PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 134, Number 9, September 2006, Pages 2677–2683 S 0002-9939(06)08302-X Article electronically published on March 23, 2006

THE BANACH ALGEBRA GENERATED BY A CONTRACTION

H. S. MUSTAFAYEV

(Communicated by Joseph A. Ball)

ABSTRACT. Let T be a contraction on a Banach space and A_T the Banach algebra generated by T. Let $\sigma_u(T)$ be the unitary spectrum (i.e., the intersection of $\sigma(T)$ with the unit circle) of T. We prove the following theorem of Katznelson-Tzafriri type: If $\sigma_u(T)$ is at most countable, then the Gelfand transform of $R \in A_T$ vanishes on $\sigma_u(T)$ if and only if $\lim_{n\to\infty} ||T^nR|| = 0$.

Let X be a complex Banach space B(X), the algebra of all bounded linear operators on X, and let I be the identity operator on X. $\sigma(T)$ will denote the spectrum of an operator $T \in B(X)$, and $R_z(T) = (z-T)^{-1}$ will denote the resolvent of T. If A is a uniformly closed subalgebra of B(X) with identity I, then $\sigma_A(T)$ will denote the spectrum of $T \in A$ with respect to A. If $T \in B(X)$, by A_T we will denote the uniformly closed subalgebra of B(X) generated by T and I. A_T is a commutative unital Banach algebra. As is well known, the maximal ideal space of A_T can be identified with $\sigma_{A_T}(T)$. \hat{R} will denote the Gelfand transform of any $R \in A_T$.

Let T be a contraction (i.e., a linear operator of norm ≤ 1) on a Banach space X. Then for every $x \in X$ the limit $\lim_{n \to \infty} \|T^n x\|$ exists and is equal to $\inf_{n \in \mathbb{N}} \|T^n x\|$. Note also that $\sigma(T) \subset \sigma_{A_T}(T) \subset \bar{D}$; $D = \{z \in \mathbb{C} : |z| < 1\}$. Let Γ be the unit circle. $\sigma_u(T) = \sigma(T) \cap \Gamma$ is called the *unitary spectrum* of T. It is easy to see that if $\sigma_u(T) = \varnothing$, then $\lim_{n \to \infty} \|T^n\| = 0$.

It follows from the Y. Katznelson and L. Tzafriri Theorem [4, Theorem 5] that if $\sigma_u(T)$ is at most countable and $f \equiv 0$ on $\sigma_u(T)$, then $\lim_{n\to\infty} \|T^n f(T)\| = 0$, and that f(z) is a function analytic in D, which has absolutely convergent Taylor series. In this note we obtain the following extension of this result.

Theorem 1. Let T be a contraction on a Banach space such that the unitary spectrum $\sigma_u(T)$ of T is at most countable. Then the Gelfand transform of $R \in A_T$ vanishes on $\sigma_u(T)$ if and only if $\lim_{n\to\infty} ||T^nR|| = 0$.

For the proof we need some preliminary results.

The proof of the following lemma is similar to that of [7, Lemma 2.1].

Lemma 1. Let T be a contraction on a Banach space X such that $\sigma(T) \neq \bar{D}$ and $\inf_{n \in \mathbb{N}} ||T^n x|| > 0$ for some $x \in X \setminus \{0\}$. Then there exist a Banach space $Y \neq \{0\}$, a bounded linear operator $J: X \to Y$ with dense range and a surjective isometry S

Received by the editors February 25, 2005 and, in revised form, April 5, 2005. 2000 Mathematics Subject Classification. Primary 47Axx.

Key words and phrases. Contraction, Banach algebra, spectrum, semisimplicity.

©2006 American Mathematical Society Reverts to public domain 28 years from publication on Y such that:

- (i) $||Jx|| = \lim_{n \to \infty} ||T^n x||$;
- (ii) SJ = JT;
- (iii) $\sigma(S) \subset \sigma(T)$.

Proof. On X we define the semi-norm p by $p(x) = \lim_{n \to \infty} ||T^n x||$. Put $E = \ker p$. Then E is a closed invariant subspace of T and $E \neq X$. Let $J: X \to X/E$ be the quotient mapping. Then the semi-norm p induces a norm \bar{p} on $Y_0 = X/E$ by $\bar{p}(Jx) = p(x)$, and we have $||Jx|| = \lim_{n \to \infty} ||T^n x||$. Let Y be the completion of Y_0 with respect to the norm \bar{p} . Define $S_0: Y_0 \to Y_0$ by $S_0J = JT$. Since $||S_0Jx|| = ||Jx||$, S_0 extends to an isometry S on S. Then we have $S_0J = S_0J$, where $S_0J = S_0J$ has dense range.

