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A ¢-SAMPLING THEOREM RELATED
TO THE ¢-HANKEL TRANSFORM

L. D. ABREU

(Communicated by Carmen C. Chicone)

ABSTRACT. A g-version of the sampling theorem is derived using the g-Hankel
transform introduced by Koornwinder and Swarttouw. The sampling points
are the zeros of the third Jackson g-Bessel function.

1. INTRODUCTION
The classical sampling theorem asserts that every function f in the Paley-Wiener
space defined by

PW:{fELQ(R):f:C (t)dt,u € L* (— W,?T)}

v e

can be represented by the interpolation series

Z fn sm7T (x - n)
Hardy’s proof of this fact [4] used properties from the kernel of the Fourier trans-
form. Relying on properties of the Hankel transform kernel, Higgins [5] used the
theory of reproducing kernels to obtain a sampling theorem where the sampling
points are the zeros of the Bessel function. In this note, a ¢g-Bessel analogue of the
sampling theorem is derived by considering the kernel of the g-Hankel transform,
HY, introduced by Koornwinder and Swarttouw [S],

(1131) @) = | T @t IO (et @) £ (1) dyt

where Jl(,3) denotes the third Jackson g-Bessel function defined by the power series

V+1 qn(n2+1)
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with0< ¢ <1, (a;¢)n=(1—-a)(1—agq).. (1 - aq"‘l) and (a; q)oo = lim (a;q)n.
n—oo

We are using the definition of the g-integral. The g-integral in the interval (0, 1) is
defined as

(1.2) / Fdt=0-9)Y f@")a"

n=0

and in the interval (0,

0,00) as
(1.3) / Trwdi=0-9 Y f@) "

n=-—oo
The sampling points will turn out to be qj,. (q2), where jn, (q2) is the n'" zero of

57 (:c;qQ). In [2] it was proved that j,., (q2) =¢q """ 0 < €, < 1. This shows
how big is the spacing between the sampling points.

2. PRELIMINARIES ON REPRODUCING KERNELS

Let H be a class of complex-valued functions, defined in a set X C C, such that
X is a Hilbert space with the norm of L? (X, ). g (s,z) is a reproducing kernel to
H if

i) g (t,x) € H for every z € X;

it) f(x) =(f(t),g(t,x)) for every f € H, z € X.

The next result lists the properties of Hilbert spaces with reproducing kernel
that will be used in the remainder. Properties (a), (¢) and (d) are proved in
[5]. Property (b) is a well-known property of the reproducing kernels, of primary
importance, because it relates two different kinds of convergence. A proof of (b)
can be found in [I0], together with an introduction to the general theory.
Proposition 1. In the Hilbert space L?[(a,b),p], an operator is defined by

Ku= <K ((E, t) y U (t)>L2[(a,b),p] .
The following properties hold:

(a) If K~ is bounded, the range of K, denoted by N, is a Hilbert space with
reproducing kernel.

(b) If the sequence {fn} converges strongly to f in the norm of H, with reproduc-
ing kernel g, then {fn} converges pointwise in X to f. The convergence is uniform
in every set of X where g (x,x) is bounded.

(c) If K is an isometry, then g (s,x) = (K (s,t), K (2,1)) 2140,

(d) Let {fn} be a complete orthogonal sequence in H and (x,,) such that f, (x.,) =
Onm- Then

g (t7 xn)
t) = Lt
fn (®) g (Tn, xn)

We will suppose N C L2 (X, i), and this implies K bounded. K ! is a transfor-
mation of N over L?[(a,b), u], also bounded.

3. A ¢-SAMPLING THEOREM

We introduce a g-Bessel version of the Paley-Wiener space, and call it PW:
(3.1)

1 1
PW, = {f €L2(0,00): f(x) = /0 (tz)? J (t;¢%) u (t) dgt,u € L (0, 1)} .
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The notation L? (0, 1) stands for the Hilbert space associated to the measure of the
¢-integral in (0, 1) In [§] the following inversion formula was proved:

(32) [ n)® (1) (@) 19 (ts6®) dye = () (1 1) (1)
Let f € Lg (0, 00) such that (H(’;f) (@")=0,n=12,.. Then f € PW, . To
see this use the formula (B:2) and compare (L2) and (I3)) to write f as an element
of PW.

