PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 136, Number 12, December 2008, Pages 4445-4452 S 0002-9939(08)08824-2 Article electronically published on July 15, 2008

CHEEGER'S CONSTANT IN BALLS AND ISOPERIMETRIC INEQUALITY ON RIEMANNIAN MANIFOLDS

JOEL GARCÍA LEÓN

(Communicated by Richard A. Wentworth)

To Veronica, Emiliano and Camilo

ABSTRACT. We prove isoperimetric inequality on a Riemannian manifold, assuming that the Cheeger constant for balls satisfies a certain estimation.

1. INTRODUCTION AND THE MAIN RESULT

The isoperimetric property of a ball, which maximizes the volume for a given surface area, was well known to the ancient Greeks. Nowadays, isoperimetric inequalities have also become a part of Analysis, due to seminal contributions of Lord Rayleigh [12], Faber [4], Krahn [7], Pólya and Szegö [11] et al. For a recent account of isoperimetric inequalities in relation to Analysis, see Chavel [2].

Let M be a Riemannian manifold of dimension n and let $\Omega \subset M$ be an open set with smooth boundary. Denote by $V(\Omega)$ the *n*-dimensional Riemannian volume of Ω , and by $A(\partial\Omega)$ the (n-1)-dimensional Riemannian area of $\partial\Omega$. Let $\rho(p, q)$ be a distance on M, and let $\rho_p(q)$ be the C^2 distance function from the point $p \in M$, such that $|\nabla \rho_p| \leq 1$ for all $p \in M$.

Denote by $B_r(p)$ the open ball centered at $p \in M$ of radius r > 0. The Cheeger constant $\overline{h}(B)$ of a ball $B = B_r(p)$ is defined by

(1.1)
$$\overline{h}(B) := \inf_{\Omega \subset B} \frac{A(\partial \Omega)}{V(\Omega)},$$

where inf is taken over all open sets $\Omega \subset B$ with smooth boundaries and compact closure. We say that a function h(r) on an interval $(0, r_{max})$ is a *Cheeger function* if it is positive, decreasing, and for any $p \in M$ and $r \in (0, r_{max})$,

(1.2)
$$\overline{h}(B_r(p)) \ge h(r).$$

Here r_{max} is either a positive number or $+\infty$. Our main result is as follows.

Theorem 1.1. Let M be a Riemannian manifold. Assume that M admits a Cheeger function,

(1.3)
$$h(r) = \frac{n}{r} - h_0(r),$$

©2008 American Mathematical Society Reverts to public domain 28 years from publication

Received by the editors August 3, 2005, and, in revised form, October 20, 2005.

²⁰⁰⁰ Mathematics Subject Classification. Primary 58Cxx.

 $Key\ words\ and\ phrases.$ Differential geometry, mathematical analysis, Cheeger's constant and isoperimetric inequality.

The author was supported in part by CONACyT, México.

where $h_0(r) \ge 0$ is a continuous function on $(0, r_{max})$, such that

(1.4)
$$J := \int_0^{r_{max}} h_0(r) \, dr < \infty.$$

Then, for any open set $\Omega \subset M$ with smooth boundary and compact closure, such that $V(\Omega) \leq v_{max}$, the following inequality takes place:

(1.5)
$$A(\partial \Omega) \ge CV(\Omega)^{1-\frac{1}{n}},$$

where $C = 4^{-n} \left(\frac{3}{7}\omega_n\right)^{\frac{1}{n}} \exp\left(-\frac{J}{n}\right)$ and v_{max} is given by

(1.6)
$$v_{max} = \frac{3}{7} \omega_n r_{max}^n \exp\left(-J\right),$$

where ω_n is the volume of the unit ball in \mathbb{R}^n .

Remark 1.2. The case when M admits a Cheeger function $h(r) = \frac{n}{r}$ was considered by Chung, Grigor'yan and Yau [3]. They proved the isoperimetric inequality (1.5) using the method of Michael and Simon [9]; our proof is based on the same approach.

2. The proof

Proof. The proof is divided into three steps.

First step. Fix a open set $\Omega \subset M$ with smooth boundary and compact closure, a point $p \in M$ and define two functions

(2.1)
$$\begin{cases} m(r) = V(\Omega \cap B_r), \\ s(r) = A(\partial \Omega \cap B_r). \end{cases}$$

where $B_r = B_r(p)$.

