
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 135, Number 8, August 2007, Pages 2591–2597
S 0002-9939(07)08854-5
Article electronically published on February 9, 2007

STABILITY PROBLEM FOR NUMBER-THEORETICALLY
MULTIPLICATIVE FUNCTIONS

TOMASZ KOCHANEK AND MICHA�L LEWICKI

(Communicated by Jonathan M. Borwein)

Abstract. We deal with the stability question for multiplicative mappings
in the sense of number theory. It turns out that the conditional stability
assumption:

|f(xy) − f(x)f(y)| ≤ ε for relatively prime x, y

implies that f lies near to some number-theoretically multiplicative function.
The domain of f can be general enough to admit, in special cases, the reduc-
tion of our result to the well known J. A. Baker - J. Lawrence - F. Zorzitto
superstability theorem.

1. Introduction

In number theory a very important role is played by multiplicative functions,
which in that theory are defined as follows.

Definition 1. A function f : N → C is called number-theoretically multiplicative
(briefly: nt-multiplicative), if and only if f �= 0 and

(1) f(xy) = f(x)f(y)

for every x, y ∈ N such that (x, y) = 1 (here the symbol (x, y) stands for the greatest
common divisor of x and y).

The stability question we are concerned with reads as follows: Does there exist
a function ϕ : R+ → R+ such that limε→0+ ϕ(ε) = 0 and having the property: for
every function f : N → C, satisfying

(2) ((x, y) = 1) ⇒ (|f(xy) − f(x)f(y)| ≤ ε)

for all x, y ∈ N and with some fixed positive constant ε, there exists an nt-
multiplicative function f̃ such that ‖f − f̃‖sup ≤ ϕ(ε)? It is clear that every
bounded function f : N → C satisfies (2) with some ε > 0, so we may leave that
uninteresting case out, assuming that f is an unbounded function.

We are going to prove that the answer for such a question is satisfactory. The
desired function is ϕ(ε) ≡ ε and, furthermore, under some additional assumptions
on the function f (concerning its unboundedness) we get the so called superstability
effect: f is necessarily nt-multiplicative.

By P we denote the set of all prime numbers.
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Definition 2. For an arbitrary p ∈ P we define a function ordp : N → N ∪ {0} as

ordp(n) := max{k ∈ N ∪ {0} : pk|n} , n ∈ N .

2. Main result

Let us start with an auxiliary lemma.

Lemma. Assume that an unbounded function f : N → C satisfies (2). Then at
least one of the following conditions holds:

(a) for every x ∈ N there is a sequence (xm)∞m=1 ∈ NN such that
(x, xm) = 1 for m = 1, 2, . . . and limm→∞ |f(xm)| = ∞;

(b) R := {p ∈ P : f |{ps: s∈N} is unbounded } �= ∅.

Proof. Assume that case (b) does not occur. Hence, for every p ∈ P there exists
a constant Mp ∈ R+ such that |f(ps)| < Mp for s ∈ N. Fix arbitrarily an x ∈ N.
Let x = pα1

1 · . . . · pαk

k be its canonical factorization, i.e. k ∈ N ∪ {0}, p1, . . . , pk

are pairwise different primes and α1, . . . , αk ∈ N. Since f is unbounded, we can
choose a sequence (zm)∞m=1 ∈ NN such that limm→∞ |f(zm)| = ∞. If k = 0, then
x = 1 and the sequence (zm)∞m=1 fulfils case (a). So, assume that k ≥ 1. Define a
sequence (z̃m)∞m=1 ∈ NN as follows:

z̃m :=
zm

p
ordp1 (zm)
1

, m ∈ N.

Since (z̃m, p1) = 1 for m ∈ N, we have

|f(zm)| = |f(pordp1 (zm)
1 z̃m)|

= |f(pordp1 (zm)
1 z̃m) − f(pordp1 (zm)

1 )f(z̃m) + f(pordp1 (zm)
1 )f(z̃m)|

≤ |f(pordp1 (zm)
1 z̃m) − f(pordp1 (zm)

1 )f(z̃m)| + |f(pordp1 (zm)
1 )||f(z̃m)|

≤ ε + Mp1 |f(z̃m)| .

