A q-SAMPLING THEOREM RELATED TO THE q-HANKEL TRANSFORM

L. D. ABREU
(Communicated by Carmen C. Chicone)

Abstract

A q-version of the sampling theorem is derived using the q-Hankel transform introduced by Koornwinder and Swarttouw. The sampling points are the zeros of the third Jackson q-Bessel function.

1. Introduction

The classical sampling theorem asserts that every function f in the Paley-Wiener space defined by

$$
P W=\left\{f \in L^{2}(\mathbf{R}): f(x)=\frac{1}{\sqrt{2 \pi}} \int_{-\pi}^{\pi} e^{i x t} u(t) d t, u \in L^{2}(-\pi, \pi)\right\}
$$

can be represented by the interpolation series

$$
f(x)=\sum_{n=-\infty}^{\infty} f(n) \frac{\sin \pi(x-n)}{\pi(x-n)}
$$

Hardy's proof of this fact [4 used properties from the kernel of the Fourier transform. Relying on properties of the Hankel transform kernel, Higgins 5 used the theory of reproducing kernels to obtain a sampling theorem where the sampling points are the zeros of the Bessel function. In this note, a q-Bessel analogue of the sampling theorem is derived by considering the kernel of the q-Hankel transform, H_{q}^{ν}, introduced by Koornwinder and Swarttouw [8],

$$
\left(H_{q}^{\nu} f\right)(x)=\int_{0}^{\infty}(x t)^{\frac{1}{2}} J_{\nu}^{(3)}\left(x t ; q^{2}\right) f(t) d_{q} t
$$

where $J_{\nu}^{(3)}$ denotes the third Jackson q-Bessel function defined by the power series

$$
\begin{equation*}
J_{\nu}^{(3)}(x ; q)=\frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} x^{\nu} \sum_{n=0}^{\infty}(-1)^{n} \frac{q^{\frac{n(n+1)}{2}}}{\left(q^{\nu+1} ; q\right)_{n}(q ; q)_{n}} x^{2 n} \tag{1.1}
\end{equation*}
$$

[^0]with $0<q<1,(a ; q)_{n}=(1-a)(1-a q) \ldots\left(1-a q^{n-1}\right)$ and $(a ; q)_{\infty}=\lim _{n \rightarrow \infty}(a ; q)_{n}$. We are using the definition of the q-integral. The q-integral in the interval $(0,1)$ is defined as
\[

$$
\begin{equation*}
\int_{0}^{1} f(t) d_{q} t=(1-q) \sum_{n=0}^{\infty} f\left(q^{n}\right) q^{n} \tag{1.2}
\end{equation*}
$$

\]

and in the interval $(0, \infty)$ as

$$
\begin{equation*}
\int_{0}^{\infty} f(t) d_{q} t=(1-q) \sum_{n=-\infty}^{\infty} f\left(q^{n}\right) q^{n} \tag{1.3}
\end{equation*}
$$

The sampling points will turn out to be $q j_{n \nu}\left(q^{2}\right)$, where $j_{n \nu}\left(q^{2}\right)$ is the $n^{\text {th }}$ zero of $J_{\nu}^{(3)}\left(x ; q^{2}\right)$. In [2] it was proved that $j_{n \nu}\left(q^{2}\right)=q^{-n+\epsilon_{n}}, 0<\epsilon_{n}<1$. This shows how big is the spacing between the sampling points.

2. Preliminaries on reproducing kernels

Let H be a class of complex-valued functions, defined in a set $X \subset \mathbf{C}$, such that X is a Hilbert space with the norm of $L^{2}(X, \mu) . g(s, x)$ is a reproducing kernel to H if
i) $g(t, x) \in H$ for every $x \in X$;
ii) $f(x)=\langle f(t), g(t, x)\rangle$ for every $f \in H, x \in X$.

