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EFFECTIVE PACKING DIMENSION OF IIY-CLASSES
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(Communicated by Julia Knight)

ABSTRACT. We construct a H?—class X that has classical packing dimension
0 and effective packing dimension 1. This implies that, unlike in the case of
effective Hausdorff dimension, there is no natural correspondence principle (as
defined by Lutz) for effective packing dimension. We also examine the rela-
tionship between upper box dimension and packing dimension for H?—classes.

1. INTRODUCTION

A major theme of computability theory is the effectivization of classical math-
ematics. To do this, one takes an existing (i.e. classical) mathematical notion
and develops a new computability-theoretic analogue of that notion. Afterwards,
one tries to determine the similarities and differences between the old classical no-
tion and its new effective counterpart. This article examines the classical notion of
packing dimension, as well as its effective counterpart which is called either effective
packing dimension or effective strong dimension.

In [7] Lutz effectivized the notion of Hausdorff dimension to obtain the notion of
effective Hausdorff dimension. Furthermore, he conjectured that for Hausdorff di-
mension there is a correspondence principle. By correspondence principle we mean
a theorem which says that there is a certain (natural) class of sets whose classical
and effective Hausdorff dimensions are equal. Hitchcock [5] found such a class by
showing that if X is a union of I19-classes, then the classical and effective Hausdorff
dimensions of X are the same (for more information on I19-classes see [10 [11]).
This is a beautiful and useful result, because it allows one to compute the classi-
cal Hausdorff dimension of a set by determining its effective Hausdorff dimension,
which, as is shown in [7], is the supremum of the effective Hausdorff dimensions of
its individual points.

Later, Athreya, Hitchcock, Lutz, and Mayordomo [I] effectivized the classical
notion of packing dimension to obtain the notion of effective packing dimension.
They also wondered whether or not there existed a correspondence principle for
this new notion of dimension. The main theorem of this article shows that there
is a I19-class X that has classical packing dimension 0 (in fact X is countable)
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and effective packing dimension 1. Hence, there is no possibility for a reasonable
correspondence principle of the same sort as the one for Hausdorff dimension.

The plan of the rest of the paper is as follows. Section 2 contains the necessary
definitions and notational conventions. Section 3 consists of the proof of the main
theorem which says that there is a I19-class X with classical packing dimension 0
and effective packing dimension 1. Finally, section 4 contains two theorems. The
first proves that the effective packing dimension of a II{-class is always less than
or equal to its upper box dimension. The second theorem shows that there is a
I9-class X that has effective packing dimension 0 and upper box dimension 1.

For further information on computability theory, effective randomness, and di-
mension theory, consult [2] [3] 8] [].

2. DEFINITIONS AND NOTATION

2.1. Cantor space and II{-classes. In this article w denotes the set of natural
numbers, 2<% denotes the set of finite binary sequences, and 2% denotes the set
of infinite binary sequences (i.e. Cantor space). For any o € 2<% let | o| denote
the length of 0. For any 7 € 2<% and n € w we write C, for the set of nodes
{ro0 € 2<¥ : 1 < |o|] < n} — i.e. the “cone” above 7 of length n. Also, let
C™ denote the set {0 € 2<“: o extends 7}. 2" denotes the set of strings of length
n cw.

For all f € 2 and n € w, f[n denotes the first n bits of f. We write ¢ C 7
to mean that o € 2<% is an initial segment of 7 € 2<“; in other words 7 extends
o. Also, if f € 2¥ and o € 2<%, then ¢ C [ means that ¢ is an initial segment
of f. A set A C 2<% is prefix-free if for any 0,7 € A such that o # 7, we have
o . I AC2<¥ and k € w, then A, = {0 € A:|o| < k}. We denote the plain
and prefix-free Kolmogorov complexity of a string o € 2<% by C(0) and K(o),
respectively. For more information on plain and prefix-free Kolmogorov complexity
see [6].

Aset X C2¥%isa H(l)—class if there is a computable tree T' C 2<% such that X is
the set of paths through T'.

2.2. Packing dimension. In this section we define the notion of classical packing
dimension. For more information on classical packing dimension see [4].