Now, in the language of the preceding section, consider X = (0, c0), (a,b) = (0,1)
and the kernel K (x,t) = (xt)% J (:ct; q2). The corresponding operator K is

() (@) = (K (@.t) w0 = [ @0} I (@tia?) u(t)dot.

By (B2), H, ¢ is a self-inverse operator and consequently, an isometry. Thus, K is
also an isometry. The range of K, N, is the set of functions f € L(QI (0, 00) such
that f = Ku for some u € Lg (0,1). By @3I), N = PW/. In the next lemma, the
reproducing kernel of the space PW/ is evaluated.

Lemma 1. The set PW is a Hilbert space with reproducing kernel given by
(3.3)

(e)* ey (w30%) I (a7 4%) =5 I3, (s:4%) I (a3 %))

g(s,z)=(1-q)q" 72 — g2

Proof. By Proposition[l](a), PW} is a space with reproducing kernel g (s, z). From
Proposition[ (¢), since K is an isometry,

1
g(s,x) = (K (s,t), K (m’t»Lg(O,l) :/0 t(xs) J3) (zt;q )JIE?’) (st; %) dgt.

In [7], the following formula was proved:

(3.4) (a2 - b2) / tJ (aqt; q2) J@® (bqt; q2) dgt
0

=(1-q)¢" 'z {a«fﬁ)l (agz; ¢%) I (b2 ¢?) — b (bazs q?) IS (CLZ;qQ)} :
Setting z =1, a = ¢~ and b = s¢~! in B.4), (B3) follows. O
The g-sampling theorem can now be stated and proved.

Theorem 1. If f € PW[, then f has the unique representation

& _ , 2 (zqjns (¢ )) 5 (z56°)
(3.5) ﬂ@—zf@w@)%P@(m} (22 — ¢%52, (¢%)

T=qjnuv (q2)

where (jm, (q2)) denotes the sequence of positive zeros of Jl(,3) (:c;qQ) . The series
converges uniformly in compact subsets of (0, 00).

Proof. Consider the sequence {f, (z)} defined by

Fo (@) = (@ (62) 7 TS (g2 () 1 2) -
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It was proved in [I] that {f, (x)} is a complete orthogonal sequence in L2 (0,1).
Taking into account that K is an isometry, the sequence (K f,,) (x) is also orthogonal
and complete in PW;. Now set

(K fn) (x)
(K fn) (ainv (4%))
The orthogonality of {f, (z)} implies
(3.6) Fy, (Qjmu (q2)) = Onm-

Proposition [l (d) allows us to write

F, () =

g (.23, qJnv (q2))
9 (@inv (@%) s Qv (¢2))

Fy(x) =
Substituting in (3.3)) yields
2 (ijm/(qQ)) (3) (J) q )

L @) @)

2=qjnv (¢?)

F,(x)=

F, (z) is an orthonormal complete sequence in N. Thus, every f € PW{ has a
unique series expansion in the form

(3.7) fx)= Z anFy, ()

where a,, are the Fourier coefficients of f in {F), (x)}. The series in (1) is conver-
gent in the norm of L(QI (0,1) and also in the norm of PW,/. The real-valued function
g (z, ) is continuous, thus bounded in every compact subset of (0,00). It follows
from Proposition[ (b) that (87Z) converges uniformly in compact subsets of (0, c0).
Finally, setting = ¢jny (¢?) in @), B8) implies f (¢jmv (¢°)) = am and thus,
(BX) can be written in the form (&3). O

4. APPLICATION

The following formula is a consequence of the product representation for the
classical Bessel function:

d
L], (x)
4.1 Al TS =9
( ) v J)) Z Jnl/
Using the recurrence z-LJ, (z) — vJ, (z) = —2J,41 (z), (I) becomes
JVJrl
(4.2) T - xZ 2, -

where j,,,, stands for the zeros of J, (z). In the case of the g-analogues of the Bessel
function, this analysis cannot be done, for there are no formulas to establish a simple
relation between a g-Bessel function and its derivative. While the g-analogue of (E1])
is very simple to derive from the Hadamard factorization theorem or using residues,
the g-analogue of (f.2)) is harder to obtain. In [6], Ismail studied the second Jackson

g-Bessel function, Jl(,Q) (x;q), and found such a g-analogue using the orthogonality