Let $z \notin \sigma(T)$. From the obvious inequality $p(R_z(T)x) \leq ||R_z(T)|| p(x)$ $(x \in X)$, it follows that $\sigma(S) \subset \sigma(T)$. If S is a non-surjective isometry, then $\sigma(S) = \bar{D}$ [1, p. 27], and therefore $\sigma(T) = \bar{D}$. This contradicts $\sigma(T) \neq \bar{D}$. Hence, S is a surjective isometry. The proof is complete.

If T is a surjective isometry on a Banach space X, then $\sigma(T) \subset \Gamma$ and

$$R_{z}(T) = \begin{cases} \sum_{n=0}^{\infty} z^{-n-1} T^{n}, & |z| > 1, \\ -\sum_{n=1}^{\infty} z^{n-1} T^{-n}, & |z| < 1. \end{cases}$$

It follows that $||R_z(T)|| \le ||z| - 1|^{-1} (|z| \ne 1)$. Now let $f \in L^1(\mathbb{Z})$ and

$$\hat{f}(\xi) = \sum_{n \in \mathbb{Z}} f(n)\bar{\xi}^n \quad (\xi \in \Gamma),$$

the Fourier transform of f. We can define $\hat{f}(T) \in B(X)$ by

$$\hat{f}(T) = \sum_{n \in \mathbb{Z}} f(n) T^{-n}.$$

Lemma 2. Let T be a surjective isometry on a Banach space and let $f \in L^1(\mathbb{Z})$. If $\hat{f}(\xi) = 0$ in a neighborhood of $\sigma(T)$, then $\hat{f}(T) = 0$.

Proof. Let U be an open set in Γ that contains $\sigma(T)$. Assume that \hat{f} vanishes on U. Then we have

$$\hat{f}(T) = \lim_{r \to 1^{-}} \sum_{n \in \mathbb{Z}} r^{|n|} f(n) T^{-n} = \lim_{r \to 1^{-}} \int_{\Gamma} \hat{f}(\xi) \left(\sum_{n \in \mathbb{Z}} r^{|n|} \xi^{n} T^{-n} \right) d\xi$$

$$= \lim_{r \to 1^{-}} \int_{\Gamma - U} \hat{f}(\xi) \left(T R_{r^{-1} \xi}(T) - T R_{\xi}(T) \right) d\xi$$

$$+ \lim_{r \to 1^{-}} \int_{\Gamma - U} \hat{f}(\xi) \left(T R_{\xi}(T) - T R_{r\xi}(T) \right) d\xi = 0.$$

We will also need the following notation.

Recall that $\varphi = \{\varphi(n)\}_{n \in \mathbb{Z}} \in L^{\infty}(\mathbb{Z})$ is almost periodic on \mathbb{Z} if $\{\varphi_m : m \in \mathbb{Z}\}$ is relatively compact in the norm topology of $L^{\infty}(\mathbb{Z})$, where $\varphi_m(n) = \varphi(n+m)$. We denote by $AP(\mathbb{Z})$ the set of all almost periodic functions on \mathbb{Z} . $AP(\mathbb{Z})$ is a closed

subalgebra of $L^{\infty}(\mathbb{Z})$. As is well known, there exists a unique $\Phi \in AP(\mathbb{Z})^*$ (which is called *invariant mean* on $AP(\mathbb{Z})$ such that:

- (i) $\Phi(1) = 1$, where $\mathbf{1}(n) \equiv 1$;
- (ii) $\Phi(\varphi) \geq 0$ for all $\varphi \geq 0$;
- (iii) $\Phi(\varphi_m) = \Phi(\varphi)$ for all $\varphi \in L^{\infty}(\mathbb{Z})$ and $m \in \mathbb{Z}$.

The hull of any ideal $I\subset L^{1}\left(\mathbb{Z}\right)$ is $h\left(I\right)=\left\{ \xi\in\Gamma:\hat{f}\left(\xi\right)=0,f\in I\right\} .$ For a closed subset $K \subset \Gamma$, let $I_K = \left\{ f \in L^1(\mathbb{Z}) : \hat{f}(K) = \{0\} \right\}$ and $J_K^0 = \left\{ f \in L^1(\mathbb{Z}) : \hat{f}(K) = \{0\} \right\}$ $supp \hat{f} \cap K = \emptyset$. K is a set of synthesis if $I_K = \overline{J_K^0}$. For example, closed countable sets are sets of synthesis. As is well known (Malliavin's theorem), there exists a non-synthesis set (see [5, chap. 8]).

