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DETECTING THE INDEX OF A SUBGROUP
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(Communicated by Jonathan I. Hall)

Abstract. A theorem by Zacher and Rips states that the finiteness of the
index of a subgroup can be described in terms of purely lattice-theoretic con-
cepts. On the other hand, it is clear that if G is a group and H is a subgroup
of finite index of G, the index |G : H| cannot be recognized in the lattice L(G)
of all subgroups of G, as for instance all groups of prime order have isomor-
phic subgroup lattices. The aim of this paper is to give a lattice-theoretic
characterization of the number of prime factors (with multiplicity) of |G : H|.

1. Introduction

For every group G, we shall denote by L(G) the lattice of all subgroups of G. If
G and Ḡ are groups, an isomorphism from the lattice L(G) onto the lattice L(Ḡ) is
also called a projectivity from G onto Ḡ; one of the main problems in the theory of
subgroup lattices is to find group properties that are invariant under projectivities.
In 1980, Zacher [5] and Rips proved independently that any projectivity from a
group G onto a group Ḡ maps each subgroup of finite index of G to a subgroup
of finite index of Ḡ. In addition, Zacher gave a lattice-theoretic characterization of
the finiteness of the index of a subgroup in a group; other characterizations were
given by Schmidt [3]. On the other hand, it is clear that if G is a group and H
is a subgroup of finite index of G, the index |G : H | cannot be recognized in the
subgroup lattice L(G), as for instance all groups of prime order have the same
lattice of subgroups.

The aim of this paper is to find an arithmetic invariant related to the index of
a subgroup and preserved under projectivities. In fact, if H is a subgroup of finite
index of any group G, we will give a lattice-theoretic characterization of the number
of prime factors (with multiplicity) of |G : H |, so that this number can be detected
in the lattice L(G).

Most of our notation is standard and can be found in [2]; for definitions and
properties concerning lattices and subgroup lattices we refer to the monograph [4].
In particular, if L is any complete lattice, the smallest and the largest element of L

will be denoted by 0 and I, respectively; moreover, for each pair (a, b) of elements
of L such that a ≤ b, we put [b/a] = {x ∈ L | a ≤ x ≤ b}. If a is any non-zero
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element of the finite lattice L, we put

φ(a) = inf{x ∈ L |x <· a}
(where the symbol x <· a means that x is a maximal (proper) element of the lattice
[a/0]). Finally, for each positive integer n we will denote by Mn the lattice of length
2 with n atoms.

2. The weight of a finite lattice

A finite lattice L is called perfect if it has no maximal elements that are modular.

Lemma 2.1. Let L be a finite lattice, and let x and y be elements of L such that
the intervals [x/0] and [y/0] are perfect lattices. Then also the lattice [x ∨ y/0] is
perfect.

Proof. Assume for a contradiction that [x ∨ y/0] contains a maximal element z
that is modular. Since x∧ z is modular in the perfect lattice [x/0] and the lattices
[x ∨ z/z] and [x/x ∧ z] are isomorphic, it follows that x ∧ z = x and hence x ≤ z.
We obtain similarly that y ≤ z and so z = x ∨ y, a contradiction. Therefore the
lattice [x ∨ y/0] is perfect. �

Let L be a finite lattice. It follows from Lemma 2.1 that L contains a largest
element r such that the interval [r/0] is a perfect lattice; such an element r will be
called the perfect radical of L and denoted by r(L). Clearly, the lattice L is perfect
if and only if r(L) = I.

Recall that an element c of a finite lattice L is called cyclic if the interval [c/0] is
a distributive lattice. Moreover, an element a of L is said to be modularly embedded
in L if the interval [a ∨ c/0] is a modular lattice for each cyclic element c of L; a
modular chain in L is a chain of elements of L of the form

0 = a0 < a1 < . . . < at = I

such that ai+1 is modularly embedded in [I/ai] for each non-negative integer i < t.
For our purposes, we will consider the subset P (L) of L consisting of all elements

a satisfying the following conditions:
• the lattice [a/0] has a modular chain;
• every interval of [a/0] is directly indecomposable;
• if x <· y ≤ a and [x/0] is a chain of length 2, then either [y/0] is a modular

lattice or it is isomorphic to the subgroup lattice L(D8) of the dihedral
group of order 8.

