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ON THE FULL REGULARITY OF THE FREE BOUNDARY
IN A CLASS OF VARIATIONAL PROBLEMS

ARSHAK PETROSYAN

(Communicated by David S. Tartakoff)

Abstract. We consider nonnegative minimizers of the functional

Jp(u; Ω) =

∫
Ω
|∇u|p + λp

p χ{u>0}, 1 < p < ∞,

on open subsets Ω ⊂ R
n. There is a critical dimension k∗ such that the free

boundary ∂{u > 0}∩Ω has no singularities and is a real analytic hypersurface
if p = 2 and n < k∗. A corollary of the main result in this note ensures that
there exists ε0 > 0 such that the same result holds if |p − 2| < ε0.

1. Introduction

Let Ω be a bounded open set in R
n and u ∈ W 1,p(Ω) ∩ L∞(Ω) be a minimizer

of the functional

(1.1) Jp(u; Ω) =
∫

Ω

|∇u|p + λp
p χ{u>0}, 1 < p < ∞,

in the sense that Jp(u; Ω) ≤ Jp(v; Ω) for any v ∈ u+W 1,p
0 (Ω). Here λp is a positive

constant. Everywhere in this paper we restrict ourselves to nonnegative minimizers
u. Such minimizers solve the following one-phase Bernoulli-type free boundary
problem:

∆pu := div(|∇u|p−2∇u) = 0 in {u > 0},
|∇u| = qp on Γ(u) := ∂{u > 0} ∩ Ω

(1.2)

in a certain weak sense, where qp = λp(p − 1)−1/p. We are then interested in the
regularity properties of the free boundary Γ(u).

This problem was first studied in a seminal paper of Alt and Caffarelli [AC81],
in the case p = 2, where they established the Lipschitz continuity of the minimizers
as well as the following regularity result concerning the free boundary:

The measure-theoretic reduced boundary Γred(u) := ∂red{u > 0} ∩
Ω is locally an analytic hypersurface; moreover, the singular set
Σ(u) :=Γ(u)\Γred(u) has Hausdorff (n−1)-measure zero Hn−1(Σ(u))
= 0.
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In the same paper, Alt and Caffarelli proved that in dimension n = 2 (still the
case p = 2) the singular set Σ(u) is empty, i.e. the free boundary is fully regular.
More than twenty years later Caffarelli, Jerison and Kenig [CJK04] were able to
extend this result to n = 3. They showed that there are no minimal cones (i.e.
homogeneous of degree one minimizers of J2) other than halfspace solutions

u(x) = qp(x · e)+, x ∈ R
n,

where e is a unit vector in R
n. (We use the notation α+ = max{α, 0}.) The

regularity of the free boundary then follows from the result of Weiss [Wei99] based
on a monotonicity formula and similar to that of minimal surface theory. In fact,
Weiss also established the existence of a critical dimension k∗ with the following
property:

For any minimizer u of J2, the singular set Σ(u) is empty if n < k∗,
consists of at most isolated points if n = k∗, and has Hausdorff
dimension at most n − k∗ for n ≥ k∗.

It is currently known that

(1.3) 4 ≤ k∗ ≤ 7.

The lower bound follows from [CJK04], and the upper bound was recently estab-
lished by De Silva and Jerison [DSJ05].

The history of the problem is much shorter for 1 < p < ∞. In [DP05], Danielli
and the author have extended Alt and Caffarelli’s result that Γred(u) is locally
an analytic hypersurface and that Hn−1(Σ(u)) = 0. Subsequently, in [DP06], it
was established that in dimension 2 the singular set is empty for p in the range
2 − ε0 < p < ∞, where ε0 > 0 is an absolute constant. Further study of the
problem is complicated because of the unavailability of a Weiss-type monotonicity
formula, even in dimension n = 2.

The main goal of this note is to show that despite the additional difficulties asso-
ciated with p �= 2, there is a simple limiting argument, combined with a uniform-in-p
“flatness implies regularity” theorem, that ensures that Σ(u) is empty for p in the
range 2−ε0 < p < 2+ε0 for some ε0 in any space dimension n < k∗. This simplifies
and extends a similar argument in [DP06] to higher dimensions.

Definition 1.1. Let R(n) be the set of exponents p, 1 < p < ∞, such that any
minimizer of Jp on any open subset of R

n has no singular free boundary points.

In particular, we know that 2 ∈ R(2), 2 ∈ R(3), but 2 �∈ R(7); see above.

Theorem 1.2 (Main result). Let p0 ∈ R(n). Then there exists ε0 = ε(p0) > 0
such that (p0 − ε0, p0 + ε0) ⊂ R(n). In other words, R(n) is an open set.