For $\varphi \in L^{\infty}(\mathbb{Z})$ and $f \in L^{1}(\mathbb{Z})$, $\varphi * f$ will denote the convolution of φ and f. Recall that the w^* -spectrum $\sigma_*(\varphi)$ of $\varphi \in L^{\infty}(\mathbb{Z})$ is defined as the hull of the closed ideal $I_{\varphi} = \{ f \in L^1(\mathbb{Z}) : \varphi * f = 0 \}$. The well-known theorem of Loomis [6] states that if the w^* -spectrum of $\varphi \in L^{\infty}(\mathbb{Z})$ is at most countable, then $\varphi \in AP(\mathbb{Z})$.

Lemma 3. Let S be a surjective isometry on a Banach space Y such that $\sigma(S)$ is at most countable. Then for every $\phi \in Y^*$, there exists a Hilbert space H_{ϕ} , a bounded linear operator $J_{\phi}: Y \to H_{\phi}$ with dense range and a unitary operator U_{ϕ} on H_{ϕ} such that:

- (i) $U_{\phi}J_{\phi} = J_{\phi}S;$ (ii) $\sigma\left(U_{\phi}^{*}\right) \subset \sigma\left(S\right).$

Proof. (i) Let $\phi \in Y^*$. For given $y \in Y$, define the function \bar{y}_{ϕ} on \mathbb{Z} by $\bar{y}_{\phi}(n) =$ $\phi(S^n y)$. Since $\|\bar{y}_{\phi}\|_{\infty} \leq \|\phi\| \|y\|, \bar{y}_{\phi}$ is a bounded function. We claim that $\sigma_*(\bar{y}_{\phi}) \subset$ $\sigma(S)$. Assume that there exists a $\xi_0 \in \sigma_*(\bar{y}_\phi)$, but $\xi_0 \notin \sigma(S)$. Then there exists an $f \in L^1(\mathbb{Z})$ such that $\hat{f}(\xi_0) \neq 0$ and $\hat{f}(\xi) = 0$ on some neighborhood of $\sigma(S)$. By Lemma 2, $\hat{f}(S) = 0$ and consequently,

$$0 = \phi\left(S^n \hat{f}\left(S\right)y\right) = (\bar{y}_{\phi} * f)(n), \text{ for all } n \in \mathbb{Z}.$$

Since $\xi_0 \in \sigma_*(\bar{y}_\phi)$ it follows that $\hat{f}(\xi_0) = 0$. This contradiction proves the claim. Hence, $\sigma_*(\bar{y}_{\phi})$ is at most countable. By the Loomis Theorem [6], $\bar{y}_{\phi} \in AP(\mathbb{Z})$. Let H^0_ϕ denote the linear set $\{\bar{y}_\phi: y \in Y\}$ with the inner product defined by

$$\langle \bar{y}_{\phi}, \bar{z}_{\phi} \rangle = \Phi \left(\left\{ \bar{y}_{\phi} \left(n \right) \overline{\bar{z}_{\phi} \left(n \right)} \right\}_{n \in \mathbb{Z}} \right), \quad z \in Y,$$

where Φ is the invariant mean on $AP(\mathbb{Z})$. Let H_{ϕ} be the completion of H_{ϕ}^{0} with respect to the norm

$$\|\bar{y}_{\phi}\|_{2}^{2} = \Phi\left(\left\{\left|\bar{y}_{\phi}\left(n\right)\right|^{2}\right\}_{n\in\mathbb{Z}}\right).$$

Then H_{ϕ} is a Hilbert space. Note also that $\|\bar{y}_{\phi}\|_{2} \leq \|\bar{y}_{\phi}\|_{\infty} \leq \|\phi\| \|y\|$. It follows that the map $J_{\phi}: Y \to H_{\phi}$, defined by $J_{\phi}y = \bar{y}_{\phi}$, is a bounded linear operator with dense range. Now define the map $U_{\phi}: H_{\phi} \to H_{\phi}$, by $U_{\phi}\bar{y}_{\phi} = (\overline{Sy})_{\phi}$. It is easy to see that U_{ϕ} is a unitary operator and $U_{\phi}J_{\phi}=J_{\phi}S$. We have proved (i).

