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LENZ-BARLOTTI I.4 PERSPECTIVITY GROUPS ARE ABELIAN

ROBERT A. LIEBLER AND ELIZABETH SCOTT-JANDA

(Communicated by Jonathan I. Hall)

Abstract. We extend a 1972 result of Kantor and Pankin and give a new
elementary proof of the assertion in the title for projective planes of arbitrary
order. The main tool appears in the very first book on group theory by Jordan
in 1870.

The Lenz-Barlotti classification of projective planes is based on the possible
configurations of point-line pairs for which the Desargues theorem holds. The
Desargues theorem holds for such a pair (p, l) if and only if the plane admits a full
group of perspectivities with center p and axis l. By definition, such a perspectivity
group fixes all points on l, all lines on p and is maximally transitive consistent
with these conditions. The Lenz-Barlotti figure of a projective plane Π is the set
of point-line pairs for which Π is (p, l)-transitive and determines the Lenz-Barlotti
class of Π. The plane Π is of class I.4 (respectively I.3) if its Lenz-Barlotti figure
consists of the three non-incident point-line pairs of a triangle (respectively two of
these pairs). These classes are two of the five for which existence questions remain
open [1].1 The purpose of this paper is to give a new elementary proof of:

Theorem 1. Let Π be a projective plane of Lenz-Barlotti type I.4. Then its three
transitive perspectivity groups are isomorphic and abelian.

Kantor and Pankin [6] prove this when Π is finite, using deep results of Suzuki
regarding finite groups with subgroups that partition the group’s non-identity ele-
ments.

For the group G, the right and left regular representations are homomorphisms
from G to Sym(G) (the group of permutations of elements of G) defined by: hλ(g) =
g−1h; hρ(g) = hg, g, h ∈ G. Our main tool is the elementary interplay between λ(G)
and ρ(G) [2, p. 86]:

Theorem 2 (Jordan [4, p. 60]). If σ ∈ Sym(G) commutes with ρ(g) for all g ∈ G,
then σ = λ(h) for some h ∈ G. This holds symmetrically with λ and ρ reversed.

Use the permutation group notation of Wielandt [8]. In particular, suppose the
group G acts on the set Ω, so Ω is a G-space. For ω ∈ Ω, Gω := {g ∈ G : ωg = ω}.

Suppose G acts transitively on Ω. Then the map Ω → Gω\G := {Gωg : g ∈ G}
given by ωg �→ (Gω)g is a G-space isomorphism, and the set Gω\G of right Gω
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cosets in G is an internal realization of Ω. Since x−1Gωx = Gωx , different choices
for ω ∈ Ω lead to isomorphic G-spaces.

The group G is an automorphism group of the incidence structure (X,Y, I) if X
and Y are G-spaces and the induced action of G onX×Y leaves I invariant. A coset
geometry associated with the action of G on I is an isomorphic incidence structure
consisting entirely of internal transitive G-spaces and G-invariant relations between
them. When G acts transitively on both X and Y , an associated coset geometry
only requires starters x ∈ X, y ∈ Y . Then the G-orbit (x, y)G ⊂ X × Y is uniquely
associated with the G-orbit {(Gxg,Gyg)|g ∈ G} ⊂ Gx\G × Gy\G. We say such a
coset geometry is synchronized if (x, y) ∈ I.

By building coset geometries for multiple incidence structures that admit the
same abstract group, one can reveal subtle relationships between known combi-
natorial structures. When an incidence structure has a sufficiently rich automor-
phism group G, Theorem 2 allows the incidence relation to be expressed in terms
of λ : G → Sym(G) as we do in section 2. Under the assumptions of Theorem 1,
we show that another automorphism group Z is forced into Im(λ) and there re-
sults a certain equality (equation (3)). The proof of Theorem 1 is completed by a
combinatorial interpretation of this equality using ρ(G).

1. Geometric preliminaries

The projective plane Π = (P ∗, L∗, F ∗) has points P ∗, lines L∗ and incident
point-line pairs (flags) F ∗. Lowercase sans serif font is used for points and lines
exclusively. The line on points x and y is written xy, and the juxtaposition of two
line labels denotes their point of intersection.

