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SPECTRA OF OPERATORS WITH BISHOP’S PROPERTY (β)

M. DRISSI, M. EL HODAIBI, AND E. H. ZEROUALI

(Communicated by Joseph A. Ball)

Abstract. Let X be a Banach space and let A(X) be the class that consists
of all operators T ∈ L(X) such that for every λ ∈ C, the range of (T − λI)
has a finite-codimension when it is closed. For an integer n ∈ N, we define
the class An(X) as an extension of A(X). We then study spectral properties
of such operators, and we extend some known results of multi-cyclic operators
with (β).

Introduction

The concept of quasisimilarity has been studied by many authors, and it is
well-known that this concept generally does not conserve the spectral structure
of an operator (see for example [1, 15]). Additional references including certain
relationships between spectra of specific quasisimilar operators include [4, 6, 9] and
[11]. In this paper, for a Banach space X and an integer n ∈ N, we define classes
An(X) and Nn(X) as an extension of the classes A(X) and N (X), respectively,
introduced in [6]. Among other results we compare these classes, and we show that
if T ∈ An(X) and S ∈ Am(Y ) are quasisimilar operators with Bishop’s property
(β) on the Banach spaces X and Y for some tuple (n, m) ∈ N2, then T and S
have the same approximate point spectrum, continuous spectrum and generalized
spectrum and the same vein of other spectra.

1. Preliminaries

Throughout this paper, X and Y are Banach spaces and L(X, Y ) denotes the
space of all bounded linear operators from X to Y . We set L(X) := L(X, X) and for
a bounded linear operator A ∈ L(X, Y ), let A∗, N(A), and R(A) denote the adjoint
operator, the null space, and the range of A. Also, we set α(A) := dim N(A) and
β(A) := dimN(A∗).

For an operator T ∈ L(X), we denote by Lat(T ) the lattice of all closed T -
invariant subspaces of X, and for M ∈ Lat(T ), let T |M ∈ L(M) be the restriction
of T to M .
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For X a Banach space, we define the class A(X) as the set of all operators
T ∈ L(X) which satisfy the next relation

ρf (T ) ⊆ ρre(T ),

where ρf (T ) = {λ ∈ C : R(T − λI) is closed } and ρre(T ) is the right essential
spectrum. For n ≥ 1 an integer, we denote by An(X) the set of all operators T ∈
L(X) such that there exists a decreasing family of closed subsets (X0, . . . , Xn) ∈
Lat(T )n+1 for which X0 = X, T |Xn ∈ A(Xn) and TXi ⊆ Xi+1 for i = 0, 1, . . . , n−
1. Also, we set A0(X) := A(X). Clearly, the class A1(X) contains all compact
operators, but finite rank operators are not in A(X) for any infinite dimensional
Banach space X. More examples are given in the following:

(1) If X is finite dimensional, then every linear operator is in A(X).
(2) Every nilpotent operator T of order n is in An(X). Indeed, we can take

Xi = ker(Tn−i). If dimX = +∞, then T /∈ A(X).
(3) If T is a normal operator such that every isolated point of σ(T ) is an

eigenvalue of finite multiplicity, then T is in A(X); see J.B.Conway [5], XI
Propositions 4.5 and 4.6.

We say that T ∈ L(X) has the single-valued extension property, abbreviated
SVEP, if, for every open subset U ⊆ C, the only analytic solution f : U −→ X of
the equation (T−λI)f(λ) = 0 for all λ ∈ U is the zero function on U . Furthermore,
we say that T has Bishop’s property (β), if, for each open subset U of C and every
sequence of analytic functions fn : U −→ X for which (T−λI)fn(λ) → 0 as n → ∞,
locally uniformly on U , it follows that fn(λ) → 0 as n → ∞, again locally uniformly
on U . For further details about these notions we refer to [2], [12] and [16].