Next we prove (ii). We have

(1)
$$S^*J_{\phi}^* = J_{\phi}^*U_{\phi}^*.$$

Assume that there exists $\xi \in \sigma\left(U_{\phi}^*\right)$, but $\xi \notin \sigma\left(S\right) = \sigma\left(S^*\right)$. Put $\delta = \|(S^* - \xi)^{-1}\|^{-1}$. Choose $\varepsilon > 0$ such that $\varepsilon < \delta$. Let $\Gamma_{\varepsilon} = \{z \in \mathbb{C} : |z - \xi| < \varepsilon\} \cap \Gamma$ and let $E\left(\cdot\right)$ be the spectral measure for U_{ϕ}^* . Since $\sigma\left(U_{\phi}^*\right) \cap \Gamma_{\varepsilon} \neq \emptyset$, we have $E\left(\Delta_{\varepsilon}\right) \neq 0$. Let $h \in E\left(\Delta_{\varepsilon}\right) H_{\phi}$ be such that $\|h\| = 1$. From the identity

$$\left(U_{\phi}^{*}-\xi\right)^{n}h=\int_{\Gamma_{c}}\left(t-\xi\right)^{n}dE\left(t\right)h,\quad n\in\mathbb{N},$$

we have

$$\|(U_{\phi}^* - \xi)^n h\| \le \varepsilon^n.$$

On the other hand from (1) we can write

$$(S^* - \xi)^n J_{\phi}^* h = J_{\phi}^* (U_{\phi}^* - \xi)^n h.$$

It follows that

$$\left\| \left(S^* - \xi \right)^n J_{\phi}^* h \right\| \le \varepsilon^n \left\| J_{\phi}^* \right\|.$$

Consequently, we have

$$||J_{\phi}^*h|| \le ||(S^* - \xi)^{-n}|| ||(S^* - \xi)^n J_{\phi}^*h|| \le \left(\frac{\varepsilon}{\delta}\right)^n ||J_{\phi}^*|| \to 0, \text{ as } n \to \infty.$$

Hence, $J_{\phi}^*h=0$. Since J_{ϕ}^* has zero kernel, we obtain h=0. This is a contradiction. The proof is complete.

Proof of Theorem 1. Let $R \in A_T$. Assume that $\lim_{n \to \infty} \|T^n R\| = 0$. Then for any $\xi \in \sigma_u(T)$, $\left| \hat{T}^n(\xi) \hat{R}(\xi) \right| \to 0$, as $n \to \infty$. Since $\left| \hat{T}(\xi) \right| \equiv 1$, it follows that $\hat{R}(\xi) = 0$. Now assume that $\sigma_u(T)$ is at most countable and $\hat{R}(\xi) \equiv 0$ on $\sigma_u(T)$. It is enough to prove that $\lim_{n \to \infty} \|T^n Rx\| = 0$ for all $x \in X$. Indeed, suppose that this is proved. For $C \in B(X)$, let L_C be the left multiplication operator on B(X) defined by $L_C F = C F$. Then L_T is a contraction. Moreover, the maximal ideal spaces of A_{L_T} and A_T are the same, and $\sigma(L_T) = \sigma(T)$. Note also that $L_R \in A_{L_T}$ and the Gelfand transform of L_R vanishes on $\sigma_u(L_T)$. Therefore,

$$\lim_{n\to\infty} ||L_T^n L_R F|| = 0,$$

for all $F \in B(X)$. Taking F = I, we get the desired conclusion.

If $\lim_{n\to\infty} \|T^nx\| = 0$ for all $x\in X$, then there is nothing to prove. Hence, we may assume that $\lim_{n\to\infty} \|T^nx\| > 0$ for some $x\neq 0$. On the other hand, since $\sigma_u(T)$ is at most countable, $\sigma(T)\neq \bar{D}$. In view of Lemma 1 there exists a Banach space $Y\neq\{0\}$, a bounded linear operator $J:X\to Y$ with dense range and a surjective isometry S on Y such that:

- (i) $||Jx|| = \lim_{n \to \infty} ||T^n x||$;
- (ii) SJ = JT;
- (iii) $\sigma(S) \subset \sigma(T)$.

