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THE BANACH ALGEBRA GENERATED BY A CONTRACTION
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(Communicated by Joseph A. Ball)

Abstract. Let T be a contraction on a Banach space and AT the Banach
algebra generated by T . Let σu(T ) be the unitary spectrum (i.e., the inter-
section of σ(T ) with the unit circle) of T . We prove the following theorem
of Katznelson-Tzafriri type: If σu(T ) is at most countable, then the Gelfand
transform of R ∈ AT vanishes on σu(T ) if and only if limn→∞ ‖T nR‖ = 0.

Let X be a complex Banach space B (X), the algebra of all bounded linear
operators on X, and let I be the identity operator on X. σ (T ) will denote the
spectrum of an operator T ∈ B (X), and Rz (T ) = (z − T )−1 will denote the
resolvent of T . If A is a uniformly closed subalgebra of B (X) with identity I, then
σA (T ) will denote the spectrum of T ∈ A with respect to A. If T ∈ B (X), by
AT we will denote the uniformly closed subalgebra of B (X) generated by T and I.
AT is a commutative unital Banach algebra. As is well known, the maximal ideal
space of AT can be identified with σAT

(T ). R̂ will denote the Gelfand transform
of any R ∈ AT .

Let T be a contraction (i.e., a linear operator of norm ≤ 1) on a Banach space X.
Then for every x ∈ X the limit limn→∞ ‖Tnx‖ exists and is equal to infn∈N ‖Tnx‖.
Note also that σ (T ) ⊂ σAT

(T ) ⊂ D̄; D = {z ∈ C : |z| < 1}. Let Γ be the unit
circle. σu (T ) = σ (T )∩Γ is called the unitary spectrum of T . It is easy to see that
if σu (T ) = ∅, then limn→∞ ‖Tn‖ = 0.

It follows from the Y. Katznelson and L. Tzafriri Theorem [4, Theorem 5] that
if σu (T ) is at most countable and f ≡ 0 on σu (T ), then limn→∞ ‖Tnf (T )‖ = 0,
and that f (z) is a function analytic in D, which has absolutely convergent Taylor
series. In this note we obtain the following extension of this result.

Theorem 1. Let T be a contraction on a Banach space such that the unitary
spectrum σu (T ) of T is at most countable. Then the Gelfand transform of R ∈ AT

vanishes on σu (T ) if and only if limn→∞ ‖TnR‖ = 0.

For the proof we need some preliminary results.
The proof of the following lemma is similar to that of [7, Lemma 2.1].

Lemma 1. Let T be a contraction on a Banach space X such that σ (T ) �= D̄ and
infn∈N ‖Tnx‖ > 0 for some x ∈ X\ {0}. Then there exist a Banach space Y �= {0},
a bounded linear operator J : X → Y with dense range and a surjective isometry S
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on Y such that:
(i) ‖Jx‖ = limn→∞ ‖Tnx‖ ;
(ii) SJ = JT ;
(iii) σ (S) ⊂ σ (T ) .

Proof. On X we define the semi-norm p by p (x) = limn→∞ ‖Tnx‖. Put E = ker p.
Then E is a closed invariant subspace of T and E �= X. Let J : X → X/E be
the quotient mapping. Then the semi-norm p induces a norm p̄ on Y0 = X/E by
p̄ (Jx) = p (x), and we have ‖Jx‖ = limn→∞ ‖Tnx‖. Let Y be the completion
of Y0 with respect to the norm p̄. Define S0 : Y0 → Y0 by S0J = JT . Since
‖S0Jx‖ = ‖Jx‖ , S0 extends to an isometry S on Y . Then we have SJ = JT ,
where J : X → Y has dense range.