The next result lists the properties of Hilbert spaces with reproducing kernel that will be used in the remainder. Properties $(a),(c)$ and (d) are proved in [5]. Property (b) is a well-known property of the reproducing kernels, of primary importance, because it relates two different kinds of convergence. A proof of (b) can be found in [10], together with an introduction to the general theory.
Proposition 1. In the Hilbert space $L^{2}[(a, b), \mu]$, an operator is defined by

$$
K u=\langle K(x, t), u(t)\rangle_{L^{2}[(a, b), \mu]} .
$$

The following properties hold:
(a) If K^{-1} is bounded, the range of K, denoted by N, is a Hilbert space with reproducing kernel.
(b) If the sequence $\left\{f_{n}\right\}$ converges strongly to f in the norm of H, with reproducing kernel g, then $\left\{f_{n}\right\}$ converges pointwise in X to f. The convergence is uniform in every set of X where $g(x, x)$ is bounded.
(c) If K is an isometry, then $g(s, x)=\langle K(s, t), K(x, t)\rangle_{L^{2}[(a, b), \mu]}$.
(d) Let $\left\{f_{n}\right\}$ be a complete orthogonal sequence in H and $\left(x_{n}\right)$ such that $f_{n}\left(x_{m}\right)=$ $\delta_{n m}$. Then

$$
f_{n}(t)=\frac{g\left(t, x_{n}\right)}{g\left(x_{n}, x_{n}\right)}
$$

We will suppose $N \subset L^{2}(X, \mu)$, and this implies K bounded. K^{-1} is a transformation of N over $L^{2}[(a, b), \mu]$, also bounded.

3. A q-SAMPLING THEOREM

We introduce a q-Bessel version of the Paley-Wiener space, and call it $P W_{q}^{\nu}$:

$$
\begin{equation*}
P W_{q}^{\nu}=\left\{f \in L_{q}^{2}(0, \infty): f(x)=\int_{0}^{1}(t x)^{\frac{1}{2}} J_{\nu}^{(3)}\left(x t ; q^{2}\right) u(t) d_{q} t, u \in L_{q}^{2}(0,1)\right\} \tag{3.1}
\end{equation*}
$$

The notation $L_{q}^{2}(0,1)$ stands for the Hilbert space associated to the measure of the q-integral in $(0,1)$. In [8] the following inversion formula was proved:

$$
\begin{equation*}
f(t)=\int_{0}^{\infty}(x t)^{\frac{1}{2}}\left(H_{q}^{\nu} f\right)(x) J_{\nu}^{(3)}\left(x t ; q^{2}\right) d_{q} x=\left(H_{q}^{\nu}\left(H_{q}^{\nu} f\right)\right)(t) . \tag{3.2}
\end{equation*}
$$

Let $f \in L_{q}^{2}(0, \infty)$ such that $\left(H_{q}^{\nu} f\right)\left(q^{-n}\right)=0, n=1,2, \ldots$. Then $f \in P W_{q}^{\nu}$. To see this use the formula (3.2) and compare (1.2) and (1.3) to write f as an element of $P W_{q}^{\nu}$.

Now, in the language of the preceding section, consider $X=(0, \infty),(a, b)=(0,1)$ and the kernel $K(x, t)=(x t)^{\frac{1}{2}} J_{\nu}^{(3)}\left(x t ; q^{2}\right)$. The corresponding operator K is

$$
(K u)(x)=\langle K(x, t), u(t)\rangle_{L_{q}^{2}(0,1)}=\int_{0}^{1}(x t)^{\frac{1}{2}} J_{\nu}^{(3)}\left(x t ; q^{2}\right) u(t) d_{q} t .
$$

By (3.2), H_{q}^{ν} is a self-inverse operator and consequently, an isometry. Thus, K is also an isometry. The range of K, N, is the set of functions $f \in L_{q}^{2}(0, \infty)$ such that $f=K u$ for some $u \in L_{q}^{2}(0,1)$. By (3.1), $N=P W_{q}^{\nu}$. In the next lemma, the reproducing kernel of the space $P W_{q}^{\nu}$ is evaluated.
Lemma 1. The set $P W_{q}^{\nu}$ is a Hilbert space with reproducing kernel given by
$g(s, x)=(1-q) q^{v} \frac{(x s)^{\frac{1}{2}}\left[x J_{\nu+1}^{(3)}\left(x ; q^{2}\right) J_{\nu}^{(3)}\left(s q^{-1} ; q^{2}\right)-s J_{\nu+1}^{(3)}\left(s ; q^{2}\right) J_{\nu}^{(3)}\left(x q^{-1} ; q^{2}\right)\right]}{x^{2}-s^{2}}$.
Proof. By Proposition $1(a), P W_{q}^{\nu}$ is a space with reproducing kernel $g(s, x)$. From Proposition $1(c)$, since K is an isometry,

$$
g(s, x)=\langle K(s, t), K(x, t)\rangle_{L_{q}^{2}(0,1)}=\int_{0}^{1} t(x s)^{\frac{1}{2}} J_{\nu}^{(3)}\left(x t ; q^{2}\right) J_{\nu}^{(3)}\left(s t ; q^{2}\right) d_{q} t .
$$