Along this paper, we use σp, σap, σe, and σSF to denote the point, approximate
point, Fredholm essential , and semi-Fredholm essential spectrum, respectively. We
also denote by σle and σre the upper and lower semi-Fredholm essential spectra.
Also, we use ρap, ρe, ρSF , and ρle to denote the complement in C of σap, σe, σSF

and σle, respectively. Recall, when T is a semi-Fredholm operator, the index of T
is defined as ind(T ) := α(T ) − β(T ).

Consider an arbitrary operator T ∈ L(X) and let σf (T ) consist of all λ ∈ C

for which (T − λI) fails to have closed range, and let ρK(T ) consist of all λ ∈ C

for which R(T − λI) is closed and N(T − λI) ⊆ R((T − λI)n) for all n ∈ N. The
Kato spectrum σK(T ) := C \ ρK(T ) is sometimes referred to as the semi-regular
spectrum or the Apostol spectrum. Finally, we set ρf (T ) := C \ σf (T ).

Next, for T ∈ An(X), we set Ti := T |Xi for i = 1, . . . , n, and recall that, for
σ∗ ∈ {σe, σre, σle, σSF , σap, σf}, from [3, Theorems 3, 5, 6 and Example 11] we have

σ∗(T ) \ {0} = σ∗(T1) \ {0} and σ∗(Ti) \ {0} = σ∗(Ti+1) \ {0} for i = 1, . . . , n − 1.

Consequently,

(1.1) σ∗(T ) \ {0} = σ∗(Tn) \ {0} for σ∗ ∈ {σe, σre, σle, σSF , σap, σf}.

Proposition 1.1 ([6, Theorem 4.1]). Let T ∈ L(X) and suppose that T ∈ A(X).
Then the following statements hold:

(1) ρSF (T ) = ρre(T ) = ρf (T ).
(2) ρe(T ) = ρle(T ).
(3) Moreover, if T has the SVEP, then

σe(T ) = σSF (T ) = σf (T ) = σle(T ) = σre(T ).
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As an immediate consequence of Proposition 1.1 and (1.1) we get

Remark 1.1. For T ∈ An(X), we have
i) σre(T ) \ {0} = σf (T ) \ {0};
ii) σle(T ) \ {0} = σf (T ) \ {0} when T has the SVEP.

Recall that a linear bounded operator with closed range is called normally solv-
able, and for an operator T ∈ L(X), the minimum modulus of T , written γ(T ), is
defined by

γ(T ) := inf{ ‖Tx‖
d(x, N(T ))

: x ∈ X \ N(T )}

where d (x, N(T )) denotes the distance from x to N(T ) and with the convention
that γ(T ) = ∞ if T = 0. Notice here that T has closed range if and only if γ(T ) > 0.
We refer to [8] for further details and definitions.

Proposition 1.2. If T ∈ An(X), then the following assertions hold:
(i) If R(T ) is not closed, then T ∈ A(X).
(ii) If T ∈ An(X) \ A(X), then R(T ) is closed and α(T ) = β(T ) = +∞.

Proof. (i) Since T ∈ An(X), it follows from (1.1) that

(1.2) σre(T ) \ {0} = σf (T ) \ {0}.
It is clear that, if R(T ) is not closed, then σre(T ) = σf (T ), which implies T ∈ A(X).

(ii) If T ∈ An(X) \ A(X) using (i) R(T ) is closed. It is clear that β(T ) = +∞.
Suppose that α(T ) is finite; it will come that T is normally solvable and has an
index. Let λ ∈ C be given such that 0 < |λ| < γ(T ). From Theorem V.1.6 of [8],
we get

T−λI is normally solvable ; α(T−λI) ≤ α(T ) , and ind (T−λI) = ind (T ).

