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To Veronica, Emiliano and Camilo

Abstract. We prove isoperimetric inequality on a Riemannian manifold, as-
suming that the Cheeger constant for balls satisfies a certain estimation.

1. Introduction and the main result

The isoperimetric property of a ball, which maximizes the volume for a given
surface area, was well known to the ancient Greeks. Nowadays, isoperimetric in-
equalities have also become a part of Analysis, due to seminal contributions of Lord
Rayleigh [12], Faber [4], Krahn [7], Pólya and Szegö [11] et al. For a recent account
of isoperimetric inequalities in relation to Analysis, see Chavel [2].

Let M be a Riemannian manifold of dimension n and let Ω ⊂ M be an open set
with smooth boundary. Denote by V (Ω) the n-dimensional Riemannian volume of
Ω, and by A (∂Ω) the (n − 1)-dimensional Riemannian area of ∂Ω. Let ρ(p, q) be
a distance on M , and let ρp(q) be the C2 distance function from the point p ∈ M ,
such that |∇ρp| ≤ 1 for all p ∈ M .

Denote by Br(p) the open ball centered at p ∈ M of radius r > 0. The Cheeger
constant h (B) of a ball B = Br(p) is defined by

(1.1) h (B) := inf
Ω⊂B

A (∂Ω)
V (Ω)

,

where inf is taken over all open sets Ω ⊂ B with smooth boundaries and compact
closure. We say that a function h(r) on an interval (0, rmax) is a Cheeger function
if it is positive, decreasing, and for any p ∈ M and r ∈ (0, rmax),

(1.2) h (Br(p)) ≥ h(r).

Here rmax is either a positive number or +∞. Our main result is as follows.

Theorem 1.1. Let M be a Riemannian manifold. Assume that M admits a
Cheeger function,

(1.3) h(r) =
n

r
− h0(r),
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where h0(r) ≥ 0 is a continuous function on (0, rmax), such that

(1.4) J :=
∫ rmax

0

h0(r) d r < ∞.

Then, for any open set Ω ⊂ M with smooth boundary and compact closure, such
that V (Ω) ≤ vmax, the following inequality takes place:

(1.5) A(∂ Ω) ≥ CV (Ω)1− 1
n ,

where C = 4−n
(

3
7ωn

) 1
n exp

(
− J

n

)
and vmax is given by

(1.6) vmax =
3
7
ωnrn

max exp (− J) ,

where ωn is the volume of the unit ball in R
n.

Remark 1.2. The case when M admits a Cheeger function h(r) = n
r was considered

by Chung, Grigor’yan and Yau [3]. They proved the isoperimetric inequality (1.5)
using the method of Michael and Simon [9]; our proof is based on the same approach.

2. The proof

Proof. The proof is divided into three steps.

First step. Fix a open set Ω ⊂ M with smooth boundary and compact closure,
a point p ∈ M and define two functions

(2.1)
{

m (r) = V (Ω ∩ Br),
s (r) = A(∂ Ω ∩ Br).

where Br = Br(p).
Set Ωr = Ω ∩ Br and observe that

(2.2) ∂Ωr = (Ω ∩ ∂Br) ∪ (∂Ω ∩ Br) .

Since Ωr ⊂ Br, we have by definition of a Cheeger function,

(2.3) h(r) V (Ωr) ≤ A(∂ Ωr).

Clearly,

(2.4) A(∂Ωr) ≤ A(Ω ∩ ∂Br) + A(∂Ω ∩ Br)
= m′(r) + s(r),

where m′(r) is the derivative with respect to r. From (2.3) and (2.4) we obtain

(2.5) h(r) m(r) ≤ s(r) + m′(r)

or

(2.6) − (m′(r) − h(r) m(r)) ≤ s(r).

Fix some a ∈ (0, rmax) and set

(2.7) H(r) :=
∫ r

a

h(t)d t.