It follows from (iii) that $\sigma(S) \subset \sigma_u(T)$ and therefore, $\sigma(S)$ is at most countable. Now let $\phi \in Y^*$ be given. By Lemma 3, there exists a Hilbert space H_{ϕ} , a bounded linear operator $J_{\phi}: Y \to H_{\phi}$ with dense range and a unitary operator U_{ϕ} on H_{ϕ} such that

$$(2) U_{\phi}J_{\phi} = J_{\phi}S$$

and $\sigma\left(U_{\phi}^{*}\right)\subset\sigma\left(S\right)\subset\sigma_{u}\left(T\right)$. Moreover, from (ii) and (2) we obtain

$$(3) U_{\phi}J_{\phi}J = J_{\phi}JT.$$

Further, since $R \in A_T$, there exists a sequence of polynomials $\{P_n(z)\}_{n \in \mathbb{N}}$ such that $\|P_n(T) - R\| \to 0$. Also since the Gelfand transform of R vanishes on $\sigma_u(T)$, the sequence $\{P_n(z)\}_{n \in \mathbb{N}}$ uniformly converges to zero on $\sigma_u(T)$. Hence, the sequence $\{P_n(z)\}_{n \in \mathbb{N}}$ uniformly converges to zero on $\sigma(U_\phi^*)$. It follows that $\|P_n(U_\phi^*)\| \to 0$. On the other hand, from the identity (3) we can write

$$J^*J_{\phi}^*P_n(U_{\phi}^*) = P_n(T^*)J^*J_{\phi}^*.$$

This clearly implies that $R^*J^*J_{\phi}^*=0$ and so $J_{\phi}JR=0$. Hence, $\phi\left(JRx\right)=0$ for all $\phi\in Y^*$ and $x\in X$. Thus, we obtain that

$$0 = ||JRx|| = \lim_{n \to \infty} ||T^n Rx||,$$

for all $x \in X$. This completes the proof.

We do not know whether Theorem 1 true if $\sigma_u(T)$ is a synthesis set.

Remark 1. Theorem 1 remains valid if $\sup_{n\in\mathbb{N}} ||T^n|| < \infty$. Indeed, in this case $|||x||| = \sup_{n\in\mathbb{N}} ||T^nx||$ is an equivalent norm on X with respect to which T becomes a contraction.

In contrast with the unitary operator on a Hilbert space, there exists a surjective isometry on a Banach space that generates a non-semisimple algebra (see [3]). But surjective isometry on a Banach space with countable spectrum generated a semisimple algebra [3]. The following example shows that even on a Hilbert space there exists a contraction with countable unitary spectrum that generates a non-semisimple algebra: Let V be the Volterra operator on L^2 [0, 1] defined by $(Vf)(t) = \int_0^t f(s)ds$ and let $T = (I+V)^{-1}$. Then $||T^n|| = 1$ for all $n \in \mathbb{N}$ and $\sigma(T) = \{1\}$. But $T \neq I$.

Recall that a contraction T on a Banach space X is said to be a C_1 -contraction if $\inf_{n\in\mathbb{N}} ||T^nx|| > 0$ for all $x \in X \setminus \{0\}$ [1, p. 250].

Corollary 1. Let T be a C_1 -contraction on a Banach space such that the unitary spectrum $\sigma_u(T)$ of T is at most countable. If the Gelfand transform of $R \in A_T$ vanishes on $\sigma_u(T)$, then R = 0. In particular, A_T is semisimple.

For contractions on a Hilbert space, the Katznelson-Tzafriri theorem can be improved as follows [2]: If T is a contraction on a Hilbert space and $f \in A(D)$ vanishes on $\sigma_u(T)$, then

$$\lim_{n\to\infty}\left\|T^{n}f\left(T\right)\right\|=0;$$

A(D) is the disc algebra. Now let $R \in A_T$ be such that $\hat{R}(\xi) \equiv 0$ on $\sigma_u(T)$. Is it then true that $\lim_{n\to\infty} ||T^n R|| = 0$? We do not know the answer to this question. However, we prove the following.

Theorem 2. Let H be a Hilbert space and let T be a contraction on H. If the Gelfand transform of $R \in A_T$ vanishes on $\sigma_u(T)$, then

$$\lim_{n \to \infty} ||T^n Rx|| = 0,$$

for all $x \in H$.

