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ARITHMETIC RIGIDITY

WAYNE RASKIND AND MATEI STROILA

(Communicated by Ted Chinburg)

Abstract. We prove an arithmetic analogue of rigidity results of Suslin and
Beilinson, and then give some applications to countability of certain motivic
cohomology groups of varieties over the complex numbers, assuming a finite
generation of these groups for varieties over finitely generated fields.

Introduction

Let K be a field and consider the Quillen K-group, K3(K). Denote by KM
3 (K)

the Milnor K-group of K that is generated by symbols. The natural map

KM
3 (K) → K3(K)

is now known to be injective (it follows from results in [Su2] that the kernel is
killed by 2). Let K3(K)ind be the quotient of K3(K) by KM

3 (K). This is called
the indecomposable K3. There is a regulator map, a real version of which was first
considered by Borel [Bo] for number fields:

Kind
3 (C) → C/(2π i)2Z.

Beilinson showed that the image of this regulator is countable by a rigidity argument
(see [Be], 2.3.4 and [M], §3, especially Corollary 3.6), which is what led to

Conjecture 1 (see e.g. [MS, Conjecture 11.5]). We have

Kind
3 (Q) = Kind

3 (C),

so that Kind
3 (C) is a countable abelian group. Here Q is the algebraic closure of Q

in C.

Unfortunately, it is not known whether the regulator map is injective.
There is an analogous situation for higher motivic cohomology. Let X be a

smooth projective variety over C. Consider, for example, the motivic cohomology
group H3(X,Z(2)), or, if you prefer, H1(X,K2), where K2 is the Zariski sheaf
associated to the presheaf of Quillen K2-groups. Using the identifications

Pic(X) ∼= H2(X,Z(1)), C∗ ∼= H1(X,Z(1))

and the product structure on motivic cohomology, one gets a product map:

Pic(X)⊗ C∗ → H3(X,Z(2)).
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Let H3(X,Z(2))ind be the quotient of H3(X,Z(2)) by the image of the product
map. Let Hi(X,ZD(j)) denote Deligne cohomology (see e.g. [EV]), and denote
similarly H3(X,ZD(2))

ind as the quotient of H3(X,ZD(2)) by the image of the
product map:

H1(X,ZD(1))⊗H2(X,ZD(1)) → H3(X,ZD(2)).

Then Beilinson’s rigidity result (loc. cit.) also applies to the image of the regulator
(cycle class) map:

H3(X,Z(2))ind → H3(X,ZD(2))
ind

and shows that this image is countable, which leads to:

Conjecture 2. For X smooth and projective over any field K, the group
H3(X,Z(2))ind is countable.

Briefly, such rigidity arguments are as follows: if Y is a model of X over an
algebraic closure K of some finitely generated field, then one shows using the proper
base change theorem that the image of the regulator map all comes from the image
of H3(Y,Z(2))ind and is therefore countable, since K is countable. In this note, we
give an arithmetic analogue of such rigidity results, hence the name, “arithmetic
rigidity”. As a consequence, we show that the images of suitable �-adic regulator
maps are countable for indecomposable motivic cohomology groups on varieties
over universal domains such as C, and we show in some cases that if such motivic
cohomology groups are finitely generated over any finitely generated ring over Z,
as is expected, then they are, in fact, countable over C. At least in the case of
indecomposable K3, we strongly suspect that such results are known to some of
the experts, but we could not find a reference. This follows easily from results of
Suslin [Su2], Merkur’ev-Suslin [MS] and Levine [Le]. In fact, the rigidity lemma
below is a fairly simple but very useful generalization of a result of Suslin ([Su2],
Corollary 2.7).

This paper comprises part of the second author’s Ph.D. thesis at the University of
Southern California. The first author would like to thank B. Kahn, S. Lichtenbaum
and A. Suslin for helpful conversations.

1. Notation and preliminaries

Let K be a field that is finitely generated over its prime subfield and let L be a
finitely generated, separable extension of K in which K is algebraically closed. We
shall call such an L a finitely generated regular extension of K. We denote by K a
separable closure of K and by L a separable closure of L.

Let � be a prime number different from the characteristic of K. We denote
by Z/�nZ(r) the group of �n-th roots of unity, twisted r times à la Tate, and
Z�(r) = lim

←−
n

Z/�nZ(r). If M is a finitely generated Z� module with continuous

action of Gal(K/K), we set M(r) := M ⊗Z�
Z�(r).

Let X be a smooth projective variety over K. We denote by X the variety
X ×K K. Consider the motivic cohomology groups Hi(X,Z(j)). These may be
taken in the sense of Bloch’s higher Chow groups [Bl] or Voevodsky [V]. Then
there are integral and rational cycle class maps:

Hi(X,Z(j)) → Hi(X,Z�(j)),

Hi(X,Q(j)) → Hi(X,Q�(j)).
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Here the groups on the right are the continuous étale cohomology groups in the
sense of Jannsen [J]. These are the right derived functors of the functor

(Fn) �→ lim
←−
n

H0(X,Fn),

where (Fn) is an inverse system of sheaves of Z/�nZ-modules on X.

