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ON THE NON-STARLIKENESS OF SOLUTIONS
TO THE STARLIKE INTERIOR WAKE PROBLEM

ANDREW ACKER

(Communicated by Richard A. Wentworth)

Abstract. We study examples of the starlike interior “wake problem” for
which no starlike solution exists relative to the natural star center of the
problem. These examples show that the main result of D.E. Tepper in “A
mathematical model for a wake” (Michigan Math. J. 31 (1984), 161–165) is
not correct.

1. Introduction and main results

We study the 2-dimensional “finite interior wake problem” in the form studied by
D.E. Tepper [T2]. Here, an ideal fluid inside a closed 2-dimensional vessel circulates
around an obstacle in the vessel. The flow may have free surfaces, due to separation
of the flow from the obstacle (called cavitation). The mathematical problem is as
follows:

1.1. Interior wake problem. In the plane �2, let the nested, bounded domains
G and H be given with Cl(H) ⊂ G. For any λ > 0, we seek a simple closed curve
Γλ ⊂ G\H such that

(1) |∇U
λ
| = λ on Γλ\(∂H),

(2) lim inf
Ωλ�q→p

|∇U
λ
(q)| ≥ λ for all p ∈ Γλ,

where Uλ(p) denotes the capacitary potential in the annular domain Ωλ bounded
by Γλ ∪ ∂G (thus Uλ solves the Dirichlet problem: ∆Uλ = 0 in Ωλ, Uλ(Γλ) = 0,
Uλ(∂G) = 1).

Tepper’s study of Problem 1.1 in [T2] is restricted to the starlike case. His main
result states that if G and H are starlike domains having the same star center,
then for λ sufficiently large, Problem 1.1 has at least one solution Γλ, which is also
starlike relative to the same star center. (The same claim appears in [T3, Theorem
1], with reference to [T2].)

We will show that this claim is false: that in general the starlike interior wake
problem does not have any solution which is starlike relative to the common star
center of the two given boundaries (see Theorem 1). We will discuss the source and
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consequences of Tepper’s error in the concluding remarks. It’s worth observing that
Tepper’s claim is not entirely unreasonable, or it would not have stood unchallenged
in print for 20 years. In fact the corresponding claim for the exterior wake problem
(see [T3]) is true.

Theorem 1. Assume in Problem 1.1 that G is a starlike C2-domain having the
origin 0 as its star center, and that ∂G contains a radial line segment. Then no
solution Γλ at λ > 0 can be starlike relative to 0 if λ is sufficiently large.

2. Proof of Theorem 1

Step 1. Under the assumptions of Theorem 1, we have

dist(p, ∂G) ≤ (C/λ)

for all sufficiently large λ > 0, all solutions Γλ of Problem 1.1 at λ, and all points
p ∈ Γλ. Thus (∂H) ∩ Γλ = ∅ for sufficiently large λ > 0.

The proof follows by minor adjustments in the proof of [A4, Lemma 2.5].

Step 2. Under the assumptions of Theorem 1, let Γλ denote a solution at λ > 0.
Then there exist constants M and λ0 > 0 such that for any λ ≥ λ0, the function
φλ(p) := Ln(|∇Uλ(p)|/λ) is such that

|φ
λ
(p)| ≤ M in Ωλ.

Proof. Let r0 = 1/K0, where K0 = max{|K(p)| : p ∈ ∂G} and K(p) denotes
the curvature of ∂G at p ∈ ∂G. Using Step 1, choose λ0 > 0 so large that
sup{dist(p, ∂G) : p ∈ Γλ} < min{(r0/2), dist(∂G, ∂H)} (thus |∇Uλ(p)| = λ for
all λ > λ0 and for all p ∈ Γλ). Given a point p0 ∈ ∂G, choose the points p±0 (with
p−0 ∈ G and p+

0 ∈ �2\G) such that B(p±0 ; r0) are the interior and exterior tangent
balls (of radius r0) to ∂G at p0. Set ω±

λ := {0 < u±
λ (p) < 1} and γ±

λ := {u±
λ (p) = 0},

where
u±

λ (p) = Ln(|p − p±0 |/α±
λ )/Ln(r0/α±

λ )
and α±

λ := dist(p±0 , Γλ). It is easily seen that γ−
λ ⊂ G\Ωλ, γ+

λ ∩ (G\Ωλ) = ∅, and
Γλ ∩ γ±

λ

= ∅. We also have that

±(u±
λ (p) − Uλ(p)) ≤ 0

on ∂(ω±
λ ∩Ωλ), and therefore throughout the domains (ω±

λ ∩Ωλ), by the maximum
principle for harmonic functions. Therefore, we have that

±|∇Uλ(p0)| ≤ ±|∇u±
λ (p0)| = 1/(r0Ln(r0/α±

λ )) = (α±
λ /r0)(1/(α±

λ Ln(r0/α±
λ )))

