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ABSTRACT. Let X be a Banach space and let A(X) be the class that consists
of all operators T' € L(X) such that for every A € C, the range of (T — AI)
has a finite-codimension when it is closed. For an integer n € N, we define
the class A, (X) as an extension of A(X). We then study spectral properties
of such operators, and we extend some known results of multi-cyclic operators

with (8).

INTRODUCTION

The concept of quasisimilarity has been studied by many authors, and it is
well-known that this concept generally does not conserve the spectral structure
of an operator (see for example [Tl [15]). Additional references including certain
relationships between spectra of specific quasisimilar operators include [4} [6l 9] and
[T1]. In this paper, for a Banach space X and an integer n € N, we define classes
An(X) and N, (X) as an extension of the classes A(X) and N (X), respectively,
introduced in [6]. Among other results we compare these classes, and we show that
ifT € A,(X) and S € A,,(Y) are quasisimilar operators with Bishop’s property
(8) on the Banach spaces X and Y for some tuple (n,m) € N? then T and S
have the same approximate point spectrum, continuous spectrum and generalized
spectrum and the same vein of other spectra.

1. PRELIMINARIES

Throughout this paper, X and Y are Banach spaces and £(X,Y") denotes the
space of all bounded linear operators from X to Y. We set £(X) := £L(X, X) and for
a bounded linear operator A € L(X,Y), let A*, N(A), and R(A) denote the adjoint
operator, the null space, and the range of A. Also, we set a(A) := dim N(A) and
B(A) := dim N(A*).

For an operator T' € L(X), we denote by Lat(T) the lattice of all closed T-
invariant subspaces of X, and for M € Lat(T), let T|M € L(M) be the restriction
of T to M.
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For X a Banach space, we define the class A(X) as the set of all operators
T € L(X) which satisfy the next relation

,Of(T) C pre(T)a

where pr(T) = {A € C: R(T — XI) is closed } and p,.(T) is the right essential
spectrum. For n > 1 an integer, we denote by A, (X) the set of all operators T' €
L(X) such that there exists a decreasing family of closed subsets (Xo,...,X,) €
Lat(T)"** for which Xo = X, T|X,, € A(X,,) and TX; C X;1 fori =0,1,...,n—
1. Also, we set Ag(X) := A(X). Clearly, the class A;(X) contains all compact
operators, but finite rank operators are not in A(X) for any infinite dimensional
Banach space X. More examples are given in the following:

(1) If X is finite dimensional, then every linear operator is in A(X).

(2) Every nilpotent operator T of order n is in A, (X). Indeed, we can take
X; = ker(T"™%). If dimX = +oo, then T ¢ A(X).

(3) If T is a normal operator such that every isolated point of o(T) is an
eigenvalue of finite multiplicity, then T is in A(X); see J.B.Conway [5], XI
Propositions 4.5 and 4.6.

We say that T € £(X) has the single-valued extension property, abbreviated
SVEP, if, for every open subset U C C, the only analytic solution f : U — X of
the equation (T'—AI) f(A) = 0 for all A € U is the zero function on U . Furthermore,
we say that T has Bishop’s property (3), if, for each open subset U of C and every
sequence of analytic functions f,, : U — X for which (T'—AI) f,(A\) — 0 asn — oo,
locally uniformly on U, it follows that f,,(A\) — 0 as n — oo, again locally uniformly
on U. For further details about these notions we refer to [2], [12] and [16].

Along this paper, we use oy, 0qp,0e, and ogr to denote the point, approximate
point, Fredholm essential , and semi-Fredholm essential spectrum, respectively. We
also denote by ;. and o, the upper and lower semi-Fredholm essential spectra.
Also, we use pgp, pe, psr , and pj. to denote the complement in C of ogp,0¢,05F
and oy, respectively. Recall, when T is a semi-Fredholm operator, the index of T
is defined as ind(T") := «(T") — B(T).

Consider an arbitrary operator T € £(X) and let o4(T") consist of all A € C
for which (T — AI) fails to have closed range, and let px (T") consist of all A € C
for which R(T — AI) is closed and N(T — AI) C R((T — M\I)™) for all n € N. The
Kato spectrum ok (T) := C\ pg(T) is sometimes referred to as the semi-regular
spectrum or the Apostol spectrum. Finally, we set p;(T) := C\ o4(T).