In [7], the following formula was proved:

$$
\begin{equation*}
=(1-q) q^{\nu-1} z\left[a J_{\nu+1}^{(3)}\left(a q z ; q^{2}\right) J_{\nu}^{(3)}\left(b z ; q^{2}\right)-b J_{\nu+1}^{(3)}\left(b q z ; q^{2}\right) J_{\nu}^{(3)}\left(a z ; q^{2}\right)\right] . \tag{3.4}
\end{equation*}
$$

Setting $z=1, a=x q^{-1}$ and $b=s q^{-1}$ in (3.4), (3.3) follows.
The q-sampling theorem can now be stated and proved.
Theorem 1. If $f \in P W_{q}^{\nu}$, then f has the unique representation

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} f\left(q j_{n \nu}\left(q^{2}\right)\right) \frac{2\left(x q j_{n \nu}\left(q^{2}\right)\right)^{\frac{1}{2}} J_{\nu}^{(3)}\left(x ; q^{2}\right)}{\frac{d}{d x}\left[J_{\nu}^{(3)}\left(x ; q^{2}\right)\right]_{x=q j_{n \nu}\left(q^{2}\right)}\left(x^{2}-q^{2} j_{n \nu}^{2}\left(q^{2}\right)\right)} \tag{3.5}
\end{equation*}
$$

where $\left(j_{n \nu}\left(q^{2}\right)\right)$ denotes the sequence of positive zeros of $J_{\nu}^{(3)}\left(x ; q^{2}\right)$. The series converges uniformly in compact subsets of $(0, \infty)$.

Proof. Consider the sequence $\left\{f_{n}(x)\right\}$ defined by

$$
f_{n}(x)=\left(x q j_{n \nu}\left(q^{2}\right)\right)^{\frac{1}{2}} J_{\nu}^{(3)}\left(q x j_{n \nu}\left(q^{2}\right) ; q^{2}\right)
$$

It was proved in [1] that $\left\{f_{n}(x)\right\}$ is a complete orthogonal sequence in $L_{q}^{2}(0,1)$. Taking into account that K is an isometry, the sequence $\left(K f_{n}\right)(x)$ is also orthogonal and complete in $P W_{q}^{\nu}$. Now set

$$
F_{n}(x)=\frac{\left(K f_{n}\right)(x)}{\left(K f_{n}\right)\left(q j_{n \nu}\left(q^{2}\right)\right)}
$$

The orthogonality of $\left\{f_{n}(x)\right\}$ implies

$$
\begin{equation*}
F_{n}\left(q j_{m \nu}\left(q^{2}\right)\right)=\delta_{n m} \tag{3.6}
\end{equation*}
$$

Proposition $1(d)$ allows us to write

$$
F_{n}(x)=\frac{g\left(x, q j_{n \nu}\left(q^{2}\right)\right)}{g\left(q j_{n \nu}\left(q^{2}\right), q j_{n \nu}\left(q^{2}\right)\right)}
$$

Substituting in (3.3) yields

$$
F_{n}(x)=\frac{2\left(x q j_{n \nu}\left(q^{2}\right)\right)^{\frac{1}{2}} J_{\nu}^{(3)}\left(x ; q^{2}\right)}{\frac{d}{d x}\left[J_{\nu}^{(3)}\left(x ; q^{2}\right)\right]_{x=q j_{n \nu}\left(q^{2}\right)}\left(x^{2}-q^{2} j_{n \nu}^{2}\left(q^{2}\right)\right)}
$$

$F_{n}(x)$ is an orthonormal complete sequence in N. Thus, every $f \in P W_{q}^{\nu}$ has a unique series expansion in the form

$$
\begin{equation*}
f(x)=\sum_{n=1}^{\infty} a_{n} F_{n}(x) \tag{3.7}
\end{equation*}
$$

where a_{n} are the Fourier coefficients of f in $\left\{F_{n}(x)\right\}$. The series in (3.7) is convergent in the norm of $L_{q}^{2}(0,1)$ and also in the norm of $P W_{q}^{\nu}$. The real-valued function $g(x, x)$ is continuous, thus bounded in every compact subset of $(0, \infty)$. It follows from Proposition $1(b)$ that (3.7) converges uniformly in compact subsets of $(0, \infty)$. Finally, setting $x=q j_{n \nu}\left(q^{2}\right)$ in (3.7), (3.6) implies $f\left(q j_{m \nu}\left(q^{2}\right)\right)=a_{m}$ and thus, (3.7) can be written in the form (3.5).