= ±(α±
λ /r0)|∇u±

λ (p±)| ≤ ±(α±
λ /r0)|∇Uλ(p±)| = ±(λα±

λ /r0)

for any points p± ∈ Γλ ∩ γ±
λ , where (r0/2) ≤ α±

λ ≤ (3r0/2) independent of p0 ∈ ∂G
and λ > λ0. Therefore, we have

Ln(1/2) ≤ φλ(p) ≤ Ln(3/2)

on ∂Ωλ = ∂G ∪ Γλ, and therefore throughout Ωλ, by the maximum principle for
harmonic functions. The assertion follows. �
Step 3. Under the assumptions of Theorem 1, let L = [p1, p2] denote a straight
line segment in ∂G containing its (distinct) endpoints p1, p2, and let L0 denote the
corresponding open line segment. For any fixed closed sub-segment I = [q1, q2] of
L0, let S(I) = {p ∈ �2 : τ · q1 < τ · p < τ · q2}, where τ = ((p2 − p1)/|p2 − p1|).
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For large λ > 0, let Γλ solve Problem 1.1 at λ, and let Ωλ(I) denote the connected
component of Ωλ ∩ S(I) whose boundary intersects I. Then there exist uniform
constants A, B > 0 such that

|φλ(p)| ≤ A · Exp(−Bλ)

in Ωλ(I) for all sufficiently large λ > 0.

Proof. Choose local Cartesian coordinates (x, y) such that L = [0, α]×{0} for α :=
|p2−p1| > 0 and [0, α]×(0, β] ⊂ G for sufficiently small β > 0. Set Rλ(L) = (0, α)×
(0, β(λ)), where β(λ) > 0 is as small as possible consistent with the requirement
that Ωλ(L) ⊂ Rλ(L). Observe that ∆φλ = 0 in Ωλ, |φλ| ≤ M in Ωλ (by Step 2),
φλ(Γλ) = 0, and ∂φ

λ
/∂y = −∂Arg(∇Uλ)/∂x = 0 on L. Assume I := [δ, α−δ]×{0}

for small δ > 0. For any x0 ∈ [δ, α − δ], we conclude by comparison principles,
including the Hopf boundary point lemma, that

±φλ(x, y) ≤ ψλ(x0; x, y) := C0cosh(π(x − x0)/4β)cos(πy/4β),

throughout the intersection of Ωλ(L) with [x0 − δ, x0 + δ] × (0, β), where C0 :=
(2M/cosh(πδ/4β)) and β = β(λ). It follows that |φλ(p)| ≤ (2M/cosh(πδ/4β))
throughout Ωλ(I). The assertion follows from this, in view of the fact that 0 <
β(λ) ≤ (C/λ) (by Step 1). �

Step 4. In the context of Step 3, there exist a value λ0 > 0 and a null function
z(·) such that for any λ ≥ λ0 and any point pλ ∈ Γλ(I) := Γλ ∩ (∂Ωλ(I)), we have
that

dist(pλ, ∂G) = dist(pλ, L0),(3)

|dist(pλ, L0) − (1/λ)| ≤ (1/λ) z(1/λ)(4)

as λ → ∞.

Proof. We remark that z(t) is a null function if z(t) → 0 as t → 0+. The first
assertion, (3), follows easily from Step 1. Turning to the proof of (4), we choose a
closed segment J such that I ⊂ J0 ⊂ J ⊂ L0. For given pλ ∈ Γλ(I), let γλ denote
the curve of steepest ascent of Uλ joining pλ to ∂G. Since |∇Uλ| ≥ Cλ in Ωλ by
Step 2 (where C > 0 is independent of large λ), we have

|γλ| ≤
∫

γλ

(|∇Uλ|/Cλ)ds = (1/Cλ)

where |γλ| denotes the Euclidean arc length of γλ. Therefore, for any δ > 0, we
have |γλ| < δ for sufficiently large λ > 0, from which it follows for all sufficiently
large λ > 0 that γλ ⊂ Ωλ(J). By Step 3, there is a null function z(·) such that

(5) max{||∇Uλ(p)| − λ| : p ∈ Ωλ(J)} ≤ z(1/λ)

as λ → ∞. It follows from (5) (and the fact that γλ ⊂ Ωλ(J)) that

(6) (λ − z(1/λ))dist(pλ, J) ≤ (λ − z(1/λ))|γλ| ≤
∫

γλ

|∇Uλ|ds = 1

for a null function z(·). Now, again given a point pλ ∈ Γλ(I), choose qλ ∈ J such
that |pλ− qλ| = dist(pλ, J), and let γλ now denote the straight line segment joining
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pλ to qλ. Then

1 =
∫

γλ

(dUλ/ds)ds ≤
∫

γλ

|∇Uλ|ds(7)

≤ (λ + z(1/λ))|γλ| = (λ + z(1/λ))dist(pλ, J)

for some null function z(·), again due to (5) and the fact that γλ ⊂ Ωλ(J). The
assertion (4) follows from (6) and (7). �

Step 5. Proof of Theorem 1. If Γλ solves Problem 1.1, then (∂H) ∩ Γλ = ∅
if λ is sufficiently large, by Step 1. Let L be a radial line segment in ∂G. Choose
points p0, q0 ∈ L0 such that |p0| < |q0|. For any sufficiently large λ > 0, choose the
points pλ, qλ ∈ Γλ such that pλ = p0 + αλν and qλ = q0 + βλν, where αλ, βλ > 0
and ν denotes the interior normal to ∂G on L0. In order for Γλ to be starlike
relative to the origin, it is necessary for the line segment joining qλ to the origin to
be contained in Cl(Ωλ), which implies that βλ ≥ (|q0|/|p0|)αλ. It follows by double
application of (4) that

(1/λ)(1 + z(1/λ)) ≥ βλ ≥ (|q0|/|p0|)αλ ≥ (|q0|/|p0|)(1/λ)(1 − z(1/λ)).