Hence λ ∈ ρf (T ) and (1.2) implies that λ ∈ ρre(T ). Consequently, α(T − λI) and
β(T − λI) are both finite. Finally it follows from the fact that α(T ) is finite and
ind (T ) = ind (T − λI) that β(T ) is finite. Contradiction, which completes the
argument. �

A straightforward application of Proposition 1.1 and Proposition 1.2, gives the
following result

Theorem 1.2. Suppose that T ∈ An(X) \ A(X). Then the following statements
hold:

(1) σSF (T ) = σre(T ) = σf (T ) ∪ {0}.
(2) σe(T ) = σle(T ).
(3) Moreover, if T has the SVEP, then

σe(T ) = σSF (T ) = σle(T ) = σre(T ) = σf (T ) ∪ {0}.

2. The main results

In the following, for a subset E of a Banach space, we set span{E} for the
closure of the linear space generated by E and E for the closure of E. We also
denote An(X) for the set of all operators in An(X) such that Xi := R(T i) for
i = 1, . . . , n.
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2.1. Quasisimilar operators in An(X). In this subsection, let T ∈ L(X) and
S ∈ L(Y ) be quasisimilar operators, equivalently, there exist A ∈ L(X, Y ) and
B ∈ L(Y, X) one to one and with dense ranges, such that AT = SA and TB = BS.
It is clear that, for each integer n ≥ 1, Tn and Sn are quasisimilar operators. We
set T̄n := T |R(Tn) and S̄n := S|R(Sn), and so, from Lemma 5.2 of [6], we obtain
the following

Lemma 2.1. Let T ∈ L(X) and S ∈ L(Y ) be quasisimilar operators; then T̄n and
S̄n are quasisimilar operators.

Here we study the spectral picture of quasisimilar operators with property (β).

Proposition 2.1. Suppose that (T, S) ∈ An(X)×An(Y ) are quasisimilar operators
with property (β); then

σap(T ) = σap(S).

Proof. Since T̄n and S̄n are quasisimilar operators by Lemma 2.1, and since T̄n and
S̄n satisfy property (β), it follows from Theorem 3.7.15 of [12] together with (3) of
Proposition 1.1, that

σf (T̄n) = σf (S̄n)
as σp(T̄n) = σp(S̄n); thus

σap(T̄n) = σap(S̄n).
From this fact and (1.1), we deduce that

σap(T ) \ {0} = σap(S) \ {0}.
Let us prove that 0 ∈ σap(T ) if and only if 0 ∈ σap(S). Without loss of generality
we can assume that T and S are not nilpotent operators (indeed, in this case, we
have σap(T ) = σap(S) = {0}).

Now, suppose that 0 	∈ σap(T ), hence 0 	∈ σap(T̄n) and we get 0 	∈ σap(S̄n). It
follows that R(S̄n) is closed. Thus S̄n is a Fredholm operator because S̄n is injective
and S̄n ∈ A(R(Sn)), and so, S̄n

n is Fredholm operator in R(Sn). Consequently, there
exists a finite-dimensional subspace F of R(Sn) such that

R(Sn) = R(S̄n
n) ⊕ F.

Since R(S̄n
n) ⊆ R(Sn), it is easy to verify that

R(Sn) = R(S̄n
n) ⊕ (F ∩ R(Sn)).

Therefore, R(Sn) is closed, which implies that Sn has a bounded inverse because
Sn is injective. Thus, S also has a bounded inverse, and so 0 	∈ σap(S). Finally,
the reverse implication is obtained by symmetry. �

In what follows, let T ∈ L(X) and S ∈ L(Y ) be quasisimilar operators, and
let A ∈ L(X, Y ) and B ∈ L(Y, X) be the quasi-affinities for which AT = SA and
TB = BS. In an easy way we refine Proposition 2.1 as follows

Theorem 2.1. Let T and S be quasisimilar operators with property (β). Suppose
that T ∈ An(X) and S ∈ Am(Y ) for some (n, m) ∈ N2. Then

(1) σ∗(T ) = σ∗(S) for σ∗ ∈ {σe, σre, σle, σSF , σap}.
(2) σf (T ) ∪ {0} = σf (S) ∪ {0}.