In particular, P (L) contains any element a of L such that [a/0] is a modular lattice
whose intervals are directly indecomposable. Note also that, in the special case of
the subgroup lattice of a finite group G, it turns out that the elements of P (L(G))
are precisely the primary subgroups and the P -subgroups of G (see [4], Theorem
7.4.10). Here a group is called a P -group if it is the semidirect product of an abelian
normal subgroup A of prime exponent by a group 〈x〉 of prime order such that x
induces on A a power automorphism; in particular, all abelian groups of prime
exponent are P -groups.

For a finite lattice L, we let AL be the set of all atoms of L. For every prime
number p, we define two subsets of AL, namely

RL(p) = {a ∈ AL | ∃b ∈ P (L) such that a ≤ b and [b/φ(b)] � Mp+1}
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and

SL(p) = {a ∈ AL | ∃b ∈ L such that [b/0] is a chain, φ(b) 	= 0,

[a ∨ φ(b)/0] is distributive and [a ∨ b/φ(b)] � Mp+1};

furthermore, we let TL(p) = RL(p) ∪ SL(p) and

TL =
⋃

p∈P

TL(p),

where P is the set of all prime numbers. Then, clearly, TL ⊆ AL and in general
TL 	= AL, for instance if L is a non-trivial chain. Finally, for every atom a of L, we
define

ωL(a) = Min{p ∈ P | a ∈ TL(p)}
if a ∈ TL and ωL(a) = 0 if a ∈ AL \ TL. Then

ωL : AL −→ P ∪ {0}

is a well-defined map described entirely in the (finite) lattice L.
An element x ∈ L is called a p-element of L if ωL(a) = p for every atom a of

[x/0]. As usual, the length l(L) of L is the largest length of a chain in L, and we
denote the largest length of a chain consisting of p-elements in L by �p(L). The
weight ||L|| of L is now defined by

||L|| = �([I/r(L)]) +
∑

p∈P

�p([r(L)/0]),

where r(L) is the perfect radical of L defined above.

3. The order of a finite group

It is well known that a finite group is perfect if and only if its subgroup lattice is
perfect (see [4], Theorem 5.3.3). It follows that for any finite group G, the perfect
radical of the lattice L(G) is the largest perfect subgroup of G (and so it coincides
with the soluble residual of G).

Lemma 3.1. Let H be a minimal subgroup of a finite group G, and let p be a prime
number. If H ∈ SL(G)(p), then |H | = p.

Proof. Since H ∈ SL(G)(p), there exists a cyclic subgroup K of prime power order
such that φ(K) 	= {1}, 〈H, φ(K)〉 is cyclic and

[〈H, K〉/φ(K)] � Mp+1.

Thus H is not contained in K, so that 〈H, φ(K)〉 = H ×φ(K), and in particular H
and K have coprime orders. So 〈H, K〉/φ(K) cannot be a p-group, and hence it is
non-abelian of order pq where p > q ∈ P. Thus [H, K] 	= {1} and [H, φ(K)] = {1}.
Therefore K cannot be normal in 〈H, K〉, and it follows that |K/φ(K)| = q and
|H | = p. �

Lemma 3.2. Let G be a finite group having no normal Sylow complement. Then
ωL(G)(H) = |H | for every minimal subgroup H of G.
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Proof. Let |H | = p. We claim that it suffices to show that H belongs to TL(G)(p).
Indeed, this clearly implies that 0 < ωL(G)(H) ≤ p. If H were contained in

TL(G)(q) for some prime q < p, then by Lemma 3.1, H ∈ RL(G)(q) and so there
would exist Q ∈ P (L(G)) such that H ≤ Q and [Q/φ(Q)] � Mq+1. In this case,
Q would be a q-group or a P -group of order qr with q ≥ r ∈ P (see [4], Theorem
7.4.10). This would contradict the fact that H ≤ Q and |H | = p > q. Thus
ωL(G)(H) = p = |H |.