Suppose that Π is of Lenz-Barlotti class at least I.3. This means there are three
non-collinear points x, y, z so that there is a full (x, yz)-perspectivity group X as
well as a full (y, xz)-perspectivity group Y . Set G := 〈X,Y 〉 and observe that there
are seven G-orbits on points which we label as indicated in the figure below.
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For example, PX consists of the points of yz not in {y, z}. PY and PZ are defined
analogously, and P consists of all points off the triangle x y z. We call elements of
P ordinary. Points of the triangle which are not vertices are called axial, and they
fall into the sets PX , PY , and PZ . Ordinary and axial lines are defined dually.

Lemma 1. The groups X and Y commute and are normal in G. Moreover, G is
the internal direct product of X and Y and acts faithfully and regularly on both P
and L.

Proof. The first claim is a consequence of the fact that X is the kernel of the action
of G on PX and it acts regularly (sharply transitively) and faithfully on PY , while
Y is the kernel of the action of G on PY and acts regularly while acting faithfully
on PX . Therefore, x ∈ X and y ∈ Y commute on PX ∪ PY .
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The ordinary point p is uniquely the intersection of the axial line px and py, so
the images of the axial points (px)(yz) ∈ PX and (py)(xz) ∈ PY uniquely determine
pxy. The transitivity of G on P therefore follows geometrically from its transitivity
on PX × PY .

The claim for L follows from the above argument applied to the dual plane. �

Lemma 2 (Hughes [3]). The groups X and Y are isomorphic. If these groups are
abelian, then the kernel of the action of G on PZ is (z, xy)-transitive and Π is of
type I.4.

Proof. The groups X and Y both act regularly on PZ and commute by Lemma 1.
Therefore, their action on PZ is just as in Theorem 2, and they act as the left and
right regular representations of the same group. This establishes the first claim.
Suppose X ∼= Y is abelian. Then Lemma 1 implies that G = 〈X,Y 〉 is also abelian.
Take w to be any point on xy. Then each axial point on xy has the form wx for
some x ∈ X, and so the stabilizer is Gwx = x−1Gwx = Gw, as G is abelian. This
implies that Gw is (z, xy)-transitive. �

There are three partitions πX , πY , and πZ of the ordinary points P with the
property that two points are in the same part of one of these partitions if and only if
they determine an axial line on x, y or z, respectively. There is also a dual partition of
lines, and together with the ordinary incidence structure (P,L, F := F ∗∩P×L) they
uniquely determine all incidences for the plane Π. Thus Π is uniquely determined
by the incidence relation between the ordinary points and ordinary lines [1].

2. The ordinary incidence relation coset geometry

In this section we show that the incidence relation between ordinary points and
ordinary lines appears in the internal coset geometry as the left regular represen-
tation of a subset ∆ of G. When Π is finite, the set ∆ is called a neo-difference set
[1].

We are exclusively concerned with collineations of Π that fix each of x, y, z.
Call this group A, and note that it normalizes G. In order to build an A-invariant
synchronized coset geometry from G for the ordinary incidence structure, we specify
a seed ordinary flag (p, l), and from it we obtain the ordinary point seed p ∈ P and
the ordinary line seed l ∈ L.

Now H := Gpz acts transitively on the ordinary points of pz. If it were to act
trivially on points of xy as well, then the kernel of the action of G on PZ would be
(z, xy)-transitive, and Π would be of type (at least) I.4 as in Lemma 2. Therefore,
we assume without loss of generality that there is an axial point w on xy such that
wh 
= w for some h ∈ H (see Figure 1 in the next section) and take l := pw as the
line of the seed flag.

Having specified a G-coset geometry for the incidence relation between ordinary
points and lines, we are now in a position to express this incidence relation in terms
of G alone. For C,D ∈ {P,L} and S ⊆ C ×D, define

RS := {(g, h) ∈ G×G : ((seed from C)
g
, (seed from D)

h
) ∈ S} ⊆ G×G.

Extend this notation to permutations π ∈ Sym(G) by defining Rπ := {(g, gπ) : g ∈
G}. In particular, if t ∈ G, then

Rρ(t) = {(g, gt) : g ∈ G} and Rλ(t) = {(g, t−1g) : g ∈ G}.
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For a ∈ A, the associated ordinary point permutation, a|P , and the associated
ordinary line permutation, a|L, correspond to the following relations on G:

Ra|P = {(g, h) : (pg)a = ph} and Ra|L = {(g, h) : (lg)a = lh}.