Consequently,

|f(z̃m)| ≥ |f(zm)| − ε

Mp1

and the right-hand side tends to infinity as m → ∞.
Thus, we have constructed a sequence (z̃m)∞m=1 such that
(i) limm→∞ |f(z̃m)| = ∞ ;
(ii) all prime factors of z̃m are also prime factors of zm, for all m ∈ N ;
(iii) none of elements of (z̃m)∞m=1 is divisible by p1.
Repeating that construction k times we will get a sequence (xm)∞m=1 such that

case (a) of the assertion is satisfied. Since x ∈ N is arbitrary, it proves that negation
of case (b) implies case (a). This ends the proof. �

Observe that under the above assumptions, if case (a) fails to hold, then R is
nonempty and finite. Indeed, the Lemma implies that R �= ∅, and if R were infinite,
then for every x ∈ N we could choose a sequence satisfying case (a), since x has
only a finite number of primes in its canonical factorization. For the sake of brevity,
if in the sequel x ∈ N, (xm)∞m=1 ∈ NN, limm→∞ |f(xm)| = ∞ and (x, xm) = 1 for
m ∈ N, we simply say that (xm)∞m=1 satisfies (a) with x.
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Theorem. Assume that an unbounded function f : N → C satisfies (2). Then
there exists an nt-multiplicative function f̃ such that

(3) |f(x) − f̃(x)| ≤ ε , x ∈ N.

Moreover, in the case where condition (a) of the Lemma holds true, then

(4) f = f̃ .

Generally, we have

(5) f |⋃
p∈R ord−1

p (0) = f̃ |⋃
p∈R ord−1

p (0).

Proof. First, assume that case (a) is satisfied. We have to show that f is nt-
multiplicative (that is, nothing else but (4)). Fix arbitrarily an x ∈ N. Since (a)
holds, we can choose a sequence (xm)∞m=1 ∈ NN such that (x, xm) = 1 for m ∈ N
and limm→∞ |f(xm)| = ∞. By inequality (2), we have

|f(xmx) − f(xm)f(x)| ≤ ε

for all m ∈ N. For sufficiently large m we have |f(xm)| �= 0. For those m we divide
both sides by |f(xm)|. This yields∣∣∣∣f(xmx)

f(xm)
− f(x)

∣∣∣∣ ≤ ε

|f(xm)|
for sufficiently large m ∈ N. Hence

(6) lim
m→∞

f(xmx)
f(xm)

= f(x),

which is true for every x ∈ N and every sequence (xm)∞m=1 satisfying (a) with x. In
the sequel r(t, u) denotes the difference f(tu) − f(t)f(u) for t, u ∈ N. Fix x, y ∈ N
such that (x, y) = 1. Let (am)∞m=1 be a sequence satisfying (a) with xy. Since
(xy, am) = 1 implies both (x, am) = 1 and (y, am) = 1 for all m ∈ N, we infer that
the sequence (am)∞m=1 satisfies (a) with x and y as well. By (6) we have

f(xy) = lim
m→∞

f(amxy)
f(am)

= lim
m→∞

1
f(am)

(f(amx)f(y) + r(amx, y)) .

Since (am, y) = (x, y) = 1 implies (amx, y) = 1, assumption (2) yields |r(amx, y)| ≤
ε. So,

lim
m→∞

r(amx, y)
f(am)

= 0.

Thus and by (6)

f(xy) = f(y) lim
m→∞

f(amx)
f(am)

= f(x)f(y),

which states that f is nt-multiplicative.
Now assume that case (a) fails to hold. Then, by the Lemma, the set R is

nonempty and, as has already been remarked, R is finite. Thus the definition

I :=
∏
p∈R

p
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is correct. Define
S :=

⋃
p∈R

ord−1
p (0)

(S is simply the set of all those elements of N that are not divisible by at least one
prime from R). Observe that N \S =

⋂
p∈R{px : x ∈ N}, hence N = S ∪ (I), where

(I) denotes the ideal generated by I.
For s ∈ S we put f̃(s) := f(s). We shall show that f is nt-multiplicative in S in

the following sense: if x, y, xy ∈ S and (x, y) = 1, then f(xy) = f(x)f(y). Observe
that for every s ∈ S we can choose a prime ps ∈ R such that (s, ps) = 1; hence
(s, pm

s ) = 1 for all m ∈ N. Since f restricted to the set {pm
s : m ∈ N} is unbounded,

there exists a subsequence k1 < k2 < . . . of N such that

(7) lim
m→∞

|f(pkm
s )| = ∞.

By (2), we have
|f(pkm

s s) − f(pkm
s )f(s)| ≤ ε

for all m ∈ N, whereas by (7), f(pkm
s ) �= 0 for sufficiently large m ∈ N. Dividing

both sides of the previous inequality by |f(pkm
s )| for those m ∈ N and making use

of (7), we obtain

(8) lim
m→∞

f(pkm
s s)

f(pkm
s )

= f(s) ,

which is true for all s ∈ S and all sequences (pkm
s )∞m=1 satisfying (7) and such that

(s, ps) = 1. Now, fix x, y ∈ S such that xy ∈ S and (x, y) = 1. The reasoning
leading to equation (8) shows that for a prime pxy which divides neither x nor y
and for a subsequence k1 < k2 < . . . of N we have limm→∞ |f(pkm

xy )| = ∞ and

f(xy) = limm→∞
f(pkm

xy xy)

f(pkm
xy )