To prove that H ∈ TL(G)(p), consider a Sylow p-subgroup S of G containing
H . If S is not cyclic, then we may consider a smallest non-cyclic subgroup P of
S containing H . Every maximal subgroup of P containing H is cyclic and hence
[P/φ(P )] � Mp+1; thus H ∈ RL(G)(p). So suppose that S is cyclic. Since G is
not p-nilpotent, we have S ≤ CG(S) < NG(S) (see [2], 10.1.8), and for some prime
q 	= p there exists an element g ∈ NG(S) with order qn inducing an automorphism
of order q in S. Then φ(〈g〉) = 〈gq〉 centralizes S, and in particular the subgroup
〈H, φ(〈g〉)〉 is cyclic; furthermore, 〈H, g〉/φ(〈g〉) is non-abelian of order pq and hence
[〈H, g〉/φ(〈g〉)] � Mp+1. So if φ(〈g〉) 	= {1}, then H ∈ SL(G)(p); and if φ(〈g〉) = {1},
then 〈H, g〉 ∈ P (L(G)) and H ∈ RL(G)(p). In all cases, H ∈ TL(G)(p) as we wanted
to show. �

We can now prove the following result, which provides a purely lattice-theoretic
description of the order of a finite group having no normal Sylow complement, in
particular of any finite perfect group.

Theorem 3.3. Let G be a finite group having no normal Sylow complement. Then
|G| =

∏

p∈P

p�p(L(G)).

Proof. It follows from Lemma 3.2 that for each prime number p, the p-elements of
the lattice L(G) are precisely the p-subgroups of G. In particular, if P is any Sylow
p-subgroup of G, we have that |P | = p�p(L(G)). The theorem follows. �

For an arbitrary finite group G, the order of G cannot be recognized in L(G).
But we can describe the number of prime factors of |G| in L(G).

Theorem 3.4. Let G be a finite group. Then the weight ||L(G)|| of the subgroup
lattice of G is the number of prime factors of the order of G (with multiplicity).

Proof. Let R be the soluble residual of G. Then R = r(L(G)) and Theorem 3.3
yields that

∑

p∈P

�p([r(L(G))/0]) =
∑

p∈P

�p(L(R))

is the number of prime factors of |R|. Since G/R is soluble, the number of prime
factors of |G/R| is just the length of the lattice L(G/R). The number of prime
factors of |G| is the sum of these two numbers, and hence it is ||L(G))||. �

The above theorem has the following obvious consequence.

Corollary 3.5. Let H be a subgroup of the finite group G. Then the number of
prime factors of the index |G : H | (with multiplicity) is ||L(G)|| − ||L(H)||.
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4. Subgroups of finite index

It is well known that if a and b are modular elements of a lattice L, then also
a∨b is a modular element of L; in the case of the lattice of all subgroups of a group
G, it has been proved that the join of any collection of modular subgroups of G
is likewise a modular subgroup (see [1], Proposizione 1.2). As G. Zacher pointed
out to one of the authors, this property also holds for arbitrary algebraic lattices
(recall that a complete lattice L is called algebraic if each element of L is a join of
compact elements).

Lemma 4.1. Let L be an algebraic lattice, and let X be a non-empty set of modular
elements of L. Then also sup X is a modular element of L.

Proof. Put a = sup X , and let b be any element of L. Consider an element y of the
interval [a∨ b/a], and let (yi)i∈I be a collection of compact elements of L such that
y = sup

i∈I
yi. For each i ∈ I there exists a finite subset Xi of X such that yi ≤ xi ∨ b,

where xi = sup Xi; clearly, xi is a modular element of L, and hence

yi ≤ y ∧ (xi ∨ b) = xi ∨ (b ∧ y) ≤ a ∨ (b ∧ y).

Thus y ≤ a ∨ (b ∧ y), and so a ∨ (b ∧ y) = y.
Suppose now that z is an element of the interval [b/a∧b], and put c = (a∨z)∧b.

Let (cj)j∈J be a collection of compact elements of L for which c = sup
j∈J

cj , and for

each j ∈ J let X ′
j be a finite subset of X such that cj ≤ x′

j ∨ z, where x′
j = sup X ′

j.
Since x′

j is a modular element of L, we have

cj ≤ (x′
j ∨ z) ∧ b = z ∨ (x′

j ∧ b) = z,

so that c ≤ z and hence z = c = (a ∨ z) ∧ b. It follows that a is a modular element
of L (see [4], Theorem 2.1.5). �

Let L be an algebraic lattice, and let a be any element of L. The largest modular
element m of L such that m ≤ a is called the modular core of a in L, and is denoted
by coreLa. Clearly, the element a is modular if and only if a = coreLa; note also
that if coreLa < a, then a cannot be modular in the lattice [I/coreLa]. If a and
b are elements of L such that a < b, the modular core of a in [b/0] will also be
denoted by coreba.