Set
$$\Omega_r = \Omega \cap B_r$$
 and observe that

(2.2)
$$\partial \Omega_r = (\Omega \cap \partial B_r) \cup (\partial \Omega \cap B_r).$$

Since $\Omega_r \subset B_r$, we have by definition of a Cheeger function,

(2.3)
$$h(r) V(\Omega_r) \le A(\partial \Omega_r)$$

Clearly,

(2.4)
$$\begin{array}{rcl} A(\partial\Omega_r) &\leq & A(\Omega \cap \partial B_r) + A(\partial\Omega \cap B_r) \\ &= & m'(r) + s(r), \end{array}$$

where m'(r) is the derivative with respect to r. From (2.3) and (2.4) we obtain

(2.5)
$$h(r)m(r) \le s(r) + m'(r)$$

or

(2.6)
$$-(m'(r) - h(r)m(r)) \leq s(r).$$

Fix some $a \in (0, r_{max})$ and set

(2.7)
$$H(r) := \int_a^r h(t)dt.$$

Note that the function H(r) is a differentiable and increasing function defined on $[0, r_{max}]$ onto $[H_{min}, H_{max}]$, where

$$-\infty \le H(0) =: H_{min} < H(a) = 0 < H(r_{max}) =: H_{max} \le \infty.$$

We prove this as follows: we already know that h(r) is a continuous function, so that $H'(r) = h(r) \neq 0$ for all $r \in (0, r_{max})$, and therefore by the Inverse

4446

Function Theorem there exists an inverse function denoted by $H^{-1}(s)$ where $s \in [H_{min}, H_{max}]$. Moreover $H^{-1}(s)$ is a differentiable function in (H_{min}, H_{max}) , with derivative given by

$$(H^{-1})'(s) = \frac{1}{H'(H^{-1}(s))} = \frac{1}{h(H^{-1}(s))} > 0;$$

therefore $H^{-1}(s)$ is also an increasing function.

Multiplying by the factor $F(r) := \exp(-H(r))$ gives the differential inequality

(2.8)
$$-\frac{d}{dr}\left(F(r)\,m(r)\right) \leq F(r)\,s(r).$$

Second step. In the sequel we will use the following lemma, which was proved in [3].

Lemma 2.1. Let f(r) be an absolutely continuous positive function on $(0, \infty)$. Suppose that for some $r_0 \in (0, \infty)$ and all $r \in (0, r_0)$ the inequality is satisfied:

(2.9)
$$-\frac{d}{dr}f(r) < \frac{1}{r_0}f(4r)$$

Then

(2.10)
$$\sup_{(0,r_0)} f < \frac{7}{3} \sup_{(r_0, 4r_0)} f.$$

Assuming that $V(\Omega) < v_{max}$, we obtain

(2.11)
$$\ln\left(\frac{7}{3}V(\Omega)\,\omega^{-1}\right) < H_{max} := H(r_{max}),$$

where $\omega := a^n \omega_n \exp\left(-\int_0^a h_0(r) dr\right)$. Indeed we have

(2.12)
$$H_{max} := \int_{a}^{r_{max}} h(r) dr = n \ln\left(\frac{r_{max}}{a}\right) - \int_{a}^{r_{max}} h_0(r) dr,$$

whence

(2.13)
$$\omega \exp(H_{max}) = \omega_n r_{max}^n \exp(-J) = \frac{7}{3} v_{max}.$$

Therefore $V(\Omega) < v_{max}$ implies

(2.14)
$$V(\Omega) < \frac{3}{7}\omega \exp(H_{max});$$

hence (2.11) follows. Therefore $\frac{7}{3}V\left(\Omega\right)\omega^{-1}\,\in\,[H_{min},\,H_{max}],$ and we can set

(2.15)
$$r_0 := H^{-1} \left(\ln \left(\frac{7}{3} V(\Omega) \, \omega^{-1} \right) \right)$$

We will prove that there exists $r \in (0, r_0)$ such that

(2.16)
$$s(r) \ge \frac{1}{r_0} m(4r) \frac{F(4r)}{F(r)}.$$

Assume on the contrary that (2.16) is false. That means for all $r \in (0 r_0)$,

(2.17)
$$F(r) s(r) < \frac{1}{r_0} F(4r) m(4r),$$

which implies by (2.8)

(2.18)
$$-\frac{d}{dr}\left(F(r)m(r)\right) < \frac{1}{r_0}F(4r)\,m(4r).$$

Applying Lemma 2.1 to f(r) = F(r)m(r) we conclude that

(2.19)
$$\sup_{(0, r_0)} F(r) m(r) < \frac{7}{3} \sup_{(r_0, 4r_0)} F(r) m(r).$$

By definition of F and H, we have

(2.20)
$$F(r) = \left(\frac{a}{r}\right)^n \exp\left(-\int_r^a h_0(r)dr\right).$$