Note that the function H(r) is a differentiable and increasing function defined
on [0, rmax] onto [Hmin, Hmax], where

−∞ ≤ H(0) =: Hmin < H(a) = 0 < H(rmax) =: Hmax ≤ ∞.

We prove this as follows: we already know that h(r) is a continuous function,
so that H ′(r) = h(r) 	= 0 for all r ∈ (0, rmax), and therefore by the Inverse
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Function Theorem there exists an inverse function denoted by H− 1(s) where s ∈
[Hmin, Hmax]. Moreover H− 1(s) is a differentiable function in (Hmin, Hmax), with
derivative given by(

H− 1
)′

(s) =
1

H ′(H− 1(s))
=

1
h(H− 1(s))

> 0 ;

therefore H− 1(s) is also an increasing function.
Multiplying by the factor F (r) := exp (−H(r)) gives the differential inequality

(2.8) − d

d r
(F (r) m(r) ) ≤ F (r) s(r).

Second step. In the sequel we will use the following lemma, which was proved in
[3].

Lemma 2.1. Let f(r) be an absolutely continuous positive function on (0, ∞).
Suppose that for some r0 ∈ (0, ∞) and all r ∈ (0, r0) the inequality is satisfied:

(2.9) − d

d r
f(r) <

1
r0

f(4r).

Then

(2.10) sup
(0, r0)

f <
7
3

sup
(r0, 4 r0)

f.

Assuming that V (Ω) < vmax, we obtain

(2.11) ln
(

7
3
V (Ω)ω− 1

)
< Hmax := H(rmax),

where ω := anωn exp
(
−

∫ a

0
h0(r)d r

)
. Indeed we have

(2.12) Hmax :=
∫ rmax

a

h(r)d r = n ln
(rmax

a

)
−

∫ rmax

a

h0(r)d r,

whence

(2.13) ω exp (Hmax) = ωnrn
max exp (− J) =

7
3
vmax .

Therefore V (Ω) < vmax implies

(2.14) V (Ω) <
3
7
ω exp (Hmax) ;

hence (2.11) follows. Therefore 7
3V (Ω)ω− 1 ∈ [Hmin, Hmax], and we can set

(2.15) r0 := H− 1

(
ln

(
7
3
V (Ω) ω− 1

))
.

We will prove that there exists r ∈ (0, r0) such that

(2.16) s(r) ≥ 1
r0

m(4r)
F (4r)
F (r)

.

Assume on the contrary that (2.16) is false. That means for all r ∈ (0 r0),

(2.17) F (r) s(r) <
1
r0

F (4 r) m(4 r),
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which implies by (2.8)

(2.18) − d

dr
(F (r)m(r)) <

1
r0

F (4r) m(4r).

Applying Lemma 2.1 to f(r) = F (r)m(r) we conclude that

(2.19) sup
(0, r0)

F (r) m(r) <
7
3

sup
(r0, 4 r0)

F (r) m(r).

By definition of F and H, we have

(2.20) F (r) =
(a

r

)n

exp
(
−

∫ a

r

h0(r)d r

)
.

Noting that m(r) ∼ ωnrn as r → 0, we obtain from (2.20)

(2.21) lim
r → 0

F (r)m(r) = ωnan exp
(
−

∫ a

0

h0(r)d r

)
= ω.

Hence, by (2.19) and (2.21),

(2.22) ω <
7
3

sup
(0, r0)

F (r)m(r).

On the other hand, F (r) is decreasing and m(r) ≤ V (Ω), which implies

(2.23) sup
(r0, 4r0)

F (r)m(r) ≤ F (r0)V (Ω) .

Combining the above two lines, we obtain

(2.24) ω <
7
3
F (r0)V (Ω) .

However, by the choice of r0,

(2.25) F (r0) = exp (−H(r0)) =
3
7
V (Ω)− 1

ω,

whence 7
3V (Ω) F (r0) = ω, contradicting (2.24).

Third step. In the previous step we proved that there exists r ∈ (0, r0) such that

(2.26) A(∂Ω ∩ Br) ≥ 1
r0

(
F (4r)
F (r)

)
V (Ω ∩ B4r).