With the critical exponent k∗ as defined above, we immediately obtain the fol-
lowing result.

Corollary 1.3. There exists ε0 > 0 such that if 2−ε0 < p < 2+ε0 and 2 ≤ n < k∗,
then for any minimizer u of Jp on an open subset of R

n, the free boundary Γ(u) is
an analytic hypersurface. �

The paper is organized as follows. In Section 2 we recall some known facts and
results, including the Lipschitz regularity of minimizers, nondegeneracy, blowups
with variable p, as well as the “flatness implies regularity” theorem. In Section 3
we prove a Bernstein-type theorem for global minimizers of Jp and give the proof
of the main result of this note (Theorem 1.2).
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2. Preliminaries and known results

In this section we state without proof some known results on minimizers of Jp.
The proofs can be found in [DP05] and [DP06]. For the locally uniform dependence
of the constants on p ∈ [1 + µ, 1 + 1/µ], 0 < µ < 1, we also refer to a recent paper
by Mart́ınez and Wolanski [MW06], where they consider the minimizers of a more
general functional ∫

Ω

G(|∇u|) + λGχ{u>0},

where G is a power-like function satisfying µ ≤ tG′′(t)/G′(t) ≤ 1/µ for some µ > 0.

2.1. Scaling and blowups. Let u be a minimizer of Jp in Ω and x0 ∈ ∂Γ(u).
Since we are interested in local properties of the free boundary, without loss of
generality we may assume that Ω = Bρ(x0). Moreover, dividing u by the constant
qp as in (1.2), without loss of generality we will assume that the constant λp in
(1.1) is normalized so that qp = 1.

Theorem 2.1 (Lipschitz continuity). Let u be a minimizer of Jp in Bρ(x0) and
p ∈ [1 + µ, 1 + 1/µ], 0 < µ < 1. Then there exists a constant C = C(n, µ) > 0 such
that

|∇u| ≤ C in Bρ/2(x0). �

Theorem 2.2 (Nondegeneracy). Let u be a minimizer of Jp in Bρ(x0), x0 ∈ Γ(u),
and p ∈ [1 + µ, 1 + 1/µ], 0 < µ < 1. Then there exist c = c(µ, n) > 0, γ = γ(µ) > 1
such that (

−
∫

Br(x0)

uγ

)1/γ

≥ c r if Br/2(x0) ∩ {u > 0} �= ∅,

for any 0 < r ≤ ρ/2. �

For the minimizer u as in Theorem 2.1 consider the rescalings

uλ(x) = ux0,λ(x) =
u(λx + x0)

λ
, x ∈ Bρ/λ.

It is easy to see that uλ is a minimizer of the same functional Jp in Bρ/λ and
0 ∈ Γ(uλ). Moreover, by Theorem 2.1,

|∇uλ| ≤ C on BR,

for λ ≤ ρ/2R. So, if we let λ → 0, from local equicontinuity, we can find a
subsequence λ = λk → 0 such that the rescalings uλk

converge in L∞
loc(R

n) to a
Lipschitz function u0. We will call such a function u0 a blowup of u at x0. In fact,
there is a more general construction which allows us to take rescalings of different
minimizers uk and even allows the exponent p = pk to vary.

Theorem 2.3 (Blowup with variable p). Let 1 < p < ∞ and suppose we have a
sequence of exponents 1 < pk < ∞, k = 1, 2, . . ., such that pk → p. Let uk be a
minimizer of Jpk

in B1 such that 0 ∈ Γ(uk). Then for any sequence λk → 0 we can
find a subsequence so that the rescalings

uk,λk
(x) =

uk(λkx)
λk

, x ∈ B1/λk
,
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converge in L∞
loc(R

n) to a continuous function u0 in R
n, which we call a blowup.

Moreover, every such blowup u0 is a global minimizer of Jp, i.e. a minimizer on
every bounded open set, and 0 ∈ Γ(u0). �
2.2. Flatness and regularity.

Definition 2.4. Let 0 ≤ σ+, σ− ≤ 1 and τ > 0. We say that u is of the flatness
class F p(σ+, σ−; τ ) in the ball Bρ if u is a minimizer of Jp in Bρ, 0 ∈ Γ(u), and

u(x) = 0 for xn ≥ σ+ρ,(i)

u(x) ≥ −(xn + σ−ρ) for xn ≤ −σ−ρ,(ii)

|∇u| ≤ 1 + τ in Bρ.(iii)

More generally, changing the direction en by ν and the origin by x0 in the definition
above, we obtain the definition of the flatness class F p(σ+, σ−; τ ) in Bρ(x0) in
direction ν.

