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A NEW RESULT FOR HYPERGEOMETRIC POLYNOMIALS

KUNG-YU CHEN AND H. M. SRIVASTAVA

(Communicated by Carmen C. Chicone)

Abstract. In some recent investigations involving differential operators for
generalized Laguerre polynomials, Herman Bavinck (1996) encountered and
proved a certain summation formula for the classical Laguerre polynomials.
The main object of this sequel to Bavinck’s work is to prove a generalization

of this summation formula for a class of hypergeometric polynomials. The
demonstration, which is presented here in the general case, differs markedly
from the earlier proof given for the known special case. The general summation
formula is also applied to derive the corresponding result for the classical Jacobi
polynomials.

1. Introduction and motivation

Recently, Bavinck [1] made use of the differential operator in order to prove the
following summation formula for the classical Laguerre polynomials L

(α)
n (x):

l∑
k=j

km L
(α+j)
k−j (x) L

(−α−l−1)
l−k (−x) = (−x)m

δl,j+2m(1)

(x, α ∈ C; j, l, m ∈ N0 := {0, 1, 2, . . .} ; l � j + 2m) ,

where δm,n denotes the Kronecker symbol and

(2) L
(α)
k (x) :=

k∑
j=0

(
α + k

k − j

)
(−x)j

j!
=

(
α + k

k

)
1F1 (−k; α + 1; x)

in terms of the confluent hypergeometric 1F1 function. As already remarked by
Bavinck [1, p. L279], the relationship (1) was encountered in connection with
certain differential operators for generalized Laguerre polynomials.

The main object of this sequel to Bavinck’s work [1] is to present an interesting
generalization of the summation formula (1) to hold true for the classical hyperge-
ometric polynomials 2F1 (−k, β; α; x) of degree k in x, defined by (cf., e.g., [3, p.
334 et seq.])

(3) 2F1 (−k, β; α; x) :=
k∑

j=0

(−k)j (β)j

(α)j

xj

j!
,
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so that, obviously,

(4) L
(α)
k (x) =

(
α + k

k

)
lim

µ→∞

{
2F1

(
−k, β + µ; α + 1;

x

µ

)}
,

for all β independent of µ.

2. Main results

For the hypergeometric polynomials S(α,β)
k (x) defined by [cf. Definition (3)]

(5) S(α,β)
k (x) :=

(
α + k − 1

k

)
2F1 (−k, β; α; x) (x, α, β ∈ C) ,

the following linear generating function is well known (see, e.g., [3, p. 293, Equation
5.2 (12)]):

∞∑
k=0

S(α,β)
k (x) tk = (1 − t)−α

(
1 +

xt

1 − t

)−β

(6)

= (1 − t)β−α [1 − (1 − x) t]−β(
|t| <min

{
1, |1 − x|−1

})
.

Now, in light of the Cauchy Integral Formula, we find from (6) that

(7) S(α,β)
k (x) =

1
2πi

∮
Cε

(1 − z)β−α [1 − (1 − x) z]−β

zk+1
dz,

where the closed contour

Cε

(
0 < ε < min

{
1, |1 − x|−1

})
in the complex z-plane is a circle of radius ε (centred at z = 0), which is described
in the positive (counter-clockwise) direction.

Making use of (7), it is easily observed that
∞∑

k=0

(
m + k

k

)
S(α,β)

m+k (x) tk(8)

=
1

2πi

∮
Cε

(1 − z)β−α [1 − (1 − x) z]−β

(z − t)m+1 dz

=
1

2πi

∮
C

(1 − z)β−α [1 − (1 − x) z]−β

(z − t)m+1 dz (|t| < ε; m ∈ N0) ,

where C is a circle (centred at z = t) lying interior to the circle Cε. Thus, by setting

1 − z = (1 − t) (1 − ζ) and dz = (1 − t) dζ,

we can rewrite the last contour integral in (8) as follows:
∞∑

k=0

(
m + k

k

)
S(α,β)

m+k (x) tk = (1 − t)β−α−m [1 − (1 − x) t]−β(9)

· 1
2πi

∮
C∗

(1 − ζ)β−α

ζm+1

[
1 −

(
1 − x

1 − (1 − x) t

)
ζ

]−β

dζ,

where the closed contour C∗ in the complex ζ-plane is a circle (centred at ζ = 0) of
sufficiently small radius.
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Finally, upon comparing (9) with (7), we obtain the following extended generat-
ing function for the hypergeometric polynomials S(α,β)

k (x) defined by (5):
∞∑

k=0

(
m + k

k

)
S(α,β)

m+k (x) tk(10)

= (1 − t)β−α−m [1 − (1 − x) t]−β S(α,β)
m

(
x

1 − (1 − x) t

)
(
|t| < min

{
1, |1 − x|−1

}
; m ∈ N0

)
,

where we have enlarged the region of validity by appealing to the principle of
analytic continuation on t.