For every k € w let A be the collection of prefix-free sets A C 2<% such that
Ao = 0. For every X C 2% we now define

Ak(X):{AeAk:XC UC“},

acA
Bu(X)={A€ A : (Yae A)[CoNX %0}

Ai(X) is the set of all covers of X, while By, denotes the set of all packings of X.
For more information on covers and packings, see [4].
If X C2¥ s€]0,00), and k € w, then we define the quantity

P}(X)= sup Z 2 sIAl
BeB(X) jcp

which is decreasing in k, and so the limit

PL(X) = lim P{(X)
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exists, though it may be infinite. We now define the s-dimensional packing (outer)
cylinder measure of X:

P*(X) inf{ZPjo(Xi) . X C UX}
i=0 =0
Definition 2.1. The packing dimension of X C 2% is dimp(X) = inf{s € [0, 00) :
P(X) =0}

Throughout this article we use a well-known characterization of packing dimen-
sion as a modified box dimension, which we define next.

2.3. Modified box dimension. For every X C 2“ and n € w, let
Np(X)=1|{ce2” : 3f € X)o C f}.

Now, the upper box dimension of X is given by

— log( N, (X
dimp(X) = limsup M.
n—oo n
Though we will not mention it again, it is worth noting that X also has a
lower box dimension dim 5(X), which is obtained by replacing limsup by lim inf
in the definition of upper box dimension. If dimp(X) = dimp(X), then the box
dimension of X dimp(X) is defined and equal to this number. As we will see in
section 4, upper box dimensions are easy to compute, but poorly behaved. A more
well-behaved notion is the modified upper box dimension of X
dimyp(X) = inf{supﬁB(Xi) X C U XZ} :
i i=0

moreover, it is equal to the packing dimension of X. In fact, the following theorem
is well-known (for a proof see [4]).

Theorem 2.2. For all X C 2¥, 0 < dimg(X) < dimyp(X) = dimp(X) <
dimp(X) < 1.

From now on we will make no distinction between the modified upper box di-
mension of X and the (classical) packing dimension of X.

2.4. Packing dimension and s-gales. In this section we define the effective pack-
ing dimension of a set X C 2¥. For a more complete guide to effective dimension
theory which includes the definition of effective Hausdorff dimension, consult [T, [7].

Definition 2.3. Fix a number s € [0,00). An s-supergale is a function d : 2<% —
RZ0 that satisfies, for all ¢ € 2<%, the following condition:

d(o) > 27°[d(c0) + d(o1)].

Replacing > with = in the definition above gives the definition for an s-gale.
1-gales are called martingales, and 1-supergales are called supermartingales. An
s-gale or s-supergale is X if it may be computably approximated from below by a
uniform sequence of rational numbers.

Intuitively, s-gales are thought of as strategies for betting on the bits of some
binary sequence f € 2¥ (in order). In particular, if o € 2<“ is an initial segment of
f, then d(o) is the capital that one would have after placing | o|-many bets. The
parameter s is thought of as a “fairness factor” because as s decreases it becomes
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more difficult to increase one’s capital. Next we define what it means for s-gales
and s-supergales to succeed strongly on a sequence f € 2¢.

Definition 2.4. Let d be an s-gale or an s-supergale, for some s € [0, 00). We say
that d succeeds strongly on f € 2¢ if
liminf d(fIn) = oco.

The strong success set of d is the set
Seald] = {f € 2% : d succeeds strongly on f}.

The following surprising result of Lutz gives a characterization of classical pack-
ing dimension in terms of s-gales.

Theorem 2.5 (Lutz). For any X C 2%,

there is an s — gale d
such that X C S3[d]

dimp (X) = inf {5 :
str
Now, by effectivizing the notions of s-gales and s-supergales, we obtain the
following definition of effective packing dimension.

Definition 2.6. The effective packing dimension of X C 2% is

there is a ) s—gale d
such that X C S3[d]

str

cDim(X) = inf {s :

For all f € 2% define Dim(f) = ¢cDim({f}).

The following are two well-known and useful theorems about effective packing
dimension. The first characterizes the effective packing dimension of points in
Cantor space in terms of the prefix-free Kolmogorov complexity of their initial
segments. The second says that the effective packing dimension of a set X C 2% is
the supremum of the dimensions of its individual points. In other words, effective
packing dimension is absolutely stable.

Theorem 2.7. For all f € 2¥,

cDim(f) = lim sup @

n—oo

Theorem 2.8. For all X C 2%,

¢Dim(X) = sup Dim(f).
fex
The next section is devoted to proving the main theorem of this article, which
says that there is a I19-class X such that dimp(X) = 0 and cDim(X) = 1.

