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MINIMAL CONVEX FUNCTIONS
BOUNDED BELOW BY THE DUALITY PRODUCT

J.-E. MARTÍNEZ-LEGAZ AND B. F. SVAITER

(Communicated by Jonathan M. Borwein)

Abstract. It is well known that the Fitzpatrick function of a maximal mono-
tone operator is minimal in the class of convex functions bounded below by the
duality product. Our main result establishes that, in the setting of reflexive
Banach spaces, the converse also holds; that is, every such minimal function is
the Fitzpatrick function of some maximal monotone operator. Whether this

converse also holds in a nonreflexive Banach space remains an open problem.

1. Introduction

Convex analysis is involved in many branches of mathematics, from functional
analysis to optimization. Maximal monotone operators appear naturally in convex
analysis, but their study is in many parts performed outside convex analysis. This
statement may undergo a drastic change. In a 1988 paper, Fitzpatrick [4] proved
that any maximal monotone operator can be represented by convex functions in
a special class. Moreover, he explicitly defined a convex representation of a given
maximal monotone operator and proved this function to be minimal in the class.
These results were recently rediscovered [6, 2], and since then Fitzpatrick’s results
have been the subject of intense research [9, 3, 12, 7, 10, 5, 11, 8, 1, 13].

The aim of this paper is to provide a partial converse to one of Fitzpatrick’s
results. Namely, we will provide a partial characterization of the minimal elements
of the family of convex functions bounded below by the duality product. In the
special setting of a reflexive Banach space, we will show that the minimal elements
are the Fitzpatrick functions associated to maximal monotone operators.

This paper is organized as follows. In Section 2 we introduce the notation and
some basic definitions and recall some auxiliary results. In Section 3 the main
theorem is proved and some open questions are discussed.
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Barcelona in March 2006.

c©2007 American Mathematical Society

873
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2. Basic definitions and auxiliary results

Let X be a real Banach space and X∗ be its dual. For x ∈ X, x∗ ∈ X∗ we use
the notation

〈x, x∗〉 = x∗(x).

We will identify a point-to-set operator A : X ⇒ X∗ with its graph,

A � {(x, x∗) | x∗ ∈ A(x)} .

The operator A : X ⇒ X∗ is monotone if

〈x − y, x∗ − y∗〉 ≥ 0, ∀(x, x∗), (y, y∗) ∈ A.

A monotone operator is maximal monotone if it is not properly contained in any
other monotone operator.

The conjugate of f : X → R̄ is f∗ : X∗ → R̄,

f∗(x∗) := sup
x∈X

〈x, x∗〉 − f(x).

If f is an (extended) real valued function defined on X ×X∗, then f∗ is defined on
X∗ × X∗∗. We will identify an element x ∈ X with its image under the canonical
injection of X into X∗∗,

x : X∗ → R, x(x∗) = x∗(x) = 〈x, x∗〉 .

We use this convention whenever we write f∗(x∗, x) for f : X × X∗ → R̄, x ∈ X
and x∗ ∈ X∗.

The Fitzpatrick function associated to an operator A : X ⇒ X∗ is defined as

ϕA(x, x∗) = sup(y,y∗)∈A 〈x − y, y∗ − x∗〉 + 〈x, x∗〉
= sup(y,y∗)∈A 〈x, y∗〉 + 〈y, x∗〉 − 〈y, y∗〉 .

This function has some nice properties. It is convex and l.s.c., and if A is maximal
monotone, then ϕA characterizes A:

Theorem 1 ([4, Cor. 3.9, Prop. 3.2 and Thm. 3.7]). Let A ⊂ X ×X∗ be maximal
monotone. Then, for any (x, x∗) ∈ X × X∗,

ϕA(x, x∗) ≥ 〈x, x∗〉 ,

ϕA(x, x∗) = 〈x, x∗〉 ⇐⇒ (x, x∗) ∈ A(1)

and

(ϕA)∗ (x∗, x) ≥ 〈x, x∗〉 ,

(ϕA)∗ (x∗, x) = 〈x, x∗〉 ⇐⇒ (x, x∗) ∈ A.

Moreover, ϕA is minimal in the family of convex functions defined on X ×X∗ that
are bounded below by the duality product.