Furthermore, if α(T ) is finite, then σf (T ) = σf (S).
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Proof. Since T and S are with property (β), Theorem 3.7.15 of [12] together with
the quasisimilarity of T and S imply that

(2.1) σe(T ) = σe(S),

and since Bishop’s property implies the SVEP for an arbitrary bounded operator,
Theorem 1.2 and Proposition 1.1 together with (1.2) implies that

σ∗(T ) = σ∗(S) for σ∗ ∈ {σe, σre, σle, σSF }

and
σf (T ) ∪ {0} = σf (S) ∪ {0}.

If α(T ) is finite, then α(S) is finite, and so, (T, S) ∈ A(X) ×A(Y ) by Proposition
1.2. Thus, σf (T ) = σf (S) by (2.1) and Proposition 1.1.

Now, let us prove σap(T ) = σap(S). It is known that

(2.2) σap(T ) = σp(T ) ∪ σf (T ) and σap(S) = σp(S) ∪ σf (S),

and it is clear that σp(T ) = σp(S). If 0 ∈ σp(T ), then

σap(T ) = σp(T ) ∪ σf (T ) ∪ {0}
= σp(S) ∪ σf (S) ∪ {0}
= σap(S).

If, 0 	∈ σp(T ), then α(T ) = 0 and so σf (T ) = σf (S). Hence by (2.2) we get
σap(T ) = σap(S), which completes the proof. �

Recall that, for T ∈ L(X), the continuous spectrum σc(T ) is defined to be the
set of all λ ∈ C such that (T −λI)−1 exists but is not continuous and R(T −λI) is
dense in X. Equivalently, T is one to one and with nontrivial dense range (see for
example [8]). It is then not hard to see that

(2.3) σc(T ) = σp(T ∗)c ∩ σp(T )c ∩ σf (T )

where Kc is the complement of the subset K of C. Also, it is known that (T − λI)
is regular if λ ∈ ρK(T ) and there exist two closed subspaces Eλ and Fλ of X such
that

X = N(T − λI) ⊕ Eλ = R(T − λI) ⊕ Fλ.

Let, as usual, reg (T ) denote the regular set of T , and let σg(T ) denote to the
generalized spectrum of T , which is the complement of reg (T ). We now extend
the result of Theorem 2.1 to the continuous and the generalized spectrum.

Outlining the proof of [6, Lemma 5.2 ] we obtain the following result that will
be needed in the next theorem.

Lemma 2.2. Let T ∈ L(X), S ∈ L(Y ) and A ∈ L(X, Y ) be operators such that
AT = SA and A has dense range. Then

AR(T − λI) = R(S − λI) for all λ ∈ C.

Theorem 2.2. Suppose that, T ∈ An(X) and S ∈ Am(Y ) for some (n, m) ∈ N2

are quasisimilar operators with property (β). Then the following assertions hold:
(a) σc(T ) = σc(S),
(b) σg(T ) = σg(S).
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Proof. (a) First, let us prove that

(2.4) σp(T )c ∩ σf (T ) = σp(S)c ∩ σf (S).

In fact, it is obvious that σp(T )c = σp(S)c. If 0 	∈ σp(T ), Theorem 2.1 implies
σf (T ) = σf (S), and so, (2.4) holds. In the other case, when 0 ∈ σp(T ), we have

σp(T )c ∩ σf (T ) = σp(T )c ∩ (σf (T ) ∪ {0})
= σp(S)c ∩ (σf (S) ∪ {0})
= σp(S)c ∩ σf (S).

On the other hand, since T ∗ and S∗ are quasisimilar operators, we get that σp(T ∗)c

= σp(S∗)c. This, together with (2.3) and (2.4) entail the desired result.
(b) Since T and S have the SVEP, then from Corollary 3.1.7 of [12], we have

ρK(T ) = ρap(T ) and ρK(S) = ρap(S), and from Theorem 2.1 we obtain

(2.5) ρK(T ) = ρK(S).