3. NO CORRESPONDENCE PRINCIPLE
FOR EFFECTIVE PACKING DIMENSION OF H(I)—CLASSES

Theorem 3.1. There exists a (countable) 119-class X such that dimp(X)
= dimyp(X) =0 and cDim(X) = 1.

Proof. We construct a computable tree T = |J,Ts, Ts C Tyy1, in stages such
that X is the set of paths through 7. Furthermore, Ts;1 is obtained from T}
by extending the leaves of Ts. Also, every path of T will be computable, except
for one distinguished path t = (J, 7 € X (t € 2¥, 7, € 2<%, 7; C 7541), such that
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K(7;) > (1—27%)|;|. From these facts it follows that X is countable, and therefore
has a classical packing dimension of 0. However, since ¢ € X has effective packing
dimension 1, it follows from Theorems 2.7] and 2.8 that the same must hold for X.
All that is left to do is build T" and show that it has these properties. Though it
does not necessarily follow from the construction below, we wish to note that the
following construction can be modified so that ¢t € 2 is in fact a left-c.e. real.

The construction of T'.

Stage 0: Put the nodes (),0, 1, into Tp, and set 73 = 0.

Stage s + 1: Let 7 = 77 for the largest » < s for which 7 is currently defined.

We begin by enumerating all ¢ € T, into Ts41. If A € Ty is the length-
lexicographically least leaf of T extending 7, we computably determine a number
n such that there exists a node p € C) such that K(p) > (1 —27""1)|p|. Note that
n can be determined effectively since, by the definition of plain Kolmogorov com-
plexity C and a simple counting argument, it follows that for any A € 2<%, n € N,
if M = max{C(c): 0 € C)}, then M > n. Now, for any p’ € C}} we have

A—27""Hl<@-27"Yn+r) <A-2""H(M+7r) = M4r—2"""YM+r).

Therefore, if n < M is chosen large enough so that r —27"=1(M +r) < 0 (recall
that r is a known quantity and so the inequality can be effectively solved for n),
then we have that

M>M+r—2"""YM+r)>(1-2"""Yp.

Hence, by definition of M, there is a string p € C7, such that C(p) > (1—-27""1)|p|.
But we also have that K(p) > C(p), and so K(p) > (1 —27""1)|p|. Once n has
been effectively determined, then for all o € Cj), put o into Tyy1. Define 7517 to
be the least length-lexicographic proper extension ¢ O 7 = 7. on Ty such that
K, (o) > (1 —27""1)| 0|, where K is a (fixed) computable approximation to K.
Next, let j > 0 be the smallest number such that Ks(77) # Ks11(7;), and set
TfH to be undefined for all i > j, while setting Tf“ =171/ foralli < j. If such a j
does not exist, do nothing. Finally, put all nodes of the form X0 into Ts, 1, where

M ranges over the leaves of T, not equal to A. This ends the construction of T'.

Lemma 3.2. For every i, 7; = limg 77 exists. Furthermore, 7, € T, and 7,1 C T;
for every i > 1.

Proof. The proof is by induction. Note that 7§ = 0 for all stages of the construction,
and so the base case holds. For the induction step, let sg be the last stage such that
Tfﬂl is undefined or 0 if no such stage exists, and suppose (as part of the inductive
hypothesis) that at all stages s > so, 77_; = Tjsfll
sense to write 7;_1 = lims 77_; instead of 7;_;.

First note that (by the construction of T') 77° is undefined, and furthermore, if
s > so is a stage at which 77 is defined, then it must properly extend 7;_; and it
must also be a node of Ts. Hence, if 7; = lim, 7}/ exists (as we will show in the next
paragraph), then 7; D 7,_; and 7; € T..

Now, by the construction of T, 1, there is a ¢ € Ts;, properly extending 7;_
such that K (o) > (1 —277)|o|. Let p be the length-lexicographically least such
o, and let s; > sg be a stage by which K(p) has settled. There are two cases to

consider. First, if 7';2 is undefined at some stage so > s1, then (by the construction

Thus, for all s > sy it makes

of T) T; 2+ will be defined and set equal to p, and will remain equal to p D 7;_1
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at all later stages. Otherwise, 7; is defined at all stages s > s1, and the limit of

7j must exist since (by the construction of T') if 7' # 7% for some sy > sy, then

there is a stage s, s1 < s < sg, such that 77 is undefined. Note that in both cases

we have shown that there is a final stage s such that 77 is undefined, and for every
s'+1

s’ > s we have that T]‘?/ =7; . This proves the lemma. (I

Proposition 3.3. Lett = |J,7; € 2¥; then t € X and t has effective packing
dimension 1.