Proof. The only part of the statement that cannot be found in [4] is the minimality
of ϕA, though it easily follows from the main results of that paper. Indeed, suppose
that f : X×X∗ → R is convex, bounded below by the duality product and f ≤ ϕA;
then, by (1), f(x, x∗) = 〈x, x∗〉 for all (x, x∗) ∈ A and hence, in view of [4, Thm.
3.7], ϕA ≤ f. �
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Let us denote by π the duality product,

π : X × X∗ → R, π(x, x∗) = 〈x, x∗〉 ,

and let F be the family of convex functions on X ×X∗ that are bounded below by
the duality product,

F =
{
f : X × X∗ → R | f is convex and proper, f ≥ π

}
.

As we already mentioned, Fitzpatrick functions of maximal monotone operators are
minimal in the family F . It is natural to ask which are the minimal elements of
this family. We will partially characterize the minimal elements of F in a generic
Banach space, and for reflexive spaces we will show that these minimal elements
are Fitzpatrick functions.

The following auxiliary result of Burachik and Svaiter [3] will be needed:

Theorem 2 ([3, Thm. 3.1]). Let X be reflexive and h : X × X∗ → R̄ be a lower
semicontinuous convex function. Define

A := {(x, x∗) ∈ X × X∗ | h(x, x∗) = 〈x, x∗〉}.
If

h(x, x∗) ≥ 〈x, x∗〉 , h∗(x∗, x) ≥ 〈x, x∗〉 , ∀(x, x∗) ∈ X × X∗,

then A is maximal monotone and

A = {(x, x∗) ∈ X × X∗ | h∗(x∗, x) = 〈x, x∗〉}.

3. Main results

The following lemma will be useful to prove the main result:

Lemma 3. For any function f : X × X∗ → R and any (x, x∗), (y, y∗) ∈ X × X∗,
p, q ≥ 0, p + q = 1, it holds that

p max {f (x, x∗) , 〈x, x∗〉} + q max {f∗ (y∗, y) , 〈y, y∗〉} ≥ 〈px + qy, px∗ + qy∗〉 .

Proof. By direct algebraic manipulation, using Fenchel inequality one gets

〈px + qy, px∗ + qy∗〉 = p2 〈x, x∗〉 + pq (〈x, y∗〉 + 〈y, x∗〉) + q2 〈y, y∗〉
≤ p2 〈x, x∗〉 + pq (f (x, x∗) + f∗ (y∗, y)) + q2 〈y, y∗〉
= p (p 〈x, x∗〉 + qf (x, x∗)) + q (pf∗ (y∗, y) + q 〈y, y∗〉)
≤ p max {f (x, x∗) , 〈x, x∗〉} + q max {f∗ (y∗, y) , 〈y, y∗〉} ,

which is the desired result. �

Corollary 4. For any f ∈ F and (x, x∗) ∈ X × X∗ there exists h ∈ F such that

f ≥ h, max {f∗(x∗, x), 〈x, x∗〉} ≥ h(x, x∗).

Proof. Define

h = conv min
{
f, δ{(x,x∗)} + max {f∗ (x∗, x) , 〈x, x∗〉}

}
,

the largest convex minorant of f and δ{(x,x∗)} + max {f∗ (x∗, x) , 〈x, x∗〉} , with δ
denoting an indicator function in the sense of convex analysis. Since these two
functions are convex, one has

h (y, y∗) = inf {pf (z, z∗) + q max {f∗ (x∗, x) , 〈x, x∗〉}} , ∀(y, y∗) ∈ X × X∗,
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the infimum being over all p, q ≥ 0 and (z, z∗) ∈ X × X∗ such that

p + q = 1, p (z, z∗) + q (x∗, x) = (y, y∗) .

Hence, by Lemma 3, h ≥ π. From the definition of h it follows that it satisfies the
required conditions. �

Theorem 5. For any f ∈ F there exists a minimal g ∈ F such that f ≥ g.
Moreover, any minimal element g of F is l.s.c., satisfies

(2) g∗(x∗, x) ≥ g(x, x∗), ∀(x, x∗) ∈ X × X∗,

and, if X is reflexive, then g = ϕA for some maximal monotone A : X ⇒ X∗.