Theorem 2.5 (Flatness implies regularity). Let u be a minimizer of Jp in B1,
0 ∈ Γ(u) and p ∈ [1 + µ, 1 + 1/µ], 0 < µ < 1. Then there exist positive constants
α, β, σ0, τ0 depending only on n and µ such that

if u ∈ F p(σ, 1;∞) in Bρ in some direction with σ ≤ σ0, ρ ≤ τ0 σ2/β,
then Γ(u)∩Bρ/4 is a C1,α hypersurface. �

Remark 2.6. A theorem of Kinderlehrer, Nirenberg and Spruck [KNS78] then im-
plies that Γ(u)∩Bρ/4 is an analytic hypersurface. Their results are applicable, since
condition (1.2) is satisfied in the C1 sense on that portion of Γ(u) which makes the
p-Laplacian uniformly elliptic in a neighborhood.

The proof of the preceding theorem is obtained by iteration from the following
lemma, which is really the core of the argument.

Lemma 2.7 (Improvement of flatness). Let u be a minimizer of Jp in B1, 0 ∈ Γ(u)
and p ∈ [1 + µ, 1 + 1/µ], 0 < µ < 1. Then for any θ > 0 there exist constants
σθ = σ(θ, µ, n) > 0, cθ = c(θ, µ, n) > 0 and C = C(n, µ) > 0 such that if

u ∈ F p(σ, 1; τ ) in Bρ in direction ν,

with σ ≤ σθ and τ ≤ cθσ
2, then

u ∈ F p(θσ, θσ; θ2τ ) in Bρ̄ in direction ν̄

for some ρ̄, ν̄ with cθρ ≤ ρ̄ ≤ ρ/4 and |ν − ν̄| ≤ Cσ. �

3. Proof of the main result

Basically, the proof is a combination of the following three ingredients: (i) flatness
implies regularity (Theorem 2.5), (ii) blowup with variable p (Theorem 2.3), and
(iii) a theorem on global minimizers of Jp for p ∈ R(n), similar to that of Bernstein
and Simons in minimal surface theory [Sim67], which we state next. Recall that a
global minimizer is a function in W 1,p

loc (Rn) ∩ L∞
loc(R

n), which is a minimizer of Jp

on every bounded open set of R
n.

Theorem 3.1 (Bernstein-type). Let p ∈ R(n). Then every global minimizer u of
Jp with 0 ∈ Γ(u) is a halfspace solution; i.e., there exists a direction e such that
u(x) = (x · e)+ for every x ∈ R

n.

We will need the following intermediate result to establish Theorem 3.1.
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Lemma 3.2. Let u be a global minimizer of Jp and 0 ∈ Γ(u). Then

|∇u| ≤ 1 in {u > 0}.

Proof. We will use a particular case of Theorem 7.1 in [DP05]: if u is a minimizer
of Jp in B1 and 0 ∈ Γ(u), then

sup
Br

|∇u| ≤ 1 + Crα

for any 0 < r ≤ 1/2 with constants C > 0, 0 < α < 1, depending only on n and p.
Now, applying this inequality to rescalings

u0,λ(x) =
u(λx)

λ
, x ∈ R

n,

we will obtain
sup
Br

|∇u| ≤ 1 + C(r/λ)α

for any r ≤ λ/2. Letting λ → ∞, we complete the proof of the lemma. �

Proof of Theorem 3.1. Let u be a global minimizer of Jp with 0 ∈ Γ(u). Consider
the sequence of rescalings

un(x) = u0,n(x) =
u(nx)

n
, n = 1, 2, . . . ,

which are also global minimizers of Jp. From the uniform Lipschitz continuity, or
better yet from Lemma 3.2, we can extract a subsequence nk → ∞ such that unk

converges locally uniformly to a global minimizer u∞ (Theorem 2.3). From the
nondegeneracy theorem (Theorem 2.2), we have that

0 ∈ Γ(u∞).

