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ABSTRACT. A theorem by Zacher and Rips states that the finiteness of the
index of a subgroup can be described in terms of purely lattice-theoretic con-
cepts. On the other hand, it is clear that if G is a group and H is a subgroup
of finite index of G, the index |G : H| cannot be recognized in the lattice £(G)
of all subgroups of G, as for instance all groups of prime order have isomor-
phic subgroup lattices. The aim of this paper is to give a lattice-theoretic
characterization of the number of prime factors (with multiplicity) of |G : H]|.

1. INTRODUCTION

For every group G, we shall denote by £(G) the lattice of all subgroups of G. If
G and G are groups, an isomorphism from the lattice £(G) onto the lattice £(G) is
also called a projectivity from G onto G; one of the main problems in the theory of
subgroup lattices is to find group properties that are invariant under projectivities.
In 1980, Zacher [5] and Rips proved independently that any projectivity from a
group G onto a group G maps each subgroup of finite index of G to a subgroup
of finite index of G. In addition, Zacher gave a lattice-theoretic characterization of
the finiteness of the index of a subgroup in a group; other characterizations were
given by Schmidt [3]. On the other hand, it is clear that if G is a group and H
is a subgroup of finite index of G, the index |G : H| cannot be recognized in the
subgroup lattice £(G), as for instance all groups of prime order have the same
lattice of subgroups.

The aim of this paper is to find an arithmetic invariant related to the index of
a subgroup and preserved under projectivities. In fact, if H is a subgroup of finite
index of any group G, we will give a lattice-theoretic characterization of the number
of prime factors (with multiplicity) of |G : H|, so that this number can be detected
in the lattice £(G).

Most of our notation is standard and can be found in [2]; for definitions and
properties concerning lattices and subgroup lattices we refer to the monograph [4].
In particular, if £ is any complete lattice, the smallest and the largest element of £
will be denoted by 0 and I, respectively; moreover, for each pair (a,b) of elements
of £ such that a < b, we put [b/a] = {z € £ | a <z < b}. If a is any non-zero
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element of the finite lattice £, we put
¢(a) =inf{z € L]z < a}

(where the symbol z <-a means that  is a maximal (proper) element of the lattice
[a/0]). Finally, for each positive integer n we will denote by M,, the lattice of length
2 with n atoms.

2. THE WEIGHT OF A FINITE LATTICE
A finite lattice £ is called perfect if it has no maximal elements that are modular.

Lemma 2.1. Let £ be a finite lattice, and let x and y be elements of £ such that
the intervals [x/0] and [y/0] are perfect lattices. Then also the lattice [z V y/0] is
perfect.

Proof. Assume for a contradiction that [z V y/0] contains a maximal element z
that is modular. Since x A z is modular in the perfect lattice [z/0] and the lattices
[V z/z] and [z/z A z] are isomorphic, it follows that A z = = and hence z < z.
We obtain similarly that y < z and so z = x V y, a contradiction. Therefore the
lattice [x V y/0] is perfect. O

Let £ be a finite lattice. It follows from Lemma [21] that £ contains a largest
element 7 such that the interval [r/0] is a perfect lattice; such an element r will be
called the perfect radical of £ and denoted by r(£). Clearly, the lattice £ is perfect
if and only if 7(£) = I.

Recall that an element c of a finite lattice £ is called cyclic if the interval [¢/0] is
a distributive lattice. Moreover, an element a of £ is said to be modularly embedded
in £ if the interval [a V ¢/0] is a modular lattice for each cyclic element ¢ of £; a
modular chain in £ is a chain of elements of £ of the form

O=as<a1 <...<a;=1

such that a;4; is modularly embedded in [I/a;] for each non-negative integer ¢ < t.
For our purposes, we will consider the subset P(£) of £ consisting of all elements
a satisfying the following conditions:

e the lattice [a/0] has a modular chain;

e every interval of [a/0] is directly indecomposable;

o if 2 <-y < aand [z/0] is a chain of length 2, then either [y/0] is a modular
lattice or it is isomorphic to the subgroup lattice £(Ds) of the dihedral
group of order 8.