Conjecture 3. The rational cycle class map is injective for X as above.

There is a Hochschild-Serre spectral sequence:

Er,s
2 = Hr(K,Hs(X,Z�(j))) =⇒ Hr+s(X,Z�(j)).

We refer to the filtration on Hi(X,Z(j)) that one gets by pulling back the fil-
tration given by the spectral sequence as the Hochschild-Serre filtration.

From the spectral sequence, we get a map

Hi(X,Z(j))0 → H1(K,Hi−1(X,Z�(j))),

where
Hi(X,Z(j))0 = ker[Hi(X,Z(j)) → Hi(X,Z�(j))].

If i �= 2j, this last group is of finite index in Hi(X,Z(j)), as follows easily from a
specialization argument and the Weil conjectures as proved by Deligne (see [CTR1],
Theorem 1 for this argument). Thus

Hi(X,Q(j))0 = Hi(X,Q(j))

if i �= 2j.

Lemma 1.1 (Rigidity Lemma). With notation as above, let M be a finitely gen-
erated torsion free Z�-module with continuous action of G = Gal(K/K). Make M
into a G = Gal(L/L)-module by making the kernel of the natural map G → G act
trivially. Assume:

(i) for all open subgroups H of finite index in G, we have

M(−1)H = 0

and
(ii) for any abelian variety A over K, we have that

[T�(A)⊗Z�
M(−1)]G = 0,

where T�(A) is the �-adic Tate module,

lim
←−
n

A[�n].

Then the natural map
H1(K,M) → H1(L,M)

is an isomorphism.

Remark 1.2. (i) Assumption (ii) of Lemma 1.1 is satisfied if M is such that
V = M ⊗Z�

Q� is a Galois representation of pure weight different from −1.
To see this, let A be an abelian variety over K and consider

T�(A)⊗Z�
M(−1).

By the Riemann hypothesis for abelian varieties as proved by Weil and a
specialization argument, T�(A) is of pure weight −1. Thus, if M is of pure
weight different from −1, then M(−1) is of pure weight different from 1,
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and the tensor product above is of weight different from 0, and hence has
no G-invariants.

(ii) We shall need an analogous version of rigidity, where one takes an algebra
A that is finitely generated over the base field K. The proof is similar but
easier than the case of a field L that is finitely generated over K, and we
omit it here.

Corollary 1. Let Ω be an uncountable algebraically closed field containing K. Then
if M satisfying the hypotheses of the lemma is a torsion free quotient of the étale
cohomology group Hi−1(X,Z�(j)) with i− 1− 2j �= −1,−2, the image of the map

(∗) Hi(XΩ,Z(j))
0 → lim

−→
[K′:K]<∞

lim
−→

Lf.g./K′
H1(L,M)

is countable. Here the outside limit is taken over all finite separable extensions of
K and the inside limit is taken over all finitely generated regular extensions of K ′.

Proof of the corollary assuming the Rigidity Lemma. Since we are dealing with �-
adic cohomology for � �= char(K), we reduce to the case where Ω is separably closed.
We will use Remark 1.2 (ii) above. Let K ′ be a finite separable extension of K and
L a finitely generated regular field extension of K ′. Any element of Hi(XL,Z(j))

0

comes from an element of Hi(XA,Z(j))
0, for some finitely generated K ′-algebra,

A. Localizing, if necessary, we may assume that A is regular, and replacing K ′

by a finite separable extension, if necessary, we may assume that the natural map
K ′ → A has a section. Consider the following obvious commutative diagram:

Hi(XK′ ,Z(j))0 → H1(K ′,M)
↓ ↓

Hi(XA,Z(j))
0 → H1(A,M).

The vertical maps have splittings given by the section A → K ′. From the dia-
gram and the rigidity lemma, we see that the image of Hi(XA,Z(j))

0 in H1(A,M)
comes from the image of Hi(XK′ ,Z(j))0 in H1(K ′,M). Note that this image is
countable, since K ′ is finitely generated over the prime subfield. Taking the limit
over all such finite extensions K ′ of K and all regular finitely generated field exten-
sions L/K ′, we see that the image of (∗) is a countable union of countable groups,
so is countable, as claimed. �

Example 1.3. (i) Let L be a field that is finitely generated over Q and con-
sider the motivic cohomology groupH1(L,Z(2)). There is a regulator (cycle
class) map

H1(L,Z(2)) → H1(L,Z�(2)).

It is easy to see that the Galois module Z�(2) satisfies the hypotheses
of the rigidity lemma (in this case, the rigidity is due to Suslin (see [Su2],
Corollary 2.7)). If K is the algebraic closure of Q in L, then we get an
isomorphism:

H1(K,M) → H1(L,M).