Next, for T € A, (X), we set T; := T|X; for i = 1,...,n, and recall that, for
0y € {0c,0re, 01c,08F, Oap, 0}, from [3, Theorems 3, 5, 6 and Example 11] we have

0.(T)\ {0} = 0.(T1) \ {0} and 0. (T;) \ {0} = 0 (T;41) \ {0} for i =1,...,n — 1.
Consequently,
(L1 ou(T)\{0} = 0u(Tn) \ {0} for 0. €{0oe,0re,01e, 057, Tap, 0}

Proposition 1.1 ([0, Theorem 4.1)). Let T € L(X) and suppose that T € A(X).
Then the following statements hold:

(1> IOSF(T) = pre(T) = pf(T)'

(2) pe(T) = pre(T).

(3) Moreover, if T has the SVEP, then

O'e(T) = O'SF(T) = O'f(T) = O'le(T) = O',ae(T).
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As an immediate consequence of Proposition 1.1 and (1.1) we get

Remark 1.1. For T € A,(X), we have

1) ore(T) \ {0} = 04(T) \ {0};
ii) 01(T) \ {0} = 04(T) \ {0} when T has the SVEP.

Recall that a linear bounded operator with closed range is called normally solv-
able, and for an operator T' € £(X), the minimum modulus of T, written v(7T), is
defined by

T) = inf{ ITz] ze X\ N(T)

(z, N(T))
where d (z, N(T)) denotes the distance from x to N(7T) and with the convention
that v(T") = oo if T' = 0. Notice here that T has closed range if and only if v(7") > 0.
We refer to [§] for further details and definitions.

Proposition 1.2. If T € A,(X), then the following assertions hold:
(i) If R(T) is not closed, then T € A(X).
(ii) If T € A, (X) \ A(X), then R(T) is closed and o(T) = B(T') = +o0.

Proof. (i) Since T € A,,(X), it follows from (1.1) that

(1.2) ore(T) \ {0} = o(T) \ {0}.

It is clear that, if R(T") is not closed, then o,..(T') = o4(T), which implies T" € A(X).
(i) T € A, (X) \ A(X) using (i) R(T) is closed. It is clear that 5(T) = +oc.

Suppose that «(7T) is finite; it will come that 7' is normally solvable and has an

index. Let A € C be given such that 0 < |A\| < y(T'). From Theorem V.1.6 of [§],

we get

T—MI is normally solvable ; a(T—A) < «(T) , and ind (T—AI) = ind (7).

Hence A € p(T) and (1.2) implies that A € p,.(T). Consequently, a(T — AI) and
B(T — M) are both finite. Finally it follows from the fact that «(7) is finite and
ind (T) = ind (T — M) that B(T) is finite. Contradiction, which completes the
argument. (I

A straightforward application of Proposition 1.1 and Proposition 1.2, gives the
following result

Theorem 1.2. Suppose that T € A,(X)\ A(X). Then the following statements
hold:

(1) 05p(T) = 0re(T) = o4(T) U{0}.

(2) 0e(T) = 01(T).

(3) Moreover, if T has the SVEP, then

0e(T) = 05p(T) = 01(T) = 0,e(T) = 0¢(T) U {0}.

2. THE MAIN RESULTS

In the following, for a subset E of a Banach space, we set span{E} for the
closure of the linear space generated by E and E for the closure of E. We also
denote A, (X) for the set of all operators in A, (X) such that X; := R(T?) for
1=1,...,n.
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2.1. Quasisimilar operators in A, (X). In this subsection, let T € £(X) and
S € L(Y) be quasisimilar operators, equivalently, there exist A € L£(X,Y) and
B € L(Y, X) one to one and with dense ranges, such that AT = SA and TB = BS.
It is clear that, for each integer n > 1, T™ and S™ are quasisimilar operators. We
set T), :== T|R(T") and S,, := S|R(S™), and so, from Lemma 5.2 of [6], we obtain
the following

Lemma 2.1. Let T € L(X) and S € L(Y) be quasisimilar operators; then T, and
S, are quasisimilar operators.