Proof. Let $R \in A_T$ be such that $\hat{R}(\xi) \equiv 0$ on $\sigma_u(T)$. We define a new inner product on H by the formula

$$[x,y] = \lim_{n \to \infty} \langle T^n x, T^n y \rangle$$

(it is easy to see that the limit on the right-hand side exists). This induced a semi-norm on H defined by

$$p(x) = \left(\lim_{n \to \infty} \|T^n x\|^2\right)^{1/2}.$$

Let $E = \ker p$. It is clear that E is a closed invariant subspace of T. If E = H, then there is nothing to prove. Hence, we may assume that $E \neq H$. Let $J: H \to H/E$ be the quotient mapping. Then the semi-norm p induces a norm \bar{p} on $K_0 = H/E$ by $\bar{p}(Jx) = p(x)$, and we have

$$||Jx|| = \left(\lim_{n \to \infty} ||T^n x||^2\right)^{1/2}.$$

Let K be the completion of K_0 with respect to the norm \bar{p} . Define $U_0: K_0 \to K_0$ by $U_0J = JT$. Since $||U_0Jx|| \le ||T|| \, ||Jx||$, U_0 extends to a bounded operator U on K. Then we have UJ = JT, where $J: H \to K$ has dense range. Also since

$$[Up(x), Up(y)] = [p(x), p(y)], \quad x, y \in H,$$

U is an isometry on K. As in the proof of Lemma 1 we can see that $\sigma(U) \subset \sigma(T)$. Now assume that U is a non-surjective isometry. Then $\sigma(U) = \bar{D}$ and consequently, $\sigma(T) = \bar{D}$. Hence, $\sigma_u(T) = \Gamma$. Since $R \in A_T$, there exists a sequence $\{P_n(z)\}_{n \in \mathbb{N}}$ of polynomials such that $\|P_n(T) - R\| \to 0$. It follows that $P_n(z) \to 0$ uniformly on Γ . By the von Neumann inequality,

$$||P_n(T)|| \le \sup_{\xi \in \Gamma} |P_n(\xi)| \to 0,$$

and so R=0. Hence, we may assume that U is a unitary operator. As above, there exists a sequence $\{P_n(z)\}_{n\in\mathbb{N}}$ of polynomials such that $\|P_n(T)-R\|\to 0$. It follows that $P_n(z)\to 0$ uniformly on $\sigma_u(T)$. Since $\sigma(U)\subset \sigma_u(T)$, we have $\|P_n(U)\|\to 0$. Now from the identity $P_n(U)J=JP_n(T)$ we obtain that JR=0. Hence we have that $\lim_{n\to\infty}\|T^nRx\|=0$ for all $x\in H$. The proof is complete. \square

A similar result holds for the power-bounded operators.

Theorem 3. Let T be a power-bounded operator on a Hilbert space H. If the Gelfand transform of $R \in A_T$ vanishes on $\sigma_u(T)$, then for all $x \in H$,

$$l.i.m. ||T^n Rx|| = 0,$$

where l.i.m. is a Banach limit on \mathbb{N} .

Corollary 2. Let T be a contraction on a Hilbert space. If $R \in A_T$ is a compact operator and $\hat{R}(\xi) \equiv 0$ on $\sigma_u(T)$, then

$$\lim_{n \to \infty} ||T^n R|| = 0.$$

References

- [1] A. Beauzamy, Introduction to Operator Theory and Invariant Subspaces, North-Holland, Amsterdam, 1988. MR0967989 (90d:47001)
- [2] J. Esterle, E. Strouse and F. Zouakia, Theorems of Katznelson-Tzafriri type for contractions,
 J. Funct. Anal., 94(1990), 273-287. MR1081645 (92c:47016)
- [3] G. M. Feldman, The semisimplicity of an algebra generated by isometric operators, Funksional Anal. Prilozhen., 8(1974), 93-94 (Russian). MR0361800 (50:14245)
- [4] Y. Katznelson and L. Tzafriri, On power bounded operators, J. Funct. Anal., 68(1986), 313-328. MR0859138 (88e:47006)
- [5] R. Larsen, Banach Algebras, Marcel Dekker, New York, 1973. MR0487369 (58:7010)
- [6] L. H. Loomis, The spectral characterization of a class of almost periodic functions, Ann. Math., 72(1960), 362-368. MR0120502 (22:11255)
- [7] Vu Quoc Phong, Theorems of Katznelson-Tzafriri type for temigroups of operators, J. Funct. Anal., 103(1992), 74-84. MR1144683 (93e:47050)

Department of Mathematics, Faculty of Arts and Sciences, Yüzüncü Yıl University, 65080, Van, Turkey

 $E\text{-}mail\ address{:}\ \texttt{hsmustafayev@yahoo.com}$