4. Application

The following formula is a consequence of the product representation for the classical Bessel function:

$$
\begin{equation*}
\frac{\frac{d}{d x} J_{\nu}(x)}{J_{\nu}(x)}=2 x \sum_{n=1}^{\infty} \frac{1}{j_{n \nu}^{2}-x^{2}}+\frac{\nu}{x} \tag{4.1}
\end{equation*}
$$

Using the recurrence $x \frac{d}{d x} J_{\nu}(x)-\nu J_{\nu}(x)=-x J_{\nu+1}(x)$, 4.1) becomes

$$
\begin{equation*}
\frac{J_{\nu+1}(x)}{J_{\nu}(x)}=-2 x \sum_{n=1}^{\infty} \frac{1}{j_{n \nu}^{2}-x^{2}} \tag{4.2}
\end{equation*}
$$

where $j_{n \nu}$ stands for the zeros of $J_{\nu}(x)$. In the case of the q-analogues of the Bessel function, this analysis cannot be done, for there are no formulas to establish a simple relation between a q-Bessel function and its derivative. While the q-analogue of (4.1) is very simple to derive from the Hadamard factorization theorem or using residues, the q-analogue of (4.2) is harder to obtain. In [6], Ismail studied the second Jackson q-Bessel function, $J_{\nu}^{(2)}(x ; q)$, and found such a q-analogue using the orthogonality
measure of the modified q-Lommel polynomials associated to $J_{\nu}^{(2)}(x ; q)$. Kvitsinsky [9] found a recurrence relation for the coefficients h_{n} in the identity

$$
\begin{equation*}
\frac{J_{\nu+1}^{(3)}(x ; q)}{J_{\nu}^{(3)}(x ; q)}=\sum_{n=1}^{\infty} h_{n} x^{2 n-1} \tag{4.3}
\end{equation*}
$$

In this section an explicit formula for the coefficients h_{n} will be obtained as a special case of the expansion of a particular function as a sampling series. Preliminary to this expansion, a q-integral formula connecting two q-Bessel functions of different orders is established.

Lemma 2. For $y>0, \nu>-\frac{1}{2}$ and $x \in \mathbf{R}$, the following relation holds:

$$
\begin{equation*}
\frac{(q ; q)_{\infty}}{\left(q^{y} ; q\right)_{\infty}} x^{-y} J_{\nu+y}^{(3)}(x ; q)=\int_{0}^{1} t^{\frac{\nu}{2}} \frac{(t q ; q)_{\infty}}{\left(t q^{y} ; q\right)_{\infty}} J_{\nu}^{(3)}\left(x t^{\frac{1}{2}} ; q\right) d_{q} t \tag{4.4}
\end{equation*}
$$

Proof. The q-analogues of the gamma and beta functions will be critical in the proof. According to [3, 1.10], the q-gamma function, $\Gamma_{q}(x)$, is defined by

$$
\begin{equation*}
\Gamma_{q}(x)=\frac{(q ; q)_{\infty}}{\left(q^{x} ; q\right)_{\infty}}(1-q)^{1-x} \tag{4.5}
\end{equation*}
$$

and the q-beta function, $\beta_{q}(x, y)$, by

$$
\begin{equation*}
\beta_{q}(x, y)=\frac{\Gamma_{q}(x) \Gamma_{q}(y)}{\Gamma_{q}(x+y)} \tag{4.6}
\end{equation*}
$$

The q-beta function has the q-integral representation

$$
\begin{equation*}
\beta_{q}(x, y)=\int_{0}^{1} t^{x-1} \frac{(t q ; q)_{\infty}}{\left(t q^{y} ; q\right)_{\infty}} d_{q} t, \operatorname{Re}(x)>0, y \neq 0,-1,-2, \ldots \tag{4.7}
\end{equation*}
$$