Here we study the spectral picture of quasisimilar operators with property (3).

Proposition 2.1. Suppose that (T, S) € A, (X) x A, (Y) are quasisimilar operators
with property (3); then

Tap(T) = 0ap(S)-

Proof. Since T,, and S,, are quasisimilar operators by Lemma 2.1, and since T}, and
S, satisfy property (), it follows from Theorem 3.7.15 of [12] together with (3) of
Proposition 1.1, that

Uf(Tn) = Uf(gn)
as a,(T,) = 0,(5,); thus ) )
Oap(Tn) = Tap(Sn).

From this fact and (1.1), we deduce that

0ap(T) \ {0} = 0ap(5) \ {0}
Let us prove that 0 € o,,(T) if and only if 0 € 0,,(S). Without loss of generality
we can assume that 7' and S are not nilpotent operators (indeed, in this case, we
have 04p,(T) = 04p(S) = {0}). B B
Now, suppose that 0 € 0,,(T'), hence 0 ¢ 04,(1T;,) and we get 0 € 04p(Sn). It

follows that R(S,,) is closed. Thus S, is a Fredholm operator because S, is injective

and S,, € A(R(S™)), and so, S™ is Fredholm operator in R(S™). Consequently, there

exists a finite-dimensional subspace F' of R(S™) such that

R(S™) = R(S})) & F.
Since R(S") C R(S™), it is easy to verify that
R(S™) = R(SI) @ (F N R(S™)).
Therefore, R(S™) is closed, which implies that S™ has a bounded inverse because

S™ is injective. Thus, S also has a bounded inverse, and so 0 & 0,,(S). Finally,
the reverse implication is obtained by symmetry. O

In what follows, let T € £(X) and S € L(Y) be quasisimilar operators, and
let Ae £(X,Y) and B € L(Y, X) be the quasi-affinities for which AT = SA and
TB = BS. In an easy way we refine Proposition 2.1 as follows

Theorem 2.1. Let T and S be quasisimilar operators with property (). Suppose
that T € An(X) and S € A, (Y) for some (n,m) € N2. Then

(1) 0.(T) = 0.(S) for 0w €{0c,0re;01e, OSF, Oap}-
(2) o4(T) U{0} = os(5) U{0}.
Furthermore, if a(T) is finite, then o7 (T) = o7(5).
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Proof. Since T and S are with property (3), Theorem 3.7.15 of [12] together with
the quasisimilarity of T' and S imply that

(2.1) 0.(T) = 0.(5),

and since Bishop’s property implies the SVEP for an arbitrary bounded operator,
Theorem 1.2 and Proposition 1.1 together with (1.2) implies that

0.(T) = 0.(9) for Ox €{0c,0re,0le, OsF }
and
of(T)U{0} = os(S)U{0}.
If «(T) is finite, then «(S) is finite, and so, (T, S) € A(X) x A(Y) by Proposition

1.2. Thus, o4(T) = 04(S) by (2.1) and Proposition 1.1.
Now, let us prove oqp,(T) = 04p(S5). It is known that

(2.2) Oap(T) =0p,(T)U o (T) and  oqp(S) = 0,(S)Uoy(S),
and it is clear that ¢,(T") = 0,(S). If 0 € 0,,(T'), then
oap(T) = op(T)Uos(T) U{0}
— 5,(8) Uas(S) U {0}
Oap(9).
If, 0 & o,(T), then a(T) = 0 and so 0¢(T) = 0¢(S). Hence by (2.2) we get
Oap(T) = 04p(S), which completes the proof. O

Recall that, for T' € £(X), the continuous spectrum o.(7T) is defined to be the
set of all A € C such that (T — AI)~! exists but is not continuous and R(T — \I) is
dense in X. Equivalently, T is one to one and with nontrivial dense range (see for
example [§]). It is then not hard to see that

(2.3) 0e(T) = 0,(T*) N 0y(T)° N f(T)

where K¢ is the complement of the subset K of C. Also, it is known that (T'— AI)
is regular if A\ € px(T') and there exist two closed subspaces Ey and Fy of X such
that

X=NT-XM)®E\=R(T—-\)&F,.