In particular, P(£) contains any element a of £ such that [a/0] is a modular lattice
whose intervals are directly indecomposable. Note also that, in the special case of
the subgroup lattice of a finite group G, it turns out that the elements of P(£(G))
are precisely the primary subgroups and the P-subgroups of G (see [4], Theorem
7.4.10). Here a group is called a P-group if it is the semidirect product of an abelian
normal subgroup A of prime exponent by a group (x) of prime order such that
induces on A a power automorphism; in particular, all abelian groups of prime
exponent are P-groups.

For a finite lattice £, we let Ag¢ be the set of all atoms of £. For every prime
number p, we define two subsets of Ag, namely

Re(p) ={a € Ag | b € P(L) such that a < b and [b/¢(b)] ~ M,11}
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and

Se(p) = {a€ Ag|3Ibe £ suchthat [b/0] is a chain, ¢(b) # 0,
[aV ¢(b)/0] is distributive and [a V b/¢(b)] ~ Mpy1};

furthermore, we let Te(p) = Re(p) U Se(p) and

TE - U Tﬂ(p)v

peP

where P is the set of all prime numbers. Then, clearly, Te C Ag¢ and in general
Te # Ag, for instance if £ is a non-trivial chain. Finally, for every atom a of £, we
define

we(a) =Min{p e P|a € Te(p)}
ifa€Te and we(a) =0if a € Ag \ Te. Then
we Ag — PU {0}

is a well-defined map described entirely in the (finite) lattice £.

An element z € £ is called a p-element of £ if we(a) = p for every atom a of
[z/0]. As usual, the length [(£) of £ is the largest length of a chain in £, and we
denote the largest length of a chain consisting of p-elements in £ by ¢,(£). The
weight ||£|| of £ is now defined by

121l = e(U1/r (D)) + Y Lo([r(£)/0)),

p€eP

where 7(£) is the perfect radical of £ defined above.

3. THE ORDER OF A FINITE GROUP

It is well known that a finite group is perfect if and only if its subgroup lattice is
perfect (see H], Theorem 5.3.3). It follows that for any finite group G, the perfect
radical of the lattice £(G) is the largest perfect subgroup of G (and so it coincides
with the soluble residual of G).

Lemma 3.1. Let H be a minimal subgroup of a finite group G, and let p be a prime
number. If H € Sg(c)(p), then |H| = p.

Proof. Since H € S¢(c)(p), there exists a cyclic subgroup K of prime power order
such that ¢(K) # {1}, (H, ¢(K)) is cyclic and

[(H, K)/¢(K)] ~ Mp1.

Thus H is not contained in K, so that (H,¢(K)) = H x ¢(K), and in particular H
and K have coprime orders. So (H, K)/¢(K) cannot be a p-group, and hence it is
non-abelian of order pg where p > ¢ € P. Thus [H, K] # {1} and [H, ¢(K)] = {1}.
Therefore K cannot be normal in (H, K), and it follows that |K/¢(K)| = ¢ and
|H| = p. O

Lemma 3.2. Let G be a finite group having no normal Sylow complement. Then
we(a)(H) = |H| for every minimal subgroup H of G.
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Proof. Let |H| = p. We claim that it suffices to show that H belongs to T¢(c(p).

Indeed, this clearly implies that 0 < wg(g)(H) < p. If H were contained in
Te((q) for some prime ¢ < p, then by Lemma 31, H € Rg(e)(q) and so there
would exist @ € P(£(Q)) such that H < Q and [Q/#(Q)] ~ My+1. In this case,
Q@ would be a g-group or a P-group of order ¢gr with ¢ > r € P (see [4], Theorem
7.4.10). This would contradict the fact that H < @ and |H| = p > ¢. Thus
we()(H) =p = [H]|.