Let z /∈ σ (T ). From the obvious inequality p (Rz (T ) x) ≤ ‖Rz (T )‖ p(x) (x ∈
X), it follows that σ (S) ⊂ σ (T ) . If S is a non-surjective isometry, then σ (S) = D̄
[1, p. 27], and therefore σ (T ) = D̄. This contradicts σ (T ) �= D̄. Hence, S is a
surjective isometry. The proof is complete. �

If T is a surjective isometry on a Banach space X, then σ (T ) ⊂ Γ and

Rz (T ) =

⎧⎪⎨
⎪⎩

∞∑
n=0

z−n−1Tn, |z| > 1,

−
∞∑

n=1
zn−1T−n, |z| < 1.

It follows that ‖Rz (T )‖ ≤ ||z| − 1|−1 (|z| �= 1). Now let f ∈ L1 (Z) and

f̂ (ξ) =
∑
n∈Z

f (n)ξ̄n (ξ ∈ Γ),

the Fourier transform of f . We can define f̂ (T ) ∈ B (X) by

f̂ (T ) =
∑
n∈Z

f (n)T−n.

Lemma 2. Let T be a surjective isometry on a Banach space and let f ∈ L1 (Z).
If f̂ (ξ) = 0 in a neighborhood of σ (T ), then f̂ (T ) = 0.

Proof. Let U be an open set in Γ that contains σ (T ). Assume that f̂ vanishes on
U . Then we have

f̂ (T ) = lim
r→1−

∑
n∈Z

r|n|f (n)T−n = lim
r→1−

∫
Γ

f̂ (ξ)

(∑
n∈Z

r|n|ξnT−n

)
dξ

= lim
r→1−

∫
Γ−U

f̂ (ξ)
(
TRr−1ξ (T ) − TRξ (T )

)
dξ

+ lim
r→1−

∫
Γ−U

f̂ (ξ) (TRξ (T ) − TRrξ (T )) dξ = 0.

�
We will also need the following notation.
Recall that ϕ = {ϕ (n)}n∈Z

∈ L∞ (Z) is almost periodic on Z if {ϕm : m ∈ Z} is
relatively compact in the norm topology of L∞ (Z), where ϕm (n) = ϕ (n + m). We
denote by AP (Z) the set of all almost periodic functions on Z. AP (Z) is a closed
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subalgebra of L∞ (Z). As is well known, there exists a unique Φ ∈ AP (Z)∗ (which
is called invariant mean on AP (Z)) such that:

(i) Φ (1) = 1, where 1 (n) ≡ 1;
(ii) Φ (ϕ) ≥ 0 for all ϕ ≥ 0;
(iii) Φ (ϕm) = Φ (ϕ) for all ϕ ∈ L∞ (Z) and m ∈ Z.
The hull of any ideal I ⊂ L1 (Z) is h (I) =

{
ξ ∈ Γ : f̂ (ξ) = 0, f ∈ I

}
. For a

closed subset K ⊂ Γ, let IK =
{

f ∈ L1 (Z) : f̂ (K) = {0}
}

and J0
K = {f ∈ L1 (Z) :

suppf̂ ∩K = ∅}. K is a set of synthesis if IK = J0
K . For example, closed countable

sets are sets of synthesis. As is well known (Malliavin’s theorem), there exists a
non-synthesis set (see [5, chap. 8]).

For ϕ ∈ L∞ (Z) and f ∈ L1 (Z), ϕ ∗ f will denote the convolution of ϕ and f .
Recall that the w∗-spectrum σ∗ (ϕ) of ϕ ∈ L∞ (Z) is defined as the hull of the closed
ideal Iϕ =

{
f ∈ L1 (Z) : ϕ ∗ f = 0

}
. The well-known theorem of Loomis [6] states

that if the w∗-spectrum of ϕ ∈ L∞ (Z) is at most countable, then ϕ ∈ AP (Z).

Lemma 3. Let S be a surjective isometry on a Banach space Y such that σ (S)
is at most countable. Then for every φ ∈ Y ∗, there exists a Hilbert space Hφ, a
bounded linear operator Jφ : Y → Hφ with dense range and a unitary operator Uφ

on Hφ such that:
(i) UφJφ = JφS;

(ii) σ
(
U∗

φ

)
⊂ σ (S) .