Noting that $m(r) \sim \omega_n r^n$ as $r \to 0$, we obtain from (2.20)

(2.21)
$$\lim_{r \to 0} F(r)m(r) = \omega_n a^n \exp\left(-\int_0^a h_0(r)dr\right) = \omega.$$

Hence, by (2.19) and (2.21),

(2.22)
$$\omega < \frac{7}{3} \sup_{(0,r_0)} F(r)m(r).$$

On the other hand, F(r) is decreasing and $m(r) \leq V(\Omega)$, which implies

(2.23)
$$\sup_{(r_0, 4r_0)} F(r)m(r) \leq F(r_0)V(\Omega)$$

Combining the above two lines, we obtain

(2.24)
$$\omega < \frac{7}{3}F(r_0)V(\Omega)$$

However, by the choice of r_0 ,

(2.25)
$$F(r_0) = \exp(-H(r_0)) = \frac{3}{7}V(\Omega)^{-1}\omega,$$

whence $\frac{7}{3}V(\Omega)F(r_0) = \omega$, contradicting (2.24).

Third step. In the previous step we proved that there exists $r \in (0, r_0)$ such that

(2.26)
$$A(\partial \Omega \cap B_r) \ge \frac{1}{r_0} \left(\frac{F(4r)}{F(r)}\right) V(\Omega \cap B_{4r}).$$

Since $h(r) \leq \frac{n}{r}$ it follows that

(2.27)
$$\frac{F(4r)}{F(r)} = \exp\left(-\int_{r}^{4r} h(r)dr\right) \ge 4^{-n}$$

Then by (2.26) and (2.27) we obtain

(2.28)
$$A(\partial \Omega \cap B_r) \ge \frac{1}{4^n r_0} V(\Omega \cap B_{4r})$$

Next we will use the following lemma, proved in [5] (see also [3] and [8]).

Lemma 2.2. Let (M, d) be a metric space with countable base. Suppose that any point x from a set $\Omega \subset M$ is assigned a metric ball $B_{r_x}(x)$ of radius $r_x \in (0, r_0)$. Then there exists an (at most countable) set $S \subset \Omega$ such that all balls $B_{r_x}(x)$, $x \in S$, are disjoint, whereas the union of the balls $B_{4r_x}(x)$, $x \in S$, covers all the set Ω .

4448

Let $S = \{x_i\}$ be the countable set given by Lemma 2.2, and set $r_i = r_{x_i}$. We have by (2.26):

(2.29)
$$A(\partial\Omega) \ge \sum_{i} A(\partial\Omega \cap B_{r_{i}})$$
$$\ge \sum_{i} \frac{1}{r_{0}} \frac{1}{4^{n}} V(\Omega \cap B_{4r_{i}})$$
$$\ge \frac{1}{r_{0}} \frac{1}{4^{n}} V(\Omega).$$

To conclude the proof of the theorem, we need to prove that

$$(2.30) r_0 \le KV(\Omega)^{\frac{1}{n}}$$

where $K = \left(\frac{7}{3}\right)^{\frac{1}{n}} \omega_n^{-\frac{1}{n}} \exp\left(\frac{J}{n}\right)$. Indeed we have by definition of r_0 (equation (2.15)),

(2.31)
$$\ln\left(\frac{7}{3}V(\Omega)\,\omega^{-1}\right) = H(r_0) = n\,\ln\frac{r_0}{a} - \int_a^{r_0}h_0(r)dr$$

Therefore,

(2.32)
$$r_0 \leq a \left(\frac{7}{3} V(\Omega) \omega^{-1}\right)^{\frac{1}{n}} \exp\left(\frac{1}{n} \int_a^{r_0} h_0(r) dr\right).$$

Substituting ω , we obtain

(2.33)
$$r_0 \leq \left(\frac{7}{3}\right)^{\frac{1}{n}} \omega_n^{-\frac{1}{n}} \exp\left(\frac{J}{n}\right) V(\Omega)^{\frac{1}{n}},$$

which completes the proof.

3. Examples

Example 3.1 (Hadamard-Cartan manifolds). A manifold M is called a Hadamard-Cartan (H-C) manifold, if and only if M is a geodesic complete manifold, simply connected, noncompact and with nonpositive sectional curvature.

