
d
dx

[
J

(3)
ν (x; q)

]
x=q

1
2 jnν(q)

(
1

qj2
kν (q)

)2n

.

References

[1] L. D. Abreu, J. Bustoz, Complete sets of q-Bessel functions, to appear in “Theory and
Applications of Special Functions. A volume dedicated to Mizan Rahman”, (eds. M. E. H.
Ismail and E. Koelink), Developments in Mathematics, Kluwer Acad. Publ.

[2] L. D. Abreu, J. Bustoz, J. L. Cardoso, The roots of the third Jackson q-Bessel function,
Internat. J. Math. Math. Sci. 67, (2003), 4241-4248.

[3] G. Gasper and M. Rahman, “Basic Hypergeometric Series,” Cambridge University Press,
Cambridge, UK, 1990. MR91d:33034

[4] G. H. Hardy, Notes on special systems of orthogonal functions IV, Proc. Cambridge Phil.
Soc., 37 (1941), 331-348. MR3:108b

[5] J. R. Higgins, An interpolation series associated with the Bessel-Hankel transform, J. Lond.
Math. Soc. 5, (1972) 707-714. MR47:9152

[6] M. E. H. Ismail, The Zeros of Basic Bessel functions, the functions Jν+ax(x), and associated
orthogonal polynomials, J. Math. Anal. Appl. 86 (1982), 1-19. MR83c:33010

[7] H. T. Koelink, R. F. Swarttouw, On the zeros of the Hahn-Exton q-Bessel function and
associated q-Lommel polynomials, J. Math. Anal. Appl. 186, (1994), 690-710. MR95j:33050

[8] T. H. Koornwinder, R. F. Swarttouw, On q-analogues of the Fourier and Hankel transforms.
Trans. Amer. Math. Soc. 333 (1992), no. 1, 445–461. MR92k:33013

http://www.ams.org/mathscinet-getitem?mr=91d:33034
http://www.ams.org/mathscinet-getitem?mr=3:108b
http://www.ams.org/mathscinet-getitem?mr=47:9152
http://www.ams.org/mathscinet-getitem?mr=83c:33010
http://www.ams.org/mathscinet-getitem?mr=95j:33050
http://www.ams.org/mathscinet-getitem?mr=92k:33013


q-SAMPLING 1203

[9] A. A. Kvitsinsky, Spectral zeta functions for q-Bessel equations, J. Phys. A: Math. Gen. 28,
1753-1764 (1995), no. 6. MR96f:58181
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