To prove that H € Tg¢(g)(p), consider a Sylow p-subgroup S of G containing
H. If S is not cyclic, then we may consider a smallest non-cyclic subgroup P of
S containing H. Every maximal subgroup of P containing H is cyclic and hence
[P/¢(P)] ~ Mpyi1; thus H € Rg(g)(p). So suppose that S is cyclic. Since G is
not p-nilpotent, we have S < C(S) < N¢(S) (see [2], 10.1.8), and for some prime
q # p there exists an element g € Ng(S) with order ¢ inducing an automorphism
of order ¢ in S. Then ¢({g9)) = (g?) centralizes S, and in particular the subgroup
(H, ¢({g))) is cyclic; furthermore, (H, g)/$({g)) is non-abelian of order pq and hence
[(H, 9)/6((g)] = M. Soif 6({g)) # {1}, then H € Se(a(p); and if 6((g)) = {1},
then (H,g) € P(£(G)) and H € Rg(c)(p). In all cases, H € Tg((p) as we wanted
to show. O

We can now prove the following result, which provides a purely lattice-theoretic
description of the order of a finite group having no normal Sylow complement, in
particular of any finite perfect group.

Theorem 3.3. Let G be a finite group having no normal Sylow complement. Then
|G| = Hpép(S(G)).

p€eP

Proof. Tt follows from Lemma [3.2] that for each prime number p, the p-elements of
the lattice £(G) are precisely the p-subgroups of G. In particular, if P is any Sylow
p-subgroup of G, we have that |P| = p’»(*(¢) The theorem follows. O

For an arbitrary finite group G, the order of G' cannot be recognized in £(G).
But we can describe the number of prime factors of |G| in £(G).

Theorem 3.4. Let G be a finite group. Then the weight ||£(G)|| of the subgroup
lattice of G is the number of prime factors of the order of G (with multiplicity).

Proof. Let R be the soluble residual of G. Then R = r(£(G)) and Theorem B.3
yields that

D (Ir(E(@)/0) =Y Lp(&(R)
p€EP peP

is the number of prime factors of |R|. Since G/R is soluble, the number of prime
factors of |G/R)| is just the length of the lattice £(G/R). The number of prime
factors of |G| is the sum of these two numbers, and hence it is ||£(G))]|. O

The above theorem has the following obvious consequence.

Corollary 3.5. Let H be a subgroup of the finite group G. Then the number of
prime factors of the index |G : H| (with multiplicity) is || L(G)|| — ||£(H)]|.
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4. SUBGROUPS OF FINITE INDEX

It is well known that if ¢ and b are modular elements of a lattice £, then also
a Vb is a modular element of £; in the case of the lattice of all subgroups of a group
G, it has been proved that the join of any collection of modular subgroups of G
is likewise a modular subgroup (see [1], Proposizione 1.2). As G. Zacher pointed
out to one of the authors, this property also holds for arbitrary algebraic lattices
(recall that a complete lattice £ is called algebraic if each element of £ is a join of
compact elements).

Lemma 4.1. Let £ be an algebraic lattice, and let X be a non-empty set of modular
elements of £. Then also sup X is a modular element of £.

Proof. Put a = sup X, and let b be any element of £. Consider an element y of the
interval [aV b/a], and let (y;):cs be a collection of compact elements of £ such that

y = supy;. For each ¢ € I there exists a finite subset X; of X such that y; < z; Vb,
i€l
where x; = sup X;; clearly, x; is a modular element of £, and hence

Y <yA(z; V) =2,V (bAy) <aV (bAy).

Thusy <aV (bAy),andsoaV (bAy) =y.
Suppose now that z is an element of the interval [b/a Ab], and put ¢ = (aV z) Ab.
Let (cj)jes be a collection of compact elements of £ for which ¢ = supc¢;, and for
jeJ
each j € J let X be a finite subset of X such that ¢; <z’ V z, where z; = sup X 7.

Since :c; is a modular element of £, we have

¢ < (afV2)Ab=2V (zjAb) =2,

so that ¢ < z and hence z = ¢ = (a V 2) Ab. Tt follows that a is a modular element
of £ (see H], Theorem 2.1.5). O

Let £ be an algebraic lattice, and let a be any element of £. The largest modular
element m of £ such that m < a is called the modular core of a in £, and is denoted
by corega. Clearly, the element a is modular if and only if a = corega; note also
that if corega < a, then a cannot be modular in the lattice [{/coregal. If a and
b are elements of £ such that a < b, the modular core of a in [b/0] will also be
denoted by corepa.