Any H-C manifold (including \mathbb{R}^n and \mathbb{H}^n_{κ}) admits as a Cheeger function $h(r) = \frac{n}{r}$. We prove this as follows: let M be an H-C manifold. Grigory'an [6] and García León [5] report that if M is an H-C manifold and ρ_p denotes a C^2 distance function from the point $p \in M$ such that $|\nabla \rho_p| \leq 1$, then its Laplacian satisfies

$$(3.1) \qquad \qquad \bigtriangleup \rho_p \ge \frac{n-1}{\rho_p}$$

Let r_p be the geodesic distance from the point $p \in M$. It is well known that $|\nabla r_p| = 1$; hence by (3.1),

Let $r \in (0, r_{max})$ and $\Omega \subset B_r(p)$ be an open set with smooth boundary and compact closure. Hence by (3.2) we obtain

(3.3)
$$\int_{\Omega} \triangle r_p^2 dV \ge 2 \, n \, V(\Omega) \, .$$

On the other hand, by the Green's formula,

(3.4)
$$2 r A (\partial \Omega) \ge \int_{\Omega} \triangle r_p^2 dV;$$

thus from equations (3.3) and (3.4) we obtain

(3.5)
$$\overline{h}(B_r(p)) \ge \frac{n}{r}.$$

Now let $r_{max} = \infty$ and $h_0(r) = 0$, $\forall r > 0$. Applying Theorem 1.1, we conclude that if M is an H-C manifold, then the inequality (1.5) is satisfied for all open sets Ω with smooth boundary and compact closure.

Example 3.2. If the curvature of M is allowed to be positive, one should expect a Cheeger function to be smaller than $\frac{n}{r}$. Indeed, \mathbb{S}^2 has a Cheeger function $h(r) = \cot\left(\frac{r}{2}\right)$, $0 < r < \pi$, which is smaller than $\frac{2}{r}$, but the function $h_0 = \frac{2}{r} - \cot\left(\frac{r}{2}\right)$ is bounded and hence satisfies our condition (1.4). A similar statement is true for \mathbb{S}^n .

Example 3.3 (Surfaces with bounded mean curvature). Let M be a surface in \mathbb{R}^n , let $p, q \in M$ and let d(p, q) be the extrinsic distance. We know that if ρ_p denotes the extrinsic distance function, then $\rho_p \leq r_p$, where r_p denotes the geodesic distance function from the point $p \in M$. Moreover it implies that $|\nabla \rho_p| \leq 1, \forall p \in M$.

If we denote by H the mean curvature vector and we assume that

$$(3.6) sup |H| \le K,$$

where the sup runs on all points of M, $0 < K < \infty$ is a constant and $r_{max} > 0$ is an arbitrary and fixed number. Osserman [10] and Grigor'yan [6] proved that: If ρ_p is the extrinsic distance, shifting x_1, \ldots, x_N coordinates in \mathbb{R}^N and taking p as the origin, then

$$(3.7)$$

$$\triangle \rho_p^2 = 2 \left(\sum_{i=1}^N x_i H_i + \sum_{i=1}^N |\nabla x_i^2| \right)$$

$$= 2 \left(\sum_{i=1}^N x_i H_i + n \right),$$

where H_i means coordinates of the mean curvature vector, and by computation we obtain that it is true that $\sum_{i=1}^{N} |\nabla x_i^2| = n$. By Schwarz inequality it is obtained that

(3.8)
$$\sum_{i=1}^{N} x_i H_i \leq \rho_p |H|,$$

whence

We already know that $|H| \leq K$, where K > 0 is constant. By (3.9), we obtain (3.10) $riangle \rho_p^2 \geq 2 (n - K \rho_p).$

4450

Let us define $\varphi(r)$ by

$$\varphi(r) = n - Kr, \quad 0 < r < r_{max},$$

where we take

$$r_{max} = \frac{n}{K} > 0.$$

We will construct a continuous function $h_0: (0, r_{max}) \longrightarrow \mathbb{R}$ such that

- $h_0(r) \ge 0, \forall r \in (0, r_{max}), \text{ and }$
- $\int_0^{r_{max}} h_0(r) dr \leq J$, for all $p \in M$, where $0 < J < \infty$ is a constant.