Since p ∈ R(n), by definition of the class R(n), 0 is a regular free boundary point for
u∞ and therefore there exists a ball B ⊂ {u∞ = 0} touching Γ(u∞) at 0. Rotating
the coordinate system, we may assume that B = Br(ren). But this implies that
for any σ > 0,

u∞ ∈ F p(σ, 1; 0) in Br(σ)

if r(σ) is chosen sufficiently small. Note that the parameter τ = 0 in the flatness
class above, since by Lemma 3.2 we have |∇u∞| ≤ 1 in R

n.
Next, from the nondegeneracy theorem (Theorem 2.2) we will have

unk
∈ F p(3σ, 1; 0) in Br(σ)/2,

for k ≥ k(σ). The latter is equivalent to

u ∈ F p(3σ, 1; 0) in Br(σ)nk/2,

for k ≥ k(σ). The rest of the proof is based on a flatness improvement argument.
Fix a certain 0 < θ < 1/3 and assume that σ < σθ. Now take k large and apply
Lemma 2.7 with ρ = r(σ)nk/2 iteratively N times. We will obtain a sequence of
radii ρ̄j , j = 0, 1, . . . , N , with

ρ̄0 = ρ = r(σ)nk/2, cθρ̄j ≤ ρ̄j+1 ≤ ρ̄j/4

such that
u ∈ F p(3θjσ, 3θjσ; 0) in Bρ̄j

in some direction.
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Now, fix large R > 0, and take nk with k ≥ k(σ) such that ρ̄0 = ρ(σ)nk/2 > R.
Next, choose the number of steps N in the iteration above so that

ρ̄N ≤ R ≤ ρ̄N−1.

Putting R̄ = ρ̄N , we will basically obtain that for any 0 < σ < σθ there exists
cθR ≤ R̄ ≤ R such that

u ∈ F p(σ, σ; 0) in BR̄ in some direction.

Consequently,

u ∈ F p(σ/cθ, σ/cθ; 0) in BcθR in some direction;

i.e. the free boundary of u is as flat in BcθR as we wish. Hence, letting σ → 0 and
then R → ∞, we obtain that u is necessarily a halfspace solution. �

We are now ready to prove the main result.

Proof of the main result (Theorem 1.2).

Step 1. We start with the claim that for any σ > 0 there exists ε(σ) > 0 and
r(σ) > 0 such that if u is a minimizer of Jp in B1 of R

n with 0 ∈ Γ(u), then

u ∈ F p(σ, 1;∞) in Br in some direction,

provided
|p − p0| < ε(σ), 0 < r ≤ r(σ).

This will follow by a blowup argument, combined with the Bernstein-type theorem.
Indeed, assuming the contrary, let un be a minimizer of Jpn

in B1 with 0 ∈ Γ(un),
pn → p0 and suppose that for some rn → 0+

un �∈ F pn(σ, 1;∞) in Brn
in any direction.

Then consider the rescalings

ũn(x) =
un(rnx)

rn
, x ∈ B1/rn

,

which are minimizers of Jpn
in B1/rn

. Over a subsequence, they converge locally
uniformly to a global minimizer u0 of Jp0 ; see Theorem 2.3. Since we assume
p0 ∈ R(n), by Theorem 3.1, we have that u0 is a halfspace solution; i.e.,

u0(x) = (x · e)+, x ∈ R
n,

for a unit vector e. The nondegeneracy theorem, Theorem 2.2, now implies that

ũn = 0 on B1 ∩ {x · e ≤ −σ}
for sufficiently large n. But this exactly means ũn ∈ F pn(σ, 1;∞) in direction −e,
or equivalently,

un ∈ F pn(σ, 1;∞) in Brn
in direction −e,

contrary to our assumption.

Step 2. Now let σ0, τ0, and β be as in Theorem 2.5 and choose 0 < σ1 < σ0. Now,
let ε(σ1) and r(σ1) be as in Step 1 above for σ = σ1 and let

r1 = min
{

r(σ1), τ0σ
2/β
1

}
.

Then, by the argument in Step 1, if u is a minimizer of Jp in B1 with 0 ∈ Γ(u) and

|p − p0| < ε(σ1),
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then
u ∈ F p(σ1, 1;∞) in Br1 in some direction.

Furthermore, the construction above guarantees that the conditions of Theorem 2.5
are satisfied, and therefore we obtain that Br1/4∩Γ(u) is a C1,α for some 0 < α < 1
and thus analytic by a theorem of Kinderlehrer, Nirenberg, and Spruck [KNS78].

Step 3. Finally, we have already remarked that the regularity of the free boundary
is a local property and because of the scaling, Step 2 essentially completes the proof.
Let us make this more precise. Let u be a minimizer of Jp with |p − p0| < ε(σ1) in
an open set Ω and let x0 ∈ Γ(u) be arbitrary. Then Bρ(x0) � Ω for some ρ > 0
and the rescaling

ux0,ρ(x) =
u(ρx + x0)

ρ
, x ∈ B1

is a minimizer of Jp in B1 with 0 ∈ Γ(ux0,ρ). Then, by Step 2 above, Br1/4∩Γ(Ux0,ρ)
is analytic and, scaling back, we obtain that Bρr1/4(x0) ∩ Γ(u) is analytic. This
completes the proof of the theorem. �
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