This is clearly false for sufficiently large λ. Therefore, the assertion holds.

3. Concluding remarks

Remark 1 (Tepper’s error in [T2]). In his existence proof in [T2], Tepper’s method is
to treat Problem 1.1 as the limiting case of a sequence of “soft-barrier” problems. A
soft-barrier problem is a variant of Problem 1.1 in which the conditions (1) and (2)
are replaced by the single requirement that |∇U(p)| = Q(p) on the free boundary
Γ, for a given, strictly-positive continuous function Q(p): �2 → �+. In his Lemma
3, Tepper states correctly (with reference to the present author [A1]) that if the
function φ(λ) := λQ(λp) is weakly decreasing in λ > 0 for any fixed p ∈ �2 (where
0 is the star center), then the soft-barrier problem has at most one solution, and
that solution must be starlike and contains no radial line segments. Tepper obtains
(the interior complement of) his solution as the union of an infinite collection of
(interior complements of) soft-barrier solutions. The problem is that Tepper’s “soft
barrier” functions Qn(p) do not satisfy the conditions of his Lemma 3. Then the
rest of the proof fails, since his soft barrier problems do not necessarily have starlike
solutions, as follows as a further consequence of the present counterexample.

Remark 2 (comments on [T3]). In [T3], Tepper treats a double-free-boundary prob-
lem involving geometric constraints (hard barriers) on both free boundaries. Tep-
per’s proof of his main result, [T3, Theorem 2], is based on an iterative scheme
involving alternate starlike solutions of the interior and exterior wake problems.
The proof is not valid because it depends in a crucial way on the main result in
[T2] (although Tepper’s analogous result for the exterior wake problem is correct).
Essentially the same existence result, but without the claims of starlikeness, appears
in The Collected Works of A. Beurling [B2] (1989), Chapter 6: A free boundary
problem in the annulus (see Main Theorem, p. 434). It is easy to see that Beurling’s
solution is in fact starlike under Tepper’s assumptions, so that Tepper’s claim in
[T3, Theorem 2] is valid. We remark that Tepper’s argument is essentially a reduc-
tion of Beurling’s argument to the starlike case. The present author also studied



STARLIKE INTERIOR WAKE PROBLEM 753

the double-free-boundary problem with geometric constraints, but in a slightly dif-
ferent geometric context (see [A2]). The author’s existence results followed in the
limiting case from a study of double-free-boundary soft-barrier problems (see [A3]).

Remark 3 (Tepper’s wake and nozzle flow-models). Tepper very briefly generalizes
his results in [T2] and [T3] to the case of fluid flows in infinite domains. Thus,
Problem 1.1 generalizes to the case of a flow around an obstacle H in an infinite
strip-like stream bed of the form G := {(p = (x, y) ∈ �2 : φ1(x) < y < φ2(x)}. It
is important to realize that, contrary to the impression suggested by the infinite-
stream-bed geometry, the flow in this model is restricted to local circulation around
the obstacle H, with no net flow down the stream. The nozzle problem in [T3]
(flow through a nozzle with an inner “obstacle”) is also restricted to the case of
pure circulation around the obstacle (i.e., the fluid flows out of the nozzle on one
side of the obstacle and back in on the other side).
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pp. 9-22. (Proceedings of the conference by the same name held at the Mathematisches

Forschungsinstitut Oberwolfach, Germany, May 1-7, 1977.) MR0497989 (80m:35078)
[A3] A. Acker: A free boundary optimization problem involving weighted areas, J. Appl. Math.

and Phys. (ZAMP) 29 (1978), pp. 395-408. MR0482457 (58:2524a)
[A4] A. Acker: On the qualitative theory of parametrized families of free boundaries. J. reine

angew. Math. 193(1989), pp. 134-167. MR0972364 (90a:35229)
[A5] A. Acker: Uniqueness and monotonicity of solutions for the interior Bernoulli free boundary

problem in the convex, n-dimensional case. Nonlinear Analysis, TMA 13(1988), pp. 1409-
1425. MR1028238 (91a:35168)

[B1] A. Beurling: On free boundary problems for the Laplace equation. Seminars on Analytic
Functions, Vol. I (1957), pp. 248-263. Institute for Advanced Study, Princeton, N.J.

[B2] A. Beurling: The Collected Works of Arne Beurling, Vol. 1. (edited by Carleson, L., Mallia-
van, P., Neuberger, J., and Werner, J.), Birkhäuser Boston, 1989. MR1057613 (92k:01046a)
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