Note that the function $\varphi(r)$ is in fact a decreasing and continuous function. Let $r \in (0, r_{max}), p \in M$ and let $\Omega \subset B_r(P)$ be an open set with smooth boundary and compact closure. Hence integrating (3.10) on Ω , and by the fact that $\varphi(r)$ is a decreasing function,

(3.11)
$$\int_{\Omega} \bigtriangleup \rho_p^2 dV \ge 2 \int_{\Omega} \varphi(\rho_p) dV \\ \ge 2\varphi(r)V(\Omega) \,.$$

On the other hand, by the Green's formula,

(3.12)
$$2 r A (\partial \Omega) \ge \int_{\Omega} \bigtriangleup \rho_p^2 dV$$

Hence by (3.11) and (3.12), for all open sets with smooth boundary and compact closure, it is satisfied that

(3.13)
$$\frac{A(\partial\Omega)}{V(\Omega)} \ge \frac{\varphi(r)}{r}.$$

We conclude by definition of Cheeger's constant on the ball that

(3.14)
$$\overline{h}(B_r(p)) \ge \frac{\varphi(r)}{r} = \frac{n}{r} - K$$

Let $h_0: (0, r_{max}) \longrightarrow \mathbb{R}$ be the constant function $h_0(r) = K \ge 0$. Thus estimating its integral on $(0, r_{max})$,

(3.15)
$$\int_0^{r_{max}} h_0(r) dr = K r_{max} = n =: J < \infty.$$

Now by Theorem 1.1, if $V(\Omega) < v_{max}$, then

- 00

(3.16)
$$A(\partial \Omega) \ge C V(\Omega)^{1-\frac{1}{n}},$$

where

(3.17)
$$C = 4^{-n} \left(\frac{3}{7}\right)^{\frac{1}{n}} e^{-1},$$

$$v_{max} = \frac{3}{7} \left(\frac{n}{e}\right)^n K^{-n}.$$

Remark 3.4. On minimal manifolds we already know that |H| = 0, and in this case we obtain that $r_{max} = v_{max} = \infty$. Therefore if M is a minimal manifold, then M satisfies the isoperimetric property.

Acknowledgement

I am deeply grateful to Professor Alexander Grigor'yan for valuable comments and useful discussions.

JOEL GARCÍA LEÓN

References

- Ballman, W., Gromov, M., and Schroeder, V. Manifolds of Nonpositive Curvature. Progress in Mathematics, Vol. 61, Birkhäuser Boston, 1985. MR0823981 (87h:53050)
- Chavel, I. Isoperimetric Inequalities: Differential Geometric and Analytic Perspectives. Cambridge Tracts in Mathematics, 145, Cambridge University Press, 2001. MR1849187 (2002h:58040)
- [3] Chung, F.R.K., Grigor'yan, A.A., Yau, S.-T. Higher eigenvalues and isoperimetric inequalities on Riemannian manifolds and graphs. Comm. Anal. Geom. 8 (2000), no. 5, 969-1026. MR1846124 (2002g:58038)
- [4] Faber, C. Beweiss, das unter allen homogenen Membrane von gleicher Spannung die kreisförmige die tiefsten Grundton gibt. Sitzungsber.-Bayer. Akad. Wiss., Math.-Phys. Munich (1923), 169-172.
- [5] García León, J. Cheeger Constant and Isoperimetric Inequalities on Riemannian Manifolds, Ph.D. thesis, Imperial College, London, 2005.
- [6] Grigor'yan, A.A. Estimates of Heat Kernel on Riemann Manifolds. London Mathematical Society, Lecture Note Series, 273, Cambridge University Press, 1999, pp. 140-225. MR1736868 (2001b:58040)
- [7] Krahn, E. Über eine von Rayleigh formulierte Minmaleigenschaft des Kreises. Math. Ann. 94 (1925), 97-100. MR1512244
- [8] Maz'ja, V.G. Sobolev Spaces. Springer-Verlag, 1985. MR0817985 (87g:46056)
- Michael, J.H., Simon, L.M. Sobolev and mean-value inequalities on generalized submanifolds of ℝⁿ. Comm. Pure and Appl. Math. 26 (1973), 361-379. MR0344978 (49:9717)
- [10] Osserman, R. Minimal varieties, Bull. Amer. Math. Soc. 75 (1969), no. 6, 1092-1120. MR0276875 (43:2615)
- [11] Pólya, G., Szegö, G. Isoperimetric Inequalities in Mathematical Physics. Annals of Math. Studies, 27, Princeton University Press, 1951. MR0043486 (13:270d)
- [12] Rayleigh, J.W.S. The Theory of Sound. Macmillan, London, 1877. (Reprinted: Dover, New York, 1945). MR0016009 (7:500e)

DEPARTMENT OF MATHEMATICS, IMPERIAL COLLEGE, LONDON, SW7 2BZ, UNITED KINGDOM Current address: Departamento de Matemáticas, Facultad de Ciencias, UNAM, México, D. F., México

E-mail address: jgarcia@servidor.unam.mx