Proof. The family F is (decreasingly) inductively ordered. Indeed, if {fα}α∈Λ is a
totally ordered family of functions of F , defining

f̂ = inf
α∈Λ

fα,

we have f̂ convex, f̂ ≥ π and fα ≥ f̂ for any α ∈ Λ. Hence, using Zorn’s Lemma
we conclude that given any f ∈ F there exists a minimal g ∈ F , f ≥ g.

Now, let g ∈ F be a minimal element of F and let cl g be the lower semicontinuous
closure of g. Since g is convex, g ≥ π and the duality product is continuous,
it follows that the lower semicontinuous closure of g is also convex and greater
than π, that is, cl g ∈ F . Hence, g being minimal, it must be equal to its lower
semicontinuous closure, i.e., g is lower semicontinuous. Take an arbitrary (x, x∗) ∈
X × X∗. If g∗(x∗, x) = ∞, then, trivially, g(x, x∗) ≤ g∗(x∗, x). So, assume that
g∗(x∗, x) < ∞. By Corollary 4, there exists h ∈ F such that g ≥ h and h(x, x∗) ≤
max {g∗(x∗, x), 〈x, x∗〉} . Since g is minimal, we actually have h = g and hence

g(x, x∗) ≤ max {g∗ (x∗, x) , 〈x, x∗〉} .

In particular, g(x, x∗) is also finite. Using Fenchel inequality, we obtain

max {g∗ (x∗, x) , 〈x, x∗〉} ≤ max
{

g∗ (x∗, x) ,
1
2

(g(x, x∗) + g∗ (x∗, x))
}

,

which, combined with the previous inequality, implies that g(x, x∗) ≤ g∗ (x∗, x) .
If X is reflexive, then, applying Theorem 2, we conclude that the set

A = {(x, x∗) ∈ X × X∗ : g(x, x∗) = 〈x, x∗〉}
is maximal monotone. Hence ϕA ∈ F and, applying Theorem 1, we deduce that
g ≥ ϕA, which, as g is minimal, implies g = ϕA. �

Using Lemma 3 we also obtain the following result.

Proposition 6. For any f ∈ F such that

f∗ (x∗, x) ≥ 〈x, x∗〉 , ∀ (x, x∗) ∈ X × X∗,

there exists h ∈ F such that

(3) min {f (x, x∗) , f∗ (x∗, x)} ≥ h (x, x∗) , ∀ (x, x∗) ∈ X × X∗.

Proof. For (x, x∗) ∈ X × X∗ define h (x, x∗) = inf {pf (y, y∗) + qf∗ (z∗, z)} , the
infimum being over all p, q ≥ 0 and (y, y∗) , (z, z∗) ∈ X × X∗ such that

p + q = 1, p (y, y∗) + q(z, z∗) = (x, x∗).
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Clearly the function h : X × X∗ → R so defined satisfies (3); in fact, since f
and f∗ are convex, it is the largest convex minorant of f satisfying this inequality.
Moreover, by Lemma 3, h ≥ π, so that h ∈ F . �

Since the duality product is continuous on X × X∗, Proposition 6 still holds
replacing F by F0

F0 = {f ∈ F : f l.s.c.}.
Moreover, from Theorem 5 one concludes that the family F0 is also inductively
ordered.

Since Fitzpatrick functions are not only lower semicontinuous in the strong topol-
ogy of the space X×X∗ but also in the w×w∗ topology, that is, in the weak topology
on X × X∗ determined by the functionals in X∗ × X, we will next consider the
family

F0w = {f ∈ F : f l.s.c. in the w × w∗ topology}.
If X is reflexive, the w×w∗ topology of X×X∗ coincides with the weak topology.

In this case, for convex functions, lower semicontinuity (in the strong topology) is
equivalent to lower semicontinuity in the w × w∗ topology, and then F0w = F0.

If X is non-reflexive, the preceding reasoning fails and the inclusion

F0w ⊂ F0

may be strict. Moreover, in infinite dimensional Banach spaces the duality product
is not continuous in the w × w∗ topology of X × X∗. Even though, Fitzpatrick
functions of maximal monotone operators belong to F0w. This discussion raises
some questions for the case where X is non-reflexive:

1) Is the family F0w inductively ordered?
2) Does Proposition 6 hold replacing F by F0w?
Finally, a full characterization of the minimal elements of F and F0w is missing

in the non-reflexive case.
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