Now, let λ ∈ reg (T ) be given. Since λ ∈ ρK(T ) and from (2.5) we get λ ∈ ρK(S);
hence R(S − λI) is closed and N(S − λI) = {0}. On the other hand, there exist
two closed subspaces Eλ = X and Fλ of X such that

X = N(T − λI) ⊕ Eλ = R(T − λI) ⊕ Fλ.

Suppose that λ 	= 0; Remark 1.1 i) together with λ ∈ ρf (T ) and T ∈ An(X) imply
that λ ∈ ρre(T ). Hence Fλ is finite-dimensional, and thus AFλ is finite-dimensional.
Hence,

Y = AX = AR(T − λI) ⊕ AFλ (A is injective)

= AR(T − λI) + AFλ

= R(S − λI) + AFλ

= R(S − λI) + AFλ,

because AFλ is finite dimensional and R(S−λI) is closed; see [8]. Since N(S−λI) =
{0}, then

Y = N(S − λI) ⊕ Y.

Consequently, λ ∈ reg (S).
Now, suppose that λ = 0, hence 0 ∈ ρK(T ), and from SV EP , ρK(T ) = ρap(T ).

It follows that N(T ) = {0}, which implies T ∈ A(X) by Proposition 2.2. Thus F0

is finite-dimensional, and therefore, for λ 	= 0, we have

Y = R(S) + AF0 = N(S) ⊕ Y.

Consequently, 0 ∈ reg (S). The reverse implication is obtained by symmetry. �

We notice that this result is true for multi-cyclic operators and hence extends
Theorem 5.6 of [11].

3. Examples and applications

Next, we shall apply the previous results to some classical classes of operators.



PROPERTIES OF THE CLASS An(X) 1615

3.1. Unilateral weighted shifts. Let H be a Hilbert space, let (en)n∈N be an
orthonormal basis and let (ωn)n∈N be a sequence of nonnegative numbers. The
unilateral weighted shift Sω associated with the sequence (ωn)n∈N is the operator
defined on the basis by Sω(en) = ωnen+1 for n ≥ 0. It is well known that Sω

is bounded precisely when wn is a bounded sequence and that the spectrum is
always a disc. Setting r1(Sω) = limn→∞ infk(ωn · · ·ωn+k)1/n, we have σf (Sω) =
{z ∈ C, such that r1(Sω) ≤ |z| ≤ r(Sω)}; here r(Sω) stands for the usual spectral
radius. For further information we refer to [14]. Since from [14] all eigenvectors of
S∗

ω are simple, it follows that σf (Sω) = σe(Sω) = σre(Sω) and hence that all shifts
are in A.

3.2. Rationally cyclic operators. Let T be a bounded operator on an infinite
dimensional Hilbert space H. T is said to be rationally cyclic if there exists x ∈ H
such that

H = {R(T )x : R is a rational function with poles off σ(T )}.
It is not difficult to see in this case that dimker(T − λ)∗ ≤ 1 for any complex
number λ; it follows that T ∈ A. Now if we consider any power of T , it may fail to
be rationally cyclic. However all results here apply to this setting.

3.3. Multi-cyclic operators. An operator T ∈ L(X) is called a multi-cyclic op-
erator of order n for some integer n ≥ 1, abbreviated n-multi-cyclic, if there exist n
vectors x1, . . . , xn ∈ X such that X = span{T kxi; i = 1, . . . , n ; k ≥ 0} and if for ev-
ery n−1 vector z1, z2, . . . , zn−1 in X, the subspace span{T kzi; i = 1, . . . , n−1 ; k ≥
0} is proper (see [10] and [7]).