Since h(r) ≤ n
r it follows that

(2.27)
F (4r)
F (r)

= exp
(
−

∫ 4r

r

h(r)d r

)
≥ 4−n.

Then by (2.26) and (2.27) we obtain

(2.28) A (∂Ω ∩ Br) ≥ 1
4nr0

V (Ω ∩ B4r) .

Next we will use the following lemma, proved in [5] (see also [3] and [8]).

Lemma 2.2. Let (M, d) be a metric space with countable base. Suppose that any
point x from a set Ω ⊂ M is assigned a metric ball Brx

(x) of radius rx ∈ (0, r0).
Then there exists an (at most countable) set S ⊂ Ω such that all balls Brx

(x),
x ∈ S, are disjoint, whereas the union of the balls B4rx

(x), x ∈ S, covers all the
set Ω.
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Let S = {xi} be the countable set given by Lemma 2.2, and set ri = rxi
. We

have by (2.26):

A (∂Ω) ≥
∑

i

A (∂Ω ∩ Bri
)

≥
∑

i

1
r0

1
4n

V (Ω ∩ B4 ri
)

≥ 1
r0

1
4n

V (Ω) .

(2.29)

To conclude the proof of the theorem, we need to prove that

(2.30) r0 ≤ KV (Ω)
1
n ,

where K =
(

7
3

) 1
n ω

− 1
n

n exp
(

J
n

)
.

Indeed we have by definition of r0 (equation (2.15)),

(2.31) ln
(

7
3
V (Ω)ω− 1

)
= H(r0) = n ln

r0

a
−

∫ r0

a

h0(r)d r.

Therefore,

(2.32) r0 ≤ a

(
7
3
V (Ω)ω− 1

) 1
n

exp
(

1
n

∫ r0

a

h0(r)d r

)
.

Substituting ω, we obtain

(2.33) r0 ≤
(

7
3

) 1
n

ω
− 1

n
n exp

(
J

n

)
V (Ω)

1
n ,

which completes the proof. �

3. Examples

Example 3.1 (Hadamard-Cartan manifolds). A manifold M is called a Hadamard-
Cartan (H-C) manifold, if and only if M is a geodesic complete manifold, simply
connected, noncompact and with nonpositive sectional curvature.

Any H-C manifold (including R
n and H

n
κ) admits as a Cheeger function h(r) =

n
r . We prove this as follows: let M be an H-C manifold. Grigory’an [6] and Garćıa
León [5] report that if M is an H-C manifold and ρp denotes a C2 distance function
from the point p ∈ M such that |∇ρp| ≤ 1, then its Laplacian satisfies

(3.1) � ρp ≥ n − 1
ρp

.

Let rp be the geodesic distance from the point p ∈ M . It is well known that
|∇rp| = 1; hence by (3.1),

(3.2) �r2
p = 2

(
rp�rp + |∇rp|2

)
≥ 2 n.

Let r ∈ (0, rmax) and Ω ⊂ Br(p) be an open set with smooth boundary and
compact closure. Hence by (3.2) we obtain

(3.3)
∫

Ω

�r2
pdV ≥ 2 n V (Ω) .
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On the other hand, by the Green’s formula,

(3.4) 2 r A (∂Ω) ≥
∫

Ω

�r2
pdV ;

thus from equations (3.3) and (3.4) we obtain

(3.5) h (Br(p)) ≥ n

r
.

Now let rmax = ∞ and h0(r) = 0, ∀ r > 0. Applying Theorem 1.1, we conclude
that if M is an H-C manifold, then the inequality (1.5) is satisfied for all open sets
Ω with smooth boundary and compact closure.

Example 3.2. If the curvature of M is allowed to be positive, one should expect a
Cheeger function to be smaller than n

r . Indeed, S
2 has a Cheeger function h(r) =

cot
(

r
2

)
, 0 < r < π, which is smaller than 2

r , but the function h0 = 2
r − cot

(
r
2

)
is bounded and hence satisfies our condition (1.4). A similar statement is true for
S

n.