Next we recall (as Theorem 1 below) some general results of Srivastava [2] on
generating functions associated with the Stirling numbers S (n, k) of the second
kind, defined by

(11) S (n, k) :=
1
k!

k∑
j=0

(−1)k−j

(
k

j

)
jn,

so that

(12) S (n, 0) = δn,0 =




1 (n = 0)

0 (n ∈ N := N0\ {0})
and

(13) S (n, 1) = S (n, n) = 1 and S (n, n − 1) =
(

n

2

)
.

Theorem 1 (Srivastava [2, p. 754, Theorem 1]). Let the sequence {Sn (x)}∞n=0 be
generated by

(14)
∞∑

k=0

(
m + k

k

)
Sm+k (x) tk = f (x, t) [g (x, t)]−m

Sm

(
h (x, t)

)
(m ∈ N0) ,

where f, g and h are suitable functions of x and t. Then, in terms of the Stirling
numbers S (n, k) defined by (11), the following family of generating functions holds
true:

∞∑
k=0

km
Sk

(
h (x,−z)

)(
z

g (x,−z)

)k

(15)

= [f (x,−z)]−1
m∑

k=0

k! S (m, k) Sk (x) zk (m ∈ N0) ,

provided that each member of (15) exists.

The generating function (10) obviously belongs to the family given by (14).
Indeed, by comparing (10) with (14), it is easily observed that

f (x, t) = (1 − t)β−α [1 − (1 − x) t]−β ,

g (x, t) = 1 − t,

h (x, t) =
x

1 − (1 − x) t
,
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and
Sk (x) �−→ S(α,β)

k (x) (k ∈ N0) .

Thus the assertion (15) of Theorem 1 yields the following generating function
involving the Stirling numbers S (n, k) defined by (11):

∞∑
k=0

km S(α,β)
k

(
x

1 + (1 − x) z

)(
z

1 + z

)k

(16)

= (1 + z)α−β [1 + (1 − x) z]β
m∑

k=0

k! S (m, k)S(α,β)
k (x) zk

(
m ∈ N0; |z| < min

{
1, |1 − x|−1

})
,

which, for
z �−→ z

1 − z
and x �−→ x

1 − (1 − x) z
,

assumes the following form:
∞∑

k=0

km S(α,β)
k (x) zk = (1 − z)β−α [1 − (1 − x) z]−β(17)

·
m∑

k=0

k! S (m, k)S(α,β)
k

(
x

1 − (1 − x) z

) (
z

1 − z

)k

(
m ∈ N0; |z| < min

{
1, |1 − x|−1

})
.

Our main summation formula involving the hypergeometric polynomials
S(α,β)

k (x) is given by Theorem 2 below.

Theorem 2. Let the hypergeometric polynomials S(α,β)
k (x) be defined by (5).

Suppose also that Pm (x) is a polynomial of degree m in x. Then

l∑
k=j

Pm (k)S(α,β)
k−j (x)S(−α−n+2,−β−r+1)

l−k (x)

(18)

=
P(m)

m (0)
m!

[
(α − β)m xr−1δn,m+r + (β)m (−x)n−r−1 (1 − x)l−j+m−n+1

δr,m

]
(j, l, m, n, r ∈ N0; l − j + 1 � n � m + r; r � m) .

Proof. First of all, by applying the generating functions (6) [or (10) with m = 0]
and (17), we have( ∞∑

k=0

km S(α,β)
k (x) zk

)( ∞∑
k=0

S(−α−n+2,−β−r+1)
k (x) zk

)
(19)

=
m∑

k=0

Qk (x, z)

=
∞∑

p=0

zp

(
p∑

k=0

km S(α,β)
k (x)S(−α−n+2,−β−r+1)

p−k (x)

)
,
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where, for convenience,

Qk (x, z) := k! S (m, k) zk (1 − z)n−k−r−1 [1 − (1 − x) z]r−1(20)

· S(α,β)
k

(
x

1 − (1 − x) z

)
.

Observe that, if

0 � k < m, r � m, and n � m + r,

then Qk (x, z) is a polynomial in z of degree at most n− 2. For p � n− 1, it follows
from (19) and (20) that

p∑
k=0

km S(α,β)
k (x)S(−α−n+2,−β−r+1)

p−k (x)(21)

=
1

2πi

∮
Cε

∑m
k=0 Qk (x, z)

zp+1
dz

=
m!
2πi

∮
Cε

(1 − z)n−m−r−1 [1 − (1 − x) z]r−1

zp−m+1

· S(α,β)
m

(
x

1 − (1 − x) z

)
dz

(
0 < ε < min

{
1, |1 − x|−1

})
,

where Cε denotes the closed contour used earlier in (7).
After a change of variable given by

z =
1
ζ

and dz = − 1
ζ2

dζ,

(21) readily yields
p∑

k=0

km S(α,β)
k (x)S(−α−n+2,−β−r+1)

p−k (x)(22)

=
m!
2πi

∮
C∗
1/ε

ζp−n+1 (ζ − 1)n−m−r [ζ − (1 − x)]r

(ζ − 1) [ζ − (1 − x)]