Using the series representation (1.1) and the q-integral representation (4.7), it is easy to see that, if $\nu>-\frac{1}{2}$ and $y>0$,

$$
\begin{align*}
& \int_{0}^{1} t^{\frac{\nu}{2}} \frac{(t q ; q)_{\infty}}{\left(t q^{y} ; q\right)_{\infty}} J_{\nu}^{(3)}\left(x t^{\frac{1}{2}} ; q\right) d_{q} t \\
& \quad=x^{\nu} \frac{\left(q^{\nu+1} ; q\right)_{\infty}}{(q ; q)_{\infty}} \sum_{k=0}^{\infty}(-1)^{k} \frac{q^{\frac{k(k+1)}{2}}}{(q ; q)_{k}\left(q^{\nu+1} ; q\right)_{k}} x^{2 k} \beta_{q}(k+\nu+1, y) \tag{4.8}
\end{align*}
$$

Now use (4.5) and (4.6) to express $\beta_{q}(k+\nu+1, y)$ as a quotient of infinite products. Then, some algebraic manipulations using the formula $(a ; q)_{\infty}=(a ; q)_{n}\left(a q^{n} ; q\right)_{\infty}$ allow us to see that the right-hand member of (4.8) is equal to the left-hand member of identity (4.4).

Before moving to the next theorem, it is convenient to point out that, from the definition (1.2), one can verify the relation:

$$
\begin{equation*}
\int_{0}^{1} f\left(t^{\frac{1}{2}}\right) d_{q^{2}} t=(1+q) \int_{0}^{1} t f(t) d_{q} t \tag{4.9}
\end{equation*}
$$

Theorem 2. If $u>\nu>-\frac{1}{2}$, the following identity holds:

$$
\begin{equation*}
x^{\nu-u} \frac{J_{u}^{(3)}\left(x ; q^{2}\right)}{J_{\nu}^{(3)}\left(x ; q^{2}\right)}=-2 \sum_{n=1}^{\infty} \frac{\left(q j_{n \nu}\left(q^{2}\right)\right)^{\nu-u+1} J_{u}^{(3)}\left(q j_{n \nu}\left(q^{2}\right) ; q^{2}\right)}{\frac{d}{d x}\left[J_{\nu}^{(3)}\left(x ; q^{2}\right)\right]_{x=q j_{n \nu}\left(q^{2}\right)}\left(q^{2} j_{n \nu}^{2}\left(q^{2}\right)-x^{2}\right)} \tag{4.10}
\end{equation*}
$$

Proof. Setting $y=u-\nu$ in (4.4) and replacing q by q^{2}, the result is, if $u>\nu$,

$$
\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q^{2 u-2 \nu} ; q^{2}\right)_{\infty}} x^{\nu-u} J_{u}^{(3)}\left(x ; q^{2}\right)=\int_{0}^{1} t^{\frac{\nu}{2}} \frac{\left(t q^{2} ; q^{2}\right)_{\infty}}{\left(t q^{2 u-2 \nu} ; q^{2}\right)_{\infty}} J_{\nu}^{(3)}\left(x t^{\frac{1}{2}} ; q^{2}\right) d_{q^{2}} t
$$

Taking (4.9) into account, this can be rewritten as

$$
\begin{equation*}
\frac{\left(q^{2} ; q^{2}\right)_{\infty}}{\left(q^{2 u-2 \nu} ; q^{2}\right)_{\infty}} x^{\nu-u} J_{u}^{(3)}\left(x ; q^{2}\right)=(1+q) \int_{0}^{1} t^{\nu+1} \frac{\left(t^{2} q^{2} ; q^{2}\right)_{\infty}}{\left(t^{2} q^{2 u-2 \nu} ; q^{2}\right)_{\infty}} J_{\nu}^{(3)}\left(x t ; q^{2}\right) d_{q} t . \tag{4.11}
\end{equation*}
$$

Considering

$$
u(t)=t^{\nu+\frac{1}{2}} \frac{(1+q)\left(q^{2 u-2 \nu} ; q^{2}\right)_{\infty}\left(t^{2} q^{2} ; q^{2}\right)_{\infty}}{\left(q^{2} ; q^{2}\right)_{\infty}\left(t^{2} q^{2 u-2 \nu} ; q^{2}\right)_{\infty}}
$$

relation (4.11) yields

$$
x^{\nu-u+\frac{1}{2}} J_{u}^{(3)}\left(x ; q^{2}\right)=\int_{0}^{1}(t x)^{\frac{1}{2}} J_{\nu}^{(3)}\left(x t ; q^{2}\right) u(t) d_{q} t
$$

Thus,

$$
f(x)=x^{\nu-u+\frac{1}{2}} J_{u}^{(3)}\left(x ; q^{2}\right) \in P W_{q}^{\nu}
$$

Now it is possible to apply Theorem 1 to f. The result of this application is (4.10).