. Since (pxy, y) = (x, y) = 1 implies (pxyx, y) = 1,

assumption (2) yields |r(pxyx, y)| ≤ ε. So, limm→∞
r(pkm

xy x,y)

f(pkm
xy )

= 0 and

f(xy) = lim
m→∞

f(pkm
xy xy)

f(pkm
xy )

= lim
m→∞

1
f(pkm

xy )

[
f(pkm

xy x)f(y) + r(pkm
xy x, y)

]

= f(y) lim
m→∞

f(pkm
xy x)

f(pkm
xy )

= f(x)f(y).

We have just proved that f is nt-multiplicative in S.
Let I = p1 · . . . · pk be the canonical factorization of I (i.e. R = {p1, . . . , pk}, 0 <

k < ∞). If k > 1, then we have already defined all of the values: f̃(pα1
1 ), . . . , f̃(pαk

k )
for every α1, . . . , αk ∈ N, since all previous arguments belong to S. We have also
defined the value f̃(1) = 1 (note that (2) and unboundedness of f easily imply that
f(1) = 1). Making f̃ to be nt-multiplicative, we have to define

f̃(qκ1
1 · . . . · qκl

l ) : = f̃(qκ1
1 ) · . . . · f̃(qκl

l )
= f(qκ1

1 ) · . . . · f(qκl

l )(9)

for all pairwise different primes q1, . . . , ql and naturals κ1, . . . , κl. For k = 1 we
define f̃(pκ

1 ) := f(pκ
1) (κ ∈ N), and having already defined values of f̃ on all powers

of primes we similarly put other values like in (9). We have considered all possible
values of k, because - by the Lemma - we have k > 0. The fact that the above
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definition is correct (i.e. it is compatible with (5)) follows from nt-multiplicativity
of f in S.

It remains to show inequality (3). Fix x ∈ N. It has a representation of the form

x = qα1
1 · . . . · qαl

l

where q1, . . . , ql are pairwise different primes and α1, . . . , αl ∈ N. Since the functions
f and f̃ coincide on prime powers and f̃ is nt-multiplicative, we have

(10) |f(x) − f̃(x)| = |f(qα1
1 · . . . · qαl

l ) − f(qα1
1 ) · . . . · f(qαl

l )|.

If none of q1, . . . , ql belongs to R, then x ∈ S and the left-hand side of (10) is equal
to 0, by nt-multiplicativity of f in S. If qi ∈ R for some i ∈ {1, . . . , l}, then

l∏
j=1,j �=i

q
αj

j ∈ S,

whence nt-multiplicativity of f in S implies that

(11) f

⎛
⎝ l∏

j=1,j �=i

q
αj

j

⎞
⎠ =

l∏
j=1,j �=i

f(qαj

j ).

Plainly, ⎛
⎝ l∏

j=1,j �=i

q
αj

j , qαi
i

⎞
⎠ = 1 ,

so, by virtue of (2), we have∣∣∣∣∣∣f
⎛
⎝ l∏

j=1,j �=i

q
αj

j · qαi
i

⎞
⎠ − f

⎛
⎝ l∏

j=1,j �=i

q
αj

j

⎞
⎠ f(qαi

i )

∣∣∣∣∣∣ ≤ ε .

Comparing it to (11) and (10) we get (3), which ends the proof. �

3. Remarks and possible generalization

Remark 1. It is easily seen that in the case when f is a real function, the function
f̃ constructed in the proof of the Theorem is real as well.

Remark 2. We may replace the standard domain N of equation (1) by an arbitrary
semigroup with unique factorization which we define as follows.

Let (P, +, ·, 0, 1) be an integral domain with unique factorization and let (D, ·)
be a subsemigroup of the semigroup (P \ {0}, ·) which contains the identity. If
x, y ∈ D, we say that x divides y (and write x | y) iff y = ax for some a ∈ D. We
say that x is equivalent to y iff x | y and y | x. In such a case y = ax, x = by for
some a, b ∈ D, whence y = aby and ab = 1, b = a−1. Thus a is an invertible element
which belongs to D together with its inverse. A noninvertible element z ∈ D is
called unfactorable iff it cannot be represented as a product of two noninvertible
elements of D; it is called prime iff the equality z = a1a2 for some a1, a2 ∈ D
implies z | a1 or z | a2. It is easily proved that these two notions are equivalent in
semigroups with unique factorization as well as in integral domains.
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Definition 3. A subsemigroup (D, ·) of the semigroup (P \ {0}, ·) is called a semi-
group with unique factorization, if and only if each of its noninvertible element
has exactly one representation (up to a permutation and equivalence of factors) as
a product of prime elements of that subsemigroup (equivalently: elements unfac-
torable in D).