Let £ be an infinite algebraic lattice. A maximal element a of £ is called f-
mazimal if the interval [a/0] is infinite and a satisfies one of the following conditions:

(1) a is not modular in £ and [I/coregal is a finite lattice;

(2) there exists an automorphism ¢ of £ such that a A a® is a modular element
of £ and [I/a A a¥] is a finite lattice with length 2 and at least 3 atoms;

(3) for each automorphism ¢ of £, the element a A a¥ is modular in £ and
[I/aNa¥]={ana? aa? I}.

It follows from the definition that if a is any f-maximal element of £, the lattice
[I/corega] is finite; note also that both conditions (2) and (3) above force the
element a to be modular in £.

Let £ be an infinite algebraic lattice, and let @ and b be elements of £ such that
a < band ais f-maximal in [b/0]; since the lattices [a/corepa] and [b/corepa] are
finite, we can define the lattice index ||b : a|| of @ in b by the position

|1+ al| = [|[b/ corepall| — [[[a/corepall|.
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In particular, if @ is an f-maximal and modular element of [b/0], we have ||b: a|| =
Iib/alll = 1.

Let G be an infinite group; a subgroup M of G is called f-mazimal if M is an
f-maximal element of the lattice £(G). Actually, the f-maximal subgroups of G
are precisely the maximal subgroups of finite index; in fact, the following lattice
characterization of the finiteness of the index of a subgroup holds.

Lemma 4.2. Let G be an infinite group, and let H be a proper subgroup of G.
Then H has finite index in G if and only if there exists a finite chain H = Hy <
H, < ... < Hy = G such that H; is an f-maximal subgroup of H;y1 for each
i=0,1,...,t—1.

Proof. Suppose first that the index |G : H| is finite, and let
H=Hy<H <...<H; =G

be a maximal chain of subgroups between H and GG. Then the subgroup H; is infinite

and maximal in H, 1 for each ¢ = 0,1,... ,¢ — 1; moreover, since |H;+1 : H;| is
finite, we have that H; is an f-maximal subgroup of H;y1 (see [3], Satz 3). The
converse statement follows from the same result. O

We also need the following known result; it shows that if M is an f-maximal
subgroup of an infinite group G, then either coreq(yM = M or coregyM =
corecM (the usual core of M in G in the group-theoretical sense).

Lemma 4.3 (see [3], Lemma 3). Let G be a group, and let M be a mazimal subgroup
of finite index of G. If M is not modular in G, then the largest modular subgroup
of G contained in M is normal in G.

Theorem 4.4. Let G be an infinite group, and let H be a proper subgroup of finite

index of G. Then the number of prime factors of |G : H| (with multiplicity) is the
t—1

sum E [|Hit1 : H;||, where
i=0
H=Hy<H <...<H=G

is a finite chain of subgroups such that H; is an f-maximal subgroup of H; 11 for
eachi=0,1,... t—1.

Proof. Assume first that H; is a modular subgroup of H;;1 for some non-negative
integer ¢ < t, so that ||H;+1 : H;|| = 1 as we already observed; on the other hand,
it is well known that in this case the index |H;4+1 : H;| is a prime number (see [4],
Lemma 5.1.2). Suppose now that H; is not modular in H;;q, and let K; be the
normal core of H; in H;41. By Lemma[43] K; is the largest modular subgroup of
H; 11 contained in H;, and hence we have

([Hia : Hil| = [|[[Hia /K[| — |[[Hi/ K
= |L(Hir /K)|| = [[£(H:i /K3
Since H;y1/K; is a finite group, it follows from Corollary 3.3l that the lattice index
||Hit1 : H;|| is the number of prime factors of |H;11/K; : H;/K;| = |H;y1 : H;l.
The theorem is proved. O
Corollary 4.5. Let ¢ be a projectivity between the groups G and G, and let H be

a subgroup of finite index of G. Then the indices |G : H| and |G : H?| have the
same number of prime factors.
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