Proof. The fact that ¢ € X is trivial, by the definition of X and the previous
lemma. Note that ¢ has effective packing dimension 1 since for all ¢ we have that
K(r) > (1 —27%)|7;|. Otherwise, if K(r;) < (1 —27%)| 7|, then there must be a
least stage to such that for all stages t > to, K¢(r;) < (1 —27%)| 7;|. However, this
implies that 7; # limg_,o, 77, since the construction guarantees that at all stages

K3
t > to we have that 77 # 7;, which is a contradiction. O

Proposition 3.4. Fvery f € X other than t is computable.

Proof. Let f be a path in X that is not equal to ¢t. Then there is a number 7 such
that f 2 7;. It now follows that if s is large enough so that 7; has settled by stage
s and A is the unique leaf of T such that A C f, then by the construction we have
that f = A0*°. O

This ends the proof of the theorem. O

4. UPPER BOX DIMENSIONS OF II{-CLASSES

This section contains two theorems that deal with the upper box dimensions of
I9-classes. The first theorem says that if X is a IT9-class, then cDim(X)< dimp(X).
The second theorem says that there is a countable I1{-class X that has effective
packing dimension 0 and upper box dimension 1. An already known corollary of
this result (see [4]) is that there are countable subsets of [0, 1] that have nonzero
upper box dimension (recall that upper box dimension is a classical notion). This
illustrates one way in which the notion of upper box dimension is mathematically
badly behaved.

Theorem 4.1. For every I19-class X, cDim(X) < dimp(X).

Proof. Let X € 119, and let s > dimpg(X). It suffices to show that s > cDim(X).
To show that s > ¢Dim(X), we will show that for all f € X, ¢cDim(f)< s.

Fix an f € X, and let r,, = log(N,,(X)). Since s > dimp(X), there are cofinitely
many n such that ns > r,. Let W be the set of all such n, and for n € W let F(n) be

the first n bits of f. To prove the theorem we show that lim sup,,cy w < s.

This suffices by Theorems 2.7 and 28 and the fact that limsup,,c, K(F(n) _

n
lim sup,, ey K(};(")), since W C w is a cofinite set.

Now, since X is a I1{-class, and can therefore be computably approximated, for
any n € W we can give a prefix-free description of F(n) by giving descriptions for
n, Ty, and a string of length 7,, that indicates the position of f in the lexicographic
listing of N,,(X). Therefore,

K(F(n)) < K(n)+ K(r,) + rn < 2log(n) + 2log(ns) + ns, since r, < ns,
K(F(n)) <s. =

and so limsup,, ¢y
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Theorem 4.2. There is a countable IV-class X such that cDim(X) = 0 and

Proof. We will construct a computable tree T in stages T = |J, Ts, Ts C Toy1,

such that every path of T"is computable and lim sup,, M = 1, where X is
the set of paths in T'. The fact that every element of X is computable ensures that
X is countable, and by Theorems 2.7l and 2.8 also ensures that the corresponding
9-class X C 2% has effective packing dimension 0.

The construction of 7.

Stage 0: Enumerate o into Ty, for all o € {(,0,1}.

Stage s + 1: First, enumerate Ty into Tsy1. Then, for every leaf A € Ty that is
not of the form 0™, enumerate A0 into Tsy;. On the other hand, for the unique leaf
A of T of the form 0™ for some n € w, enumerate o into Tsy for all o € Cﬁ, where
n > 1 is chosen large so that #\/\I > 1—275"1 This ends the construction.

To see that T' is indeed computable, note that for all o € 2<%, if o ¢ T}/, then
oc¢T.

Proposition 4.3. dimp(X) = 1.

Proof. At stage s of the construction we produce a number m(= n + |A|) such that
W > 1—27°. This implies that limsup,,c,, w =1, and so X has
upper box dimension 1. O

Proposition 4.4. FEvery element of X is computable.

Proof. Let f € X. If f =0, then f is computable, so assume that f # 0°°. Then
there is a least n € w such that f(n) = 1. Let 0 € 2<% represent the first n bits of
f. Let s be the smallest stage such that o € T (such an s exists since f € X) and
let 0/ D o be the unique leaf of T that is extended by f. Then, by the construction

of T it follows that f = ¢’0°, and hence [ is computable. (]
This ends the proof of the theorem. O
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