By the choice of l incident with p and the fact that G is a collineation group of Π,
these two relations on G coincide and equal {(g, h) ∈ G×G : ga = h} = Rρ(a).

Suppose a, b ∈ G and f = (pa, lb) ∈ P ×L is an ordinary flag. Since G acts regu-
larly on P and on L, there is a unique flag in f G ⊂ F with point p. Consequently,
RfG is the table of values of the bijective function ax ↔ bx: G → G. This function

is λ(ab−1) because

RfG = {(ax, bx) : x ∈ G} = {(y, (ab−1)−1y) : y = ax ∈ G} = Rλ(ab−1).

Now F is a disjoint union of G-orbits, each of which contains a unique flag having
line l, so

RF =
⋃
d∈∆

Rλ(d), where ∆ = {d ∈ G : (pd, l) ∈ F}.

In other words, for h ∈ G, the set of ordinary points incident with lh is {pdh : d ∈
∆}, or simply that ∆h is the set of labels for points incident with lh.

Lemma 3. Suppose a ∈ A. Then

(1) Ra ◦RF = Ra|P ◦RF = RF ◦Ra|L = RF ◦Ra,

where R1 ◦ R2 := {(g, k) ∈ G ×G : ∃h ∈ G so that (g, h) ∈ R1, (h, k) ∈ R2} is the
composition of the relations R1 and R2.

Proof. The first and last equalities follow from the choice of l incident with p as
already noted. Take (g, h) ∈ Ra|P ◦ RF . By definition of ◦, ((pg)a|P , lh) ∈ F . But

a is a collineation, so there is s ∈ G such that (pg, ls) ∈ F and lh = (ls)a|L. Again,
by definition of ◦, we have that (g, h) ∈ RF ◦Ra|L. �

3. Planes of type I.4

Finally, suppose Π is of type I.4 and that the (z, xy)-transitive perspectivity
group Z is present. By Lemma 1, Lemma 2 and the symmetry of the Lenz-Barlotti
figure, Z acts on the ordinary points P as a permutation group that commutes
with G, and G acts regularly on P . Also by Lemma 2 and by the symmetry of the
Lenz-Barlotti figure, Z is isomorphic to both X and Y .

By yet another application of Theorem 2 and the synchronized choices of p and
l, there is a monomorphism φ : Z → G such that the point permutation zP and
line permutation zL induced by z ∈ Z are given by
(2)

pg → pφ(z)
−1g and lg → lφ(z)

−1g or, equivalently, RzP = Rλ(φ(z)) = RzL for z ∈ Z.

The action of G on the z-axial lines is realized in the internal coset-geometry
by right multiplication on Gpz\G. By definition, Z acts on P leaving each of the
z-axial lines invariant and so λ ◦φ(Z) acts trivially on Gpz\G. This is only possible
because λ involves left multiplication in G, and it implies that φ(Z) = Gpz.

Take z ∈ Z and use Lemma 3, with a = z, to rewrite equation (1) by applying
equation (2) to obtain: Rλ(φ(z)) ◦ RF = RF ◦ Rλ(φ(z)), for all z ∈ Z. This is
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equivalent to an equality of sets of permutations in Sym(G):

⋃
d∈∆

λ(φ(z))λ(d) = λ(φ(z))

[⋃
d∈∆

λ(d)

]
=

[⋃
d∈∆

λ(d)

]
λ(φ(z)) =

⋃
d∈∆

λ(d)λ(φ(z)).

But λ is a group isomorphism and we have just shown that φ(Z) = Gpz, so

(3) h∆ = ∆h for all h ∈ H = Gpz.

The (z, xy)-perspectivity group, Z, fixes w, so the Z-orbit of l contains no ordinary
points on zw. Therefore, no ordinary point on zw is labeled by an element of⋃

h∈H h∆.

By choice of w, wh 
= w for some h ∈ H. Therefore, the ordinary points labeled
by

⋃
h∈H ∆h include all ordinary points on lh. In particular, lhzw is labeled by an

element of G in
⋃

h∈H ∆h (see Figure 1). Now, by the choice of l (at the end of
the second paragraph of the preceding section), this contradicts equation (3) and
completes the proof. �
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