In semigroups with unique factorization the notion of greatest common divisor
can be introduced as it is done for integral domains with unique factorization. The
greatest common divisor is determined up to the equivalence relation, e.g. (x, y) = 1
means exactly that there does not exist a prime element dividing both x and y. A
suitable modification of Definition 1 may be considered for nt-multiplicative func-
tions with a domain D being a semigroup with unique factorization. A condition
for functions f : D → C which is analogous to (2) may be considered as well. One
may easily verify that the above argumentations work in such a more general case
without any significant modifications. We only have to work with a set P (D) - any
maximal subsets of D containing pairwise nonequivalent prime elements, instead
of the set P , and invertible elements of D, different from 1, have to be taken into
account in canonical factorizations.

Such a generalization may be motivated by the fact, that - although (N, ·) is the
most important and natural semigroup with unique factorization - there exist many
other such semigroups (like (Z[i], ·) or (K[X1, . . . , Xn], ·) for instance). Every field is
also an example of a semigroup with unique factorization, because the requirement
of factorization uniqueness is trivially fulfilled, since all of its nonzero elements are
invertible. Our result (which concerns conditional functional equations) applied for
fields became a result concerning classical stability (unconditional).

Remark 3. In view of assertion (4), the Theorem establishes something more than
the stability of the equation of nt-multiplicative functions. More precisely, the
sufficient condition for getting effect (4) is just the unboundedness of f restricted to
some subset A ⊆ N consisting of infinitely many mutually relatively prime elements.

It is known that approximately multiplicative functions f : S → C have the
property that they are either bounded or multiplicative, for an arbitrary semigroup
(S, ·) (see Theorem 1 in the paper of J. A. Baker, J. Lawrence and F. Zorzitto [1]
and Theorem 1 in the paper of J. A. Baker [2] which strengthens the previous one).
Observe that if (K, +, ·, 0, 1) is a field, then (K \ {0}, ·) is a semigroup with unique
factorization where the condition (x, y) = 1 is trivially fulfilled for all x, y ∈ K \{0}.
In such a situation our Theorem reduces to some special cases of the just mentioned
J. A. Baker - J. Lawrence - F. Zorzitto theorem.

Example 1. As in the paper of J. A. Baker, the range of f cannot be replaced by
an arbitrary normed algebra. To show this, we apply a slight modification of the

counterexample given in [2]. Let A :=
{[

a b
c d

]
: a, b, c, d ∈ R

}
with a norm

‖ · ‖ : A2 → [0,∞) given by ‖
[

a b
c d

]
‖ :=

√
a2 + b2 + c2 + d2. Let φ : N → N

be Euler’s function and let η ∈ R satisfy η − η2 = ε where ε > 0 is fixed. Define
f : N → A as

f(n) :=
[

φ(n) 0
0 η

]
, n ∈ N.
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The function f satisfies (2) with R equal to the set of all prime numbers, but
contrary to (4) f is not nt-multiplicative, since

‖f(mn) − f(m)f(n)‖ = ‖
[

0 0
0 η − η2

]
‖ = ε

for m, n ∈ N such that (m, n) = 1.

Example 2. Finally we show that the constant ε in (3) is sharp. To this end define
a function f : N → R as follows. Fix arbitrarily two different primes p and q and
put

f(n) :=

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

1, if p � n, q � n,
ordp(n), if p | n, q � n,
ordq(n), if p � n, q | n,
ordp(n) · ordq(n), if p | n, q | n, n �= pq,
2, if n = pq,

n ∈ N .

It is easy to check that f fulfils (2) with ε = 1. Let f̃ : N → C be any of nt-
multiplicative functions satisfying ‖f − f̃‖sup ≤ 1. Let α := f̃(p). For every
k = 2, 3, . . . we have f(pqk) = k hence 1 ≥ |f̃(pqk) − k| = |αf̃(qk) − k|. Similarly,
because of f(qk) = k, one has |f̃(qk)− k| ≤ 1. Let θk := f̃(qk)− k for k = 1, 2, . . ..
The latter inequality says that the sequence (θk) is bounded: |θk| ≤ 1, k ≥ 2,
whereas the former states that

|αθk + (α − 1)k| ≤ 1, k ≥ 2 .

The left-hand side of this inequality would tend to infinity provided that α − 1 is
different from zero. We have thus shown that f̃(p) = 1. The symmetry of roles of
p and q allows us to state that f̃(q) = 1 as well. Therefore, f̃(pq) = f̃(p)f̃(q) = 1
which implies |f(pq) − f̃(pq)| = 1 and hence ‖f − f̃‖sup = 1.
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