¢-SAMPLING 1201

measure of the modified ¢g-Lommel polynomials associated to J£2) (z; q). Kvitsinsky

[9] found a recurrence relation for the coefficients h,, in the identity

I (@3q) Z‘X’
v+1 ’ _ 2n—1
JV (x7Q) n=1

In this section an explicit formula for the coefficients h,, will be obtained as a special
case of the expansion of a particular function as a sampling series. Preliminary to
this expansion, a g-integral formula connecting two ¢-Bessel functions of different
orders is established.

Lemma 2. Fory >0, v > —% and x € R, the following relation holds:

() —— /1 s (M Qoo 13y,
4.4 ————a VIV (z;q) = t2 7;]5 )(xt?; q)d,t.
(4 (4% @)oo w0 = f (tq¥; @)oo (rt: a)dq
Proof. The g-analogues of the gamma and beta functions will be critical in the
proof. According to [3 1.10], the g-gamma function, I';(x), is defined by

(6D 0 1w
and the ¢-beta function, f,(x,y), by
(16) ey = LY

The ¢-beta function has the g-integral representation

1 (t .
~1 (tg;9)
(4.7 Bq(z,y :/ TP 220 gt Re(z) >0,y #0,—1,-2, ...
) () 0 (tq¥; @)oo ! (
Using the series representation (II]) and the g-integral representation (E1), it is
easy to see that, if v > —% and y > 0,

1
v (tq; 1
[t 50t gy
0

(tq¥; q)oo
%) k(k+1)
(@5 @)os K q ok
4.8 =g RN L PG (kv + 1,y).
49 (4 q)oo kzo( " ore o v)

Now use (£H) and (£6]) to express B,(k+v+1,y) as a quotient of infinite products.
Then, some algebraic manipulations using the formula (a;q)., = (a;q),, (aq";q),
allow us to see that the right-hand member of (£J) is equal to the left-hand member
of identity (Z4). O

Before moving to the next theorem, it is convenient to point out that, from the
definition (L.2), one can verify the relation:

1 1

(4.9) / f(t2)dpt = (1+ q)/ tf (t)dgt.
0 0

Theorem 2. Ifu >v > —%, the following identity holds:

e @) (@i () I (@ (62) 507)
(4.10) = (3) 2y QZ d [ 73 2 2:2 (2 2
v (5q%) — [Ju (z:q )L:qm(q2) (%57, (@%) — 2?)
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Proof. Setting y = u — v in (@4) and replacing q by ¢?, the result is, if u > v,
(q2; q2)oo v—u 7(3 2 /1 v (tq2' q2)oo 1
_\4 94 Joo T®) (- _ PRSI WL R (COYOWE SUAY I
@) (@) o (¢} (125 ¢ )ds

Taking (f9) into account, this can be rewritten as
(4.11)

(4% %) —u 7(3) 2 /1 +1 (4% ) oo 3 2
T Jee pru g(3) (g0 g?) = (1 + gt 2 LoD )0 3) (44 02)q, ¢
(¢*%;¢%) o (=q)=+4q) 0 (t2q% =% %) oo (wt; 47)dg

Considering

w(p) = s (@ 70)  (Pai)
(0% %) (P 250%) g
relation (@I1)) yields
1
xl,_u+%J753) (.23; q2) _ / (t.l?)% ']1(/3) (xt; q2)u (t) dgt.
0

Thus,
fx)= x”*“Jr%Jff) (:c; q2) € PW,; .
Now it is possible to apply Theorem [1 to f. The result of this application is

finu) O

Taking u = v + 1 in (@I0) and replacing ¢ by ¢, the result is the analogue of
(E2) previously mentioned:

00 (3) 1. .
. _— = —2x .
3 2 _ 2
5 (239) L [ 5 (x;q)] L W (g -
=92 jnu(q)

Expanding 1/ (jfw (q) — x2) in power series of x and substituting in (EEI2), the
coefficients h,, in (@3]) can be seen to be

. f: I8 (q%jku (q); q) ( g >2n
" @), > :
S @], L@
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