Now, set N0(X) = M(X) and for an integer n ≥ 1, we define the class Nn(X)
as the set of all operators T ∈ L(X) such that there exist an integer m and
(x1, x2, . . . , xm) ∈ Xm for which

R(Tn) ⊆ span{Tn−1+kxi; i = 1, 2, . . . , m; k ≥ 0}.
It is not hard to see that for T ∈ Nn(X) there exist (z1, z2, . . . , zm) ∈ Xm such
that

R(Tn) = span{T kzi; i = 1, 2, . . . , m; k ≥ 0}.
So, the restriction of T to R(Tn) is an s-multi-cyclic operator for some integer s,
1 ≤ s ≤ m. The class M(X) consists of all operators T ∈ L(X) for which there is
an integer n such that T is an n-multi-cyclic operator. Since A(X) contains M(X)
(see [6]), it is clear that

Nn(X) ⊆ An(X) ⊆ An(X).

We give some examples to show that the inclusions are strict for these classes of
operators.

Let X = H be a Hilbert space and (en)n≥0 be an orthonormal basis of H. Let
(wn)n≥0 be a bounded sequence of complex numbers. Recall that the unilateral
weighted shift with weight (wn)n≥0 is given by

Ten = wnen+1 for all n ∈ N

and its adjoint operator is given by T∗e0 = 0 and T∗en = wn−1en−1 for all n ≥ 1.
It is known that, if T is injective, we have that R(T) is closed if and only if the
sequence ( 1

wn
)n≥0 is bounded. For more details about weighted shifts see [14].
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In the following examples, we consider H to be the Hilbert space given by H :=
H ⊕ H.

Example 1. Let T be the usual unilateral unweighted shift (wn ≡ 1) and N be
the unilateral weighted shift with (wn)n≥0 such that w0 = 1 and wn = 0 for all
n ≥ 1. Set L := T⊕N as a bounded operator on H, and so, L∗ = T∗ ⊕N∗. Then,
it is easy to verify that L ∈ Nn(H) \ M(H). On the other hand, R(T) is closed.
Hence, R(L) = R(T) ⊕ span{e0} is closed. This together with the fact that α(L)
and β(L) are both infinite, implies that

L ∈ Nn(H) \ A(H) ⊆ An(H) \ A(H).

Example 2. Consider L defined as in Example 1 but T is the unilateral weighted
shift with weight ( 1

n+1 )n≥0. Thus, R(T) is not closed and so R(L) is not closed.
This together with L ∈ Nn(H) and Remark 2.1 i), imply that

L ∈ A(H) \M(H).

Now, let X be a Banach space, and with a similar proof of Proposition 5.1 of
[6], we have the following proposition

Proposition 3.1. Let T and S be quasisimilar bounded operators; then T ∈ Nn(X)
if and only if S ∈ Nn(Y ).

As an immediate consequence of Proposition 1.2, Theorems 1.2, 2.1, 2.2, and
Nn(X) ⊆ An(X), we get the following corollaries.

Corollary 3.1. Let T ∈ Nn(X) with α(T ) is finite; then T ∈ A(X). In particular,
T ∈ Nn(X)\A(X) implies that R(T ) is closed, and α(T ) and β(T ) are both infinite.

Corollary 3.2. Suppose that T ∈ Nn(X) \ A(X). Then the following statements
hold:

(1) σSF (T ) = σre(T ) = σf (T ) ∪ {0}.
(2) σe(T ) = σle(T ).
(3) Moreover, if T has the SVEP, then

σe(T ) = σSF (T ) = σle(T ) = σre(T ) = σf (T ) ∪ {0}.

Here T ∈ Nn(X) if and only if S ∈ Nn(Y ) for all n ∈ N. So, from the previous
results we get

Corollary 3.3. Suppose that T ∈ Nn(X) and S ∈ Nn(Y ) are quasisimilar opera-
tors. Then

σ∗(T ) = σ∗(S) for σ∗ ∈ {σe, σre, σle, σSF , σap, σc, σg}
and σf (T ) ∪ {0} = σf (S) ∪ {0}.

Furthermore, if α(T ) is finite, then σf (T ) = σf (S).
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