Let, as usual, reg (T') denote the regular set of T, and let 04(T") denote to the
generalized spectrum of T', which is the complement of reg (T'). We now extend
the result of Theorem 2.1 to the continuous and the generalized spectrum.

Outlining the proof of [0 Lemma 5.2 ] we obtain the following result that will
be needed in the next theorem.

Lemma 2.2. Let T € L(X), S € L(Y) and A € L(X,Y) be operators such that
AT = SA and A has dense range. Then

AR(T — M) = R(S — AI) for all ArecC.
Theorem 2.2. Suppose that, T € A,(X) and S € An(Y) for some (n,m) € N?
are quasisimilar operators with property (8). Then the following assertions hold:
(a) oo(T) = 0c(95),
(0) 04(T) = 04(5).
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Proof. (a) First, let us prove that
(2.4) op(T)*Noy(T) = 0p(S)° Nos(S).
In fact, it is obvious that 0,(T)¢ = 0,(5)°. If 0 € 0,(T), Theorem 2.1 implies
of(T) = 04(S), and so, (2.4) holds. In the other case, when 0 € 0,(T), we have
op(T)*Nop(T) = op(T)°N(o4(T)U{0})
= 0p(8)°N(05(S) U{0})
0 (S) N as(S).
On the other hand, since T* and S* are quasisimilar operators, we get that o, (T™*)¢
= 0,(5*)¢. This, together with (2.3) and (2.4) entail the desired result.
(b) Since T and S have the SVEP, then from Corollary 3.1.7 of [12], we have
Ppr(T) = pap(T) and px (S) = pap(S), and from Theorem 2.1 we obtain
(2.5) pi(T) = pr(S).

Now, let A € reg (T) be given. Since A € px(T) and from (2.5) we get A € px (S);
hence R(S — M) is closed and N(S — AI) = {0}. On the other hand, there exist
two closed subspaces Ey = X and F) of X such that

X =N(T = M) & Ey = R(T — ) & F\.

Suppose that X # 0; Remark 1.1 i) together with A € p;(T) and T € A, (X) imply
that A\ € p..(T). Hence F) is finite-dimensional, and thus AF), is finite-dimensional.
Hence,

Y=AX = AR(T - ))& AF) (A is injective)
_ ART D+ AR,
= R(S—AI)+ AF,
= R(S— M)+ ARy,

because AF) is finite dimensional and R(S—AI) is closed; see [§]. Since N(S—\I) =
{0}, then

Y =N - M)aY.

Consequently, A € reg (S).

Now, suppose that A = 0, hence 0 € px(T'), and from SVEP, pg(T) = pap(T).
It follows that N(T') = {0}, which implies T' € A(X) by Proposition 2.2. Thus Fj
is finite-dimensional, and therefore, for A # 0, we have

Y = R(S) + AFy = N(S) @ .

Consequently, 0 € reg (S). The reverse implication is obtained by symmetry. O

We notice that this result is true for multi-cyclic operators and hence extends
Theorem 5.6 of [11].

3. EXAMPLES AND APPLICATIONS

Next, we shall apply the previous results to some classical classes of operators.
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3.1. Unilateral weighted shifts. Let H be a Hilbert space, let (e,)nen be an
orthonormal basis and let (w,)neny be a sequence of nonnegative numbers. The
unilateral weighted shift S, associated with the sequence (w;)nen is the operator
defined on the basis by S,(e,) = wpept1 for n > 0. It is well known that S,
is bounded precisely when w, is a bounded sequence and that the spectrum is
always a disc. Setting 71(S,) = lim, o0 infy(wWy, -+ wpik) /™, we have o;(S,,) =
{z € C, such that 71(S,) <|z| < r(Su)}; here r(S,) stands for the usual spectral
radius. For further information we refer to [I4]. Since from [14] all eigenvectors of
S} are simple, it follows that o¢(S,) = 0¢(S.) = 0r¢(S.) and hence that all shifts
are in A.

3.2. Rationally cyclic operators. Let T be a bounded operator on an infinite
dimensional Hilbert space H. T is said to be rationally cyclic if there exists x € H
such that

H ={R(T)x: R is a rational function with poles off o(T)}.

It is not difficult to see in this case that dimker(T — A\)* < 1 for any complex
number J; it follows that T' € A. Now if we consider any power of T, it may fail to
be rationally cyclic. However all results here apply to this setting.