Proof. (i) Let φ ∈ Y ∗. For given y ∈ Y , define the function ȳφ on Z by ȳφ (n) =
φ (Sny). Since ‖ȳφ‖∞ ≤ ‖φ‖ ‖y‖, ȳφ is a bounded function. We claim that σ∗ (ȳφ) ⊂
σ (S). Assume that there exists a ξ0 ∈ σ∗ (ȳφ), but ξ0 /∈ σ (S). Then there exists
an f ∈ L1 (Z) such that f̂ (ξ0) �= 0 and f̂ (ξ) = 0 on some neighborhood of σ (S).
By Lemma 2, f̂ (S) = 0 and consequently,

0 = φ
(
Snf̂ (S) y

)
= (ȳφ ∗ f)(n), for all n ∈ Z.

Since ξ0 ∈ σ∗ (ȳφ) it follows that f̂ (ξ0) = 0. This contradiction proves the claim.
Hence, σ∗ (ȳφ) is at most countable. By the Loomis Theorem [6], ȳφ ∈ AP (Z).

Let H0
φ denote the linear set {ȳφ : y ∈ Y } with the inner product defined by

〈ȳφ, z̄φ〉 = Φ
({

ȳφ (n) z̄φ (n)
}

n∈Z

)
, z ∈ Y,

where Φ is the invariant mean on AP (Z). Let Hφ be the completion of H0
φ with

respect to the norm

‖ȳφ‖2
2 = Φ

({
|ȳφ (n)|2

}
n∈Z

)
.

Then Hφ is a Hilbert space. Note also that ‖ȳφ‖2 ≤ ‖ȳφ‖∞ ≤ ‖φ‖ ‖y‖. It follows
that the map Jφ : Y → Hφ, defined by Jφy = ȳφ, is a bounded linear operator with
dense range. Now define the map Uφ : Hφ → Hφ, by Uφȳφ =

(
Sy

)
φ
. It is easy to

see that Uφ is a unitary operator and UφJφ = JφS. We have proved (i).
Next we prove (ii). We have

(1) S∗J∗
φ = J∗

φU∗
φ .
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Assume that there exists ξ∈σ
(
U∗

φ

)
, but ξ /∈σ (S)=σ (S∗). Put δ=‖(S∗ − ξ)−1‖−1.

Choose ε > 0 such that ε < δ. Let Γε = {z ∈ C : |z − ξ| < ε} ∩ Γ and let E (·) be
the spectral measure for U∗

φ . Since σ
(
U∗

φ

)
∩ Γε �= ∅, we have E (∆ε) �= 0. Let

h ∈ E (∆ε)Hφ be such that ‖h‖ = 1. From the identity

(
U∗

φ − ξ
)n

h =
∫
Γε

(t − ξ)ndE (t)h, n ∈ N,

we have ∥∥(
U∗

φ − ξ
)n

h
∥∥ ≤ εn.

On the other hand from (1) we can write

(S∗ − ξ)n
J∗

φh = J∗
φ

(
U∗

φ − ξ
)n

h.

It follows that ∥∥(S∗ − ξ)n J∗
φh

∥∥ ≤ εn
∥∥J∗

φ

∥∥ .

Consequently, we have∥∥J∗
φh

∥∥ ≤
∥∥∥(S∗ − ξ)−n

∥∥∥ ∥∥(S∗ − ξ)n
J∗

φh
∥∥ ≤

(ε

δ

)n ∥∥J∗
φ

∥∥ → 0, as n → ∞.