· S(α,β)
m

(
ζx

ζ − (1 − x)

)
dζ,

where the closed contour C∗
1/ε in the complex ζ-plane is a circle (centred at ζ = 0)

of radius 1/ε.
Since

r � m, n � m + r, and p � n − 1,

the integrand in (22) without the clearly-exhibited denominator

(ζ − 1) [ζ − (1 − x)]

is a polynomial in ζ. Also, by the Chu-Vandermonde theorem [3, p. 30, Equation
1.2 (8)], we have

(23) S(α,β)
m (1) =

(α)m

m!
· (α − β)m

(α)m

=
(α − β)m

m!
(m ∈ N0) .
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Furthermore, for r � m, it is easily seen that

lim
ζ→1−x

{
[ζ − (1 − x)]r S(α,β)

m

(
ζx

ζ − (1 − x)

)}
(24)

= lim
ζ→1−x

{
[ζ − (1 − x)]r

(α)m

m!
· (−m)m (β)m

m! (α)m

(
ζx

ζ − (1 − x)

)m}

=
(β)m

m!
(−x)m (1 − x)m

δr,m (r � m; m ∈ N0) .

Thus, by the Cauchy Residue Theorem, we conclude that
p∑

k=0

km S(α,β)
k (x)S(−α−n+2,−β−r+1)

p−k (x)(25)

= (α − β)m xr−1 δn,m+r + (β)m (−x)n−r−1 (1 − x)p+m−n+1
δr,m

(m, n, p, r ∈ N0; p + 1 � n � m + r; r � m) .

In particular, if s < m, (25) yields

(26)
p∑

k=0

ks S(α,β)
k (x)S(−α−n+2,−β−r+1)

p−k (x) = 0

(m, n, p, r, s ∈ N0; p + 1 � n � m + r; s < m � r)

or, equivalently,

(27)
l∑

k=j

(k − j)s S(α,β)
k−j (x)S(−α−n+2,−β−r+1)

l−k (x) = 0

(j, l, m, n, r, s ∈ N0; l − j + 1 � n � m + r; s < m � r) .

Finally, the assertion (18) of Theorem 2 follows from (25) and (27), since every
polynomial Pm (x) of degree m in x can be expressed as a linear combination of

(x − j)m , (x − j)m−1 , . . . , (x − j) , 1.

�

For the classical Jacobi polynomials P
(α,β)
k (x) of order (or indices) α, β and

degree k in x, defined by

P
(α,β)
k (x) :=

k∑
j=0

(
α + k

k − j

)(
β + k

j

) (
x − 1

2

)j (
x + 1

2

)k−j

(28)

=
(

α + k

k

)
2F1

(
−k, α + β + k + 1; α + 1;

1 − x

2

)
,

it is easily seen from the definition (5) that

(29) P
(α,β−k)
k (x) = S(α+1,α+β+1)

k

(
1 − x

2

)

or, equivalently,

(30) S(α,β)
k (x) = P

(α−1,β−α−k)
k (1 − 2x) .
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Thus, by setting

α �−→ α + 1, β �−→ α + β + 1, and x �−→ 1 − x

2
,

Theorem 2 yields the following result for the classical Jacobi polynomials P
(α,β)
k (x).

Theorem 3. For every polynomial Pm (x) of degree m in x,

l∑
k=j

Pm (k) P
(α,β−k+j)
k−j (x)P

(−α−n,−β+n−r+k−l−1)
l−k (x)(31)

=
P(m)

m (0)
m!

[(
− β

)
m

(
1 − x

2

)r−1

δn,m+r + (α + β + 1)m

·
(

x − 1
2

)n−r−1 (
x + 1

2

)l−j+m−n+1

δr,m

]
(j, l, m, n, r ∈ N0; l − j + 1 � n � m + r; r � m) .

3. Remarks and observations

Upon setting

α �−→ α + j + 1, n = l − j + 1, x �−→ x

β
, r = m + 1, and Pm (k) = km

and using the limit relationship (4), the assertion (18) of Theorem 2 for β → ∞
would reduce at once to Bavinck’s result (1). Furthermore, upon setting

α �−→ α + 1, r = m, n = 2m + 1, and x �−→ x

β

and using the limit relationship (4) once again, the assertion (18) of Theorem 2 for
β → ∞ would immediately yield the following summation formula:

(32)
l∑

k=j

Pm (k) L
(α)
k−j (x)L

(−α−2m−1)
l−k (−x) =

P(m)
m (0)
m!

(−x)m

(j, l, m ∈ N0; l � j + 2m)

for every polynomial Pm (x) of degree m in x.
By applying the familiar limit relationship [3, p. 131, Equation 2.5 (1)]:

(33) L
(α)
k (x) = lim

β→∞

{
P

(α,β)
k

(
1 − 2x

β

)}

instead of (4), the assertion (31) of Theorem 3 can also be applied in order to
deduce (1) as well as (32) in an analogous manner.
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