Example 3.3 (Surfaces with bounded mean curvature). Let M be a surface in
R

n, let p, q ∈ M and let d(p, q) be the extrinsic distance. We know that if ρp

denotes the extrinsic distance function, then ρp ≤ rp, where rp denotes the geodesic
distance function from the point p ∈ M . Moreover it implies that |∇ρp| ≤ 1, ∀ p ∈
M .

If we denote by H the mean curvature vector and we assume that

(3.6) sup |H| ≤ K,

where the sup runs on all points of M , 0 < K < ∞ is a constant and rmax > 0
is an arbitrary and fixed number. Osserman [10] and Grigor’yan [6] proved that: If
ρp is the extrinsic distance, shifting x1, . . . , xN coordinates in R

N and taking p as
the origin, then

�ρ2
p = 2

(
N∑

i = 1

xiHi +
N∑

i = 1

∣∣∇x2
i

∣∣)

= 2

(
N∑

i =1

xiHi + n

)
,

(3.7)

where Hi means coordinates of the mean curvature vector, and by computation we
obtain that it is true that

∑N
i = 1

∣∣∇x2
i

∣∣ = n. By Schwarz inequality it is obtained
that

(3.8)
N∑

i =1

xiHi ≤ ρp |H| ,

whence

�ρ2
p ≥ 2

(
n −

N∑
i = 1

xi Hi

)

≥ 2 (n − ρp |H|) .

(3.9)

We already know that |H| ≤ K, where K > 0 is constant. By (3.9), we obtain

(3.10) � ρ2
p ≥ 2 (n − K ρp) .



CHEEGER’S CONSTANT IN BALLS AND ISOPERIMETRIC INEQUALITY 4451

Let us define ϕ(r) by

ϕ(r) = n − K r, 0 < r < rmax,

where we take
rmax =

n

K
> 0.

We will construct a continuous function h0 : (0, rmax) −→ R such that
• h0(r) ≥ 0, ∀r ∈ (0, rmax), and

•
∫ rmax

0
h0(r) d r ≤ J , for all p ∈ M , where 0 < J < ∞ is a constant.

Note that the function ϕ(r) is in fact a decreasing and continuous function. Let
r ∈ (0, rmax), p ∈ M and let Ω ⊂ Br(P ) be an open set with smooth boundary
and compact closure. Hence integrating (3.10) on Ω, and by the fact that ϕ(r) is a
decreasing function, ∫

Ω

� ρ2
pd V ≥ 2

∫
Ω

ϕ(ρp)d V

≥ 2ϕ(r)V (Ω) .

(3.11)

On the other hand, by the Green’s formula,

(3.12) 2 r A (∂Ω) ≥
∫

Ω

� ρ2
pd V.

Hence by (3.11) and (3.12), for all open sets with smooth boundary and compact
closure, it is satisfied that

(3.13)
A (∂Ω)
V (Ω)

≥ ϕ(r)
r

.

We conclude by definition of Cheeger’s constant on the ball that

(3.14) h (Br(p)) ≥ ϕ(r)
r

=
n

r
− K.

Let h0 : (0, rmax) −→ R be the constant function h0(r) = K ≥ 0. Thus
estimating its integral on (0, rmax),

(3.15)
∫ rmax

0

h0(r)d r = K rmax = n =: J < ∞.

Now by Theorem 1.1, if V (Ω) < vmax, then

(3.16) A (∂Ω) ≥ C V (Ω)1− 1
n ,

where

(3.17)
C = 4−n

(
3
7

) 1
n e− 1,

vmax = 3
7

(
n
e

)n
K−n.

Remark 3.4. On minimal manifolds we already know that |H| = 0, and in this
case we obtain that rmax = vmax = ∞. Therefore if M is a minimal manifold,
then M satisfies the isoperimetric property.
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