Hence, J∗
φh = 0. Since J∗

φ has zero kernel, we obtain h = 0. This is a contradiction.
The proof is complete. �

Proof of Theorem 1. Let R ∈ AT . Assume that limn→∞ ‖TnR‖ = 0. Then for
any ξ ∈ σu (T ),

∣∣∣T̂n (ξ) R̂ (ξ)
∣∣∣ → 0, as n → ∞. Since

∣∣∣T̂ (ξ)
∣∣∣ ≡ 1, it follows that

R̂ (ξ) = 0. Now assume that σu (T ) is at most countable and R̂ (ξ) ≡ 0 on σu (T ).
It is enough to prove that limn→∞ ‖TnRx‖ = 0 for all x ∈ X. Indeed, suppose that
this is proved. For C ∈ B (X), let LC be the left multiplication operator on B (X)
defined by LCF = CF . Then LT is a contraction. Moreover, the maximal ideal
spaces of ALT

and AT are the same, and σ (LT ) = σ (T ). Note also that LR ∈ ALT

and the Gelfand transform of LR vanishes on σu (LT ). Therefore,

lim
n→∞

‖Ln
T LRF‖ = 0,

for all F ∈ B (X). Taking F = I, we get the desired conclusion.
If limn→∞ ‖Tnx‖ = 0 for all x ∈ X, then there is nothing to prove. Hence, we

may assume that limn→∞ ‖Tnx‖ > 0 for some x �= 0. On the other hand, since
σu (T ) is at most countable, σ (T ) �= D̄. In view of Lemma 1 there exists a Banach
space Y �= {0}, a bounded linear operator J : X → Y with dense range and a
surjective isometry S on Y such that:

(i) ‖Jx‖ = limn→∞ ‖Tnx‖;
(ii) SJ = JT ;
(iii) σ (S) ⊂ σ (T ) .
It follows from (iii) that σ (S) ⊂ σu (T ) and therefore, σ (S) is at most countable.

Now let φ ∈ Y ∗ be given. By Lemma 3, there exists a Hilbert space Hφ, a bounded
linear operator Jφ : Y → Hφ with dense range and a unitary operator Uφ on Hφ

such that

(2) UφJφ = JφS
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and σ
(
U∗

φ

)
⊂ σ (S) ⊂ σu (T ). Moreover, from (ii) and (2) we obtain

(3) UφJφJ = JφJT.

Further, since R ∈ AT , there exists a sequence of polynomials {Pn (z)}n∈N
such that

‖Pn (T ) − R‖ → 0. Also since the Gelfand transform of R vanishes on σu (T ), the
sequence {Pn (z)}n∈N

uniformly converges to zero on σu (T ). Hence, the sequence

{Pn (z)}n∈N
uniformly converges to zero on σ(U∗

φ). It follows that ‖Pn

(
U∗

φ

)
‖ → 0.

On the other hand, from the identity (3) we can write

J∗J∗
φPn

(
U∗

φ

)
= Pn (T ∗)J∗J∗

φ.

This clearly implies that R∗J∗J∗
φ = 0 and so JφJR = 0. Hence, φ (JRx) = 0 for

all φ ∈ Y ∗ and x ∈ X. Thus, we obtain that

0 = ‖JRx‖ = lim
n→∞

‖TnRx‖ ,

for all x ∈ X. This completes the proof. �

We do not know whether Theorem 1 true if σu (T ) is a synthesis set.

Remark 1. Theorem 1 remains valid if supn∈N ‖Tn‖ < ∞. Indeed, in this case
‖|x|‖ = supn∈N

‖Tnx‖ is an equivalent norm on X with respect to which T becomes
a contraction.

In contrast with the unitary operator on a Hilbert space, there exists a surjective
isometry on a Banach space that generates a non-semisimple algebra (see [3]).
But surjective isometry on a Banach space with countable spectrum generated
a semisimple algebra [3]. The following example shows that even on a Hilbert
space there exists a contraction with countable unitary spectrum that generates
a non-semisimple algebra: Let V be the Volterra operator on L2 [0, 1] defined by
(V f) (t) =

∫ t

0
f (s)ds and let T = (I + V )−1. Then ‖Tn‖ = 1 for all n ∈ N and

σ (T ) = {1}. But T �= I.
Recall that a contraction T on a Banach space X is said to be a C1-contraction

if infn∈N ‖Tnx‖ > 0 for all x ∈ X\ {0} [1, p. 250].