Let L be an infinite algebraic lattice. A maximal element a of L is called f -
maximal if the interval [a/0] is infinite and a satisfies one of the following conditions:

(1) a is not modular in L and [I/coreLa] is a finite lattice;
(2) there exists an automorphism ϕ of L such that a∧aϕ is a modular element

of L and [I/a ∧ aϕ] is a finite lattice with length 2 and at least 3 atoms;
(3) for each automorphism ϕ of L, the element a ∧ aϕ is modular in L and

[I/a ∧ aϕ] = {a ∧ aϕ, a, aϕ, I}.
It follows from the definition that if a is any f -maximal element of L, the lattice

[I/coreLa] is finite; note also that both conditions (2) and (3) above force the
element a to be modular in L.

Let L be an infinite algebraic lattice, and let a and b be elements of L such that
a < b and a is f -maximal in [b/0]; since the lattices [a/coreba] and [b/coreba] are
finite, we can define the lattice index ||b : a|| of a in b by the position

||b : a|| = ||[b/coreba]|| − ||[a/coreba]||.
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In particular, if a is an f -maximal and modular element of [b/0], we have ||b : a|| =
||[b/a]|| = 1.

Let G be an infinite group; a subgroup M of G is called f -maximal if M is an
f -maximal element of the lattice L(G). Actually, the f -maximal subgroups of G
are precisely the maximal subgroups of finite index; in fact, the following lattice
characterization of the finiteness of the index of a subgroup holds.

Lemma 4.2. Let G be an infinite group, and let H be a proper subgroup of G.
Then H has finite index in G if and only if there exists a finite chain H = H0 <
H1 < . . . < Ht = G such that Hi is an f -maximal subgroup of Hi+1 for each
i = 0, 1, . . . , t − 1.

Proof. Suppose first that the index |G : H | is finite, and let

H = H0 < H1 < . . . < Ht = G

be a maximal chain of subgroups between H and G. Then the subgroup Hi is infinite
and maximal in Hi+1 for each i = 0, 1, . . . , t − 1; moreover, since |Hi+1 : Hi| is
finite, we have that Hi is an f -maximal subgroup of Hi+1 (see [3], Satz 3). The
converse statement follows from the same result. �

We also need the following known result; it shows that if M is an f -maximal
subgroup of an infinite group G, then either coreL(G)M = M or coreL(G)M =
coreGM (the usual core of M in G in the group-theoretical sense).

Lemma 4.3 (see [3], Lemma 3). Let G be a group, and let M be a maximal subgroup
of finite index of G. If M is not modular in G, then the largest modular subgroup
of G contained in M is normal in G.

Theorem 4.4. Let G be an infinite group, and let H be a proper subgroup of finite
index of G. Then the number of prime factors of |G : H | (with multiplicity) is the

sum
t−1∑

i=0

||Hi+1 : Hi||, where

H = H0 < H1 < . . . < Ht = G

is a finite chain of subgroups such that Hi is an f -maximal subgroup of Hi+1 for
each i = 0, 1, . . . , t − 1.

Proof. Assume first that Hi is a modular subgroup of Hi+1 for some non-negative
integer i < t, so that ||Hi+1 : Hi|| = 1 as we already observed; on the other hand,
it is well known that in this case the index |Hi+1 : Hi| is a prime number (see [4],
Lemma 5.1.2). Suppose now that Hi is not modular in Hi+1, and let Ki be the
normal core of Hi in Hi+1. By Lemma 4.3, Ki is the largest modular subgroup of
Hi+1 contained in Hi, and hence we have

||Hi+1 : Hi|| = ||[Hi+1/Ki]|| − ||[Hi/Ki]||
= ||L(Hi+1/Ki)|| − ||L(Hi/Ki)||.

Since Hi+1/Ki is a finite group, it follows from Corollary 3.5 that the lattice index
||Hi+1 : Hi|| is the number of prime factors of |Hi+1/Ki : Hi/Ki| = |Hi+1 : Hi|.
The theorem is proved. �
Corollary 4.5. Let ϕ be a projectivity between the groups G and Ḡ, and let H be
a subgroup of finite index of G. Then the indices |G : H | and |Ḡ : Hϕ| have the
same number of prime factors.
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