Taking $u=\nu+1$ in (4.10) and replacing q^{2} by q, the result is the analogue of (4.2) previously mentioned:

$$
\begin{equation*}
\frac{J_{\nu+1}^{(3)}(x ; q)}{J_{\nu}^{(3)}(x ; q)}=-2 x \sum_{n=1}^{\infty} \frac{J_{\nu+1}^{(3)}\left(q^{\frac{1}{2}} j_{n \nu}(q) ; q\right)}{\frac{d}{d x}\left[J_{\nu}^{(3)}(x ; q)\right]_{x=q^{\frac{1}{2}} j_{n \nu}(q)}} \frac{1}{q j_{n \nu}^{2}(q)-x^{2}} \tag{4.12}
\end{equation*}
$$

Expanding $1 /\left(j_{n \nu}^{2}(q)-x^{2}\right)$ in power series of x and substituting in (4.12), the coefficients h_{n} in (4.3) can be seen to be

$$
h_{n}=\sum_{k=1}^{\infty} \frac{J_{\nu+1}^{(3)}\left(q^{\frac{1}{2}} j_{k \nu}(q) ; q\right)}{\frac{d}{d x}\left[J_{\nu}^{(3)}(x ; q)\right]_{x=q^{\frac{1}{2}} j_{n \nu}(q)}}\left(\frac{1}{q j_{k \nu}^{2}(q)}\right)^{2 n}
$$

References

[1] L. D. Abreu, J. Bustoz, Complete sets of q-Bessel functions, to appear in "Theory and Applications of Special Functions. A volume dedicated to Mizan Rahman", (eds. M. E. H. Ismail and E. Koelink), Developments in Mathematics, Kluwer Acad. Publ.
[2] L. D. Abreu, J. Bustoz, J. L. Cardoso, The roots of the third Jackson q-Bessel function, Internat. J. Math. Math. Sci. 67, (2003), 4241-4248.
[3] G. Gasper and M. Rahman, "Basic Hypergeometric Series," Cambridge University Press, Cambridge, UK, 1990. MR91d:33034
[4] G. H. Hardy, Notes on special systems of orthogonal functions IV, Proc. Cambridge Phil. Soc., 37 (1941), 331-348. MR3:108b
[5] J. R. Higgins, An interpolation series associated with the Bessel-Hankel transform, J. Lond. Math. Soc. 5, (1972) 707-714. MR47:9152
[6] M. E. H. Ismail, The Zeros of Basic Bessel functions, the functions $J_{\nu+a x}(x)$, and associated orthogonal polynomials, J. Math. Anal. Appl. 86 (1982), 1-19. MR83c:33010
[7] H. T. Koelink, R. F. Swarttouw, On the zeros of the Hahn-Exton q-Bessel function and associated q-Lommel polynomials, J. Math. Anal. Appl. 186, (1994), 690-710. MR $95 \mathrm{j}: 33050$
[8] T. H. Koornwinder, R. F. Swarttouw, On q-analogues of the Fourier and Hankel transforms. Trans. Amer. Math. Soc. 333 (1992), no. 1, 445-461. MR92k:33013
[9] A. A. Kvitsinsky, Spectral zeta functions for q-Bessel equations, J. Phys. A: Math. Gen. 28, 1753-1764 (1995), no. 6. MR96f:58181
[10] L. Máté, "Hilbert space methods in science and engineering". Adam Hilger, Ltd., Bristol, 1989. MR $92 \mathrm{e}: 46002$

Department of Mathematics, Universidade de Coimbra, Portugal
E-mail address: daniel@mat.uc.pt.

[^0]: Received by the editors November 21, 2003 and, in revised form, December 12, 2003.
 2000 Mathematics Subject Classification. Primary 33D15, 33D05; Secondary 94A20.
 Key words and phrases. Sampling theorem, reproducing kernel, q-Bessel functions, q-Hankel transform.

 Partial financial assistance by Fundação para a Ciência e Tecnologia and Centro de Matemática da Universidade de Coimbra.