3.3. Multi-cyclic operators. An operator T' € £(X) is called a multi-cyclic op-
erator of order n for some integer n > 1, abbreviated n-multi-cyclic, if there exist n
vectors 1, ..., 2, € X such that X = span{T*x;;i =1,...,n; k > 0} and if for ev-
ery n—1 vector z1, 22, ..., 2,_1 in X, the subspace span{T%z;;i =1,...,n—1; k >
0} is proper (see [10] and [7]).

Now, set Np(X) = M(X) and for an integer n > 1, we define the class N, (X)
as the set of all operators T € L£(X) such that there exist an integer m and
(x1,22,...,2m) € X™ for which

R(T™) C span{T™ "rg;:i =1,2,... ,m;k > 0}.

It is not hard to see that for T' € N, (X) there exist (21, 22,...,2m) € X™ such
that
R(T™) = span{T*z;i=1,2,...,m;k > 0}.

So, the restriction of T' to R(T™) is an s-multi-cyclic operator for some integer s,
1 < s < m. The class M(X) consists of all operators T € £(X) for which there is
an integer n such that 7" is an n-multi-cyclic operator. Since A(X) contains M(X)
(see [A]), it is clear that

Na(X) € An(X) € A (X).

We give some examples to show that the inclusions are strict for these classes of
operators.

Let X = H be a Hilbert space and (e, )n>0 be an orthonormal basis of H. Let
(wn)n>0 be a bounded sequence of complex numbers. Recall that the unilateral
weighted shift with weight (wy,)n>0 is given by

Te, = wpent1 for all n € N

and its adjoint operator is given by T*ey = 0 and T*e,, = W,,_1€e,_1 for all n > 1.
It is known that, if T is injective, we have that R(T) is closed if and only if the
sequence (w%)nzo is bounded. For more details about weighted shifts see [14].
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In the following examples, we consider H to be the Hilbert space given by H :=
HoH.

Example 1. Let T be the usual unilateral unweighted shift (w, = 1) and N be
the unilateral weighted shift with (wy)n>0 such that wy = 1 and w,, = 0 for all
n > 1. Set L :=T @ N as a bounded operator on H, and so, L* = T* & N*. Then,
it is easy to verify that L € N,,(H) \ M(H). On the other hand, R(T) is closed.
Hence, R(L) = R(T) @ span{eg} is closed. This together with the fact that a(L)
and (L) are both infinite, implies that

LeN,(H)\ A(H) € An(H) \ A(H).

Example 2. Consider L defined as in Example 1 but T is the unilateral weighted
shift with weight (n+r1)”20' Thus, R(T) is not closed and so R(L) is not closed.
This together with L € N, (H) and Remark 2.1 i), imply that

L€ A(H)\ M(H).

Now, let X be a Banach space, and with a similar proof of Proposition 5.1 of
[6], we have the following proposition

Proposition 3.1. Let T and S be quasisimilar bounded operators; then T € N, (X)
if and only if S € N (Y).

As an immediate consequence of Proposition 1.2, Theorems 1.2, 2.1, 2.2, and
N, (X) C A, (X), we get the following corollaries.

Corollary 3.1. Let T € N, (X) with o(T) is finite; then T € A(X). In particular,
T € Np(X)\A(X) implies that R(T) is closed, and o(T') and 3(T) are both infinite.

Corollary 3.2. Suppose that T € N, (X)\ A(X). Then the following statements
hold:

(1) o5p(T) = 0re(T) = ¢(T) U{0}.

(2) 0e(T) = 01(T).

(3) Moreover, if T has the SVEP, then

0e(T) = 05p(T) = 01c(T) = 0re(T) = 0¢(T) U {0}.

Here T € N, (X) if and only if S € N, (Y) for all n € N. So, from the previous
results we get

Corollary 3.3. Suppose that T € N, (X) and S € N,,(Y) are quasisimilar opera-
tors. Then

U*( ) - 0*(5) for O« € {UcvUreao—leao'SF,UaancaUg}

and o (T) U {0} = 04(S) U {0}.
Furthermore, if a(T) is finite, then oy (T) = o7(5).
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