Corollary 1. Let T be a C1-contraction on a Banach space such that the unitary
spectrum σu (T ) of T is at most countable. If the Gelfand transform of R ∈ AT

vanishes on σu (T ), then R = 0. In particular, AT is semisimple.

For contractions on a Hilbert space, the Katznelson-Tzafriri theorem can be
improved as follows [2]: If T is a contraction on a Hilbert space and f ∈ A (D)
vanishes on σu (T ), then

lim
n→∞

‖Tnf (T )‖ = 0;

A (D) is the disc algebra. Now let R ∈ AT be such that R̂ (ξ) ≡ 0 on σu (T ). Is it
then true that limn→∞ ‖TnR‖ = 0? We do not know the answer to this question.

However, we prove the following.

Theorem 2. Let H be a Hilbert space and let T be a contraction on H. If the
Gelfand transform of R ∈ AT vanishes on σu (T ), then

lim
n→∞

‖TnRx‖ = 0,

for all x ∈ H.
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Proof. Let R ∈ AT be such that R̂ (ξ) ≡ 0 on σu (T ). We define a new inner
product on H by the formula

[x, y] = lim
n→∞

〈Tnx, Tny〉

(it is easy to see that the limit on the right-hand side exists). This induced a
semi-norm on H defined by

p (x) =
(

lim
n→∞

‖Tnx‖2
)1/2

.

Let E = ker p. It is clear that E is a closed invariant subspace of T . If E = H, then
there is nothing to prove. Hence, we may assume that E �= H. Let J : H → H/E
be the quotient mapping. Then the semi-norm p induces a norm p̄ on K0 = H/E
by p̄ (Jx) = p (x), and we have

‖Jx‖ =
(

lim
n→∞

‖Tnx‖2
)1/2

.

Let K be the completion of K0 with respect to the norm p̄. Define U0 : K0 → K0

by U0J = JT . Since ‖U0Jx‖ ≤ ‖T‖ ‖Jx‖, U0 extends to a bounded operator U on
K. Then we have UJ = JT , where J : H → K has dense range. Also since

[Up (x) , Up (y)] = [p (x) , p (y)] , x, y ∈ H,

U is an isometry on K. As in the proof of Lemma 1 we can see that σ (U) ⊂ σ (T ).
Now assume that U is a non-surjective isometry. Then σ (U) = D̄ and conse-

quently, σ (T ) = D̄. Hence, σu (T ) = Γ. Since R ∈ AT , there exists a sequence
{Pn (z)}n∈N

of polynomials such that ‖Pn (T ) − R‖ → 0. It follows that Pn (z) → 0
uniformly on Γ. By the von Neumann inequality,

‖Pn (T )‖ ≤ sup
ξ∈Γ

|Pn (ξ)| → 0,

and so R = 0. Hence, we may assume that U is a unitary operator. As above,
there exists a sequence {Pn (z)}n∈N

of polynomials such that ‖Pn (T ) − R‖ → 0.
It follows that Pn (z) → 0 uniformly on σu (T ). Since σ (U) ⊂ σu (T ), we have
‖Pn (U)‖ → 0. Now from the identity Pn (U) J = JPn (T ) we obtain that JR = 0.
Hence we have that limn→∞ ‖TnRx‖ = 0 for all x ∈ H. The proof is complete. �

A similar result holds for the power-bounded operators.

Theorem 3. Let T be a power-bounded operator on a Hilbert space H. If the
Gelfand transform of R ∈ AT vanishes on σu (T ), then for all x ∈ H,

l.i.m. ‖TnRx‖ = 0,

where l.i.m. is a Banach limit on N.

Corollary 2. Let T be a contraction on a Hilbert space. If R ∈ AT is a compact
operator and R̂ (ξ) ≡ 0 on σu (T ), then

lim
n→∞

‖TnR‖ = 0.
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