(ii) Let X be a smooth projective variety over K and let M = T�(Br(X))(1),
the �-Tate-module of the Brauer group of X, twisted by one. Suppose that
T�(Br(X))H = 0 for all open subgroups H of G = Gal(K/K). Then as-
sumption (i) of the lemma is satisfied. This is a consequence of the Tate
conjecture for divisors for XL over every finite extension L of K together
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with semi-simplicity of the action of G (if K is a finite field or a num-
ber field, one can avoid assuming semi-simplicity). By Remark 1.2 (ii)
above, assumption (ii) of the Rigidity Lemma is satisfied. Thus the Rigid-
ity Lemma applies to such an M . Now it is not hard to see that there is a
map

H3(XL,Z(2))
ind → H1(L,M),

so the corollary above applies. This applies to e.g. abelian varieties, K3
surfaces, etc.

Proof of the Rigidity Lemma. We have the inflation-restriction sequence,

0 → H1(K,M) → H1(L,M) → H1(K L,M)G → · · · .

Using the hypotheses, we show that the group on the right is zero. Our argument
is actually very similar to that of Suslin ([Su2], Corollary 2.7). Let Y be a normal,
projective, geometrically connected model of L over K, and consider the exact
sequence,

0 → K(Y )∗/K
∗ → Div(Y ) → Pic(Y ) → 0.

Let Mn = M/�nM and recall the identification from Kummer theory:

H1(K L,Z/�n(1)) = (K L)∗/(K L)∗ �n .

Tensoring the sequence with Mn(−1) and using the fact that Div(Y ) is torsion free,
we get the sequence

0 → Tor1(Pic(Y ),Mn(−1)) → (K L)∗ ⊗Mn(−1)

fn→ Div(Y )⊗Mn(−1) → Pic(Y )⊗Mn(−1).

Taking projective limits and G-invariants, we get the exact sequence

0 → [lim
←−
n

Tor1(Pic(Y ),Mn(−1))]G → [lim
←−
n

(K L)∗ ⊗Mn(−1)]G(∗)

→ [lim
←−
n

Div(Y )⊗Mn(−1)]G.

Note that all of the terms of the projective systems satisfy the Mittag-Leffler
property, but since the groups in the system on the left are finite, we really don’t
need this to get the exactness of (∗).

We claim that the right and left terms of (∗) are zero using, respectively, hypothe-
ses (i) and (ii). We deal with the right term first. For each irreducible codimension
1 subvariety Z of X, let kZ be the algebraic closure of K in the function field
of Z and let HZ be the absolute Galois group of KZ . Let WZ be an irreducible
subvariety of Y lying over Z. Then, by Shapiro’s lemma and hypothesis (i), we
have

lim
←−
n

(Div(Y )⊗Mn(−1))G ⊆
∏

Z

(
⊕

W �→Z

M(−1)W )G =
∏

Z

⊕

WZ

M(−1)HZ = 0.

As for the left term of the exact sequence (∗), an easy computation shows that

(lim
←−
n

Tor1(Pic(Y ),Mn(−1)))G ∼= (T�(Pic(Y ))⊗M(−1))G = 0,

by assumption (ii). This completes the proof of the Rigidity Lemma. �
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2. Countability

Let K be a field that is finitely generated over Q. There is a finitely generated
Q-algebra A that is regular and has fraction field K. Let Y = Spec(A). Then there
is an exact sequence of motivic cohomology groups,

· · ·H1(Y,Z(2)) → H1(K,Z(2)) → lim
−→
Z

H2
Z(Y,Z(2)) → · · · ,

where the limit is taken over all codimension one subschemes Z of Y . Standard
conjectures on the finite generation of motivic cohomology groups of schemes finitely
generated over Z would imply that the left group is finitely generated. An easy
induction argument using purity and the vanishing of H0(W,Z(1)) for W smooth
shows that the right group is zero. Thus we expect that H1(K,Z(2)) is finitely
generated, although we have no idea how to prove this at present. Note that
H1(K,Z(2) ∼= Kind

3 (K).
Recall a theorem of Levine ([Le], Theorem 4.12) and of Merkur’ev-Suslin ([MS])

that says there is an isomorphism

lim
←−
n

K3(K)ind/�n → H1(K,Z�(2)).

Theorem 2.1. Assume that for every field K that is finitely generated over Q,
H1(K,Z(2)) is a finitely generated abelian group. Then the group H1(C,Z(2)) is
countable.

Proof. We have that H1(C,Z(2)) = lim
−→

[K:Q]<∞
lim
−→

Lf.g./K

H1(L,Z(2)), where the limit is

taken over all finite extensions K/Q and all finitely generated regular field exten-
sions L of K. From the theorem of Levine and Merkur’ev-Suslin just mentioned
and the assumption of finite generation of H1(L,Z(2)), we have that the Chern
class map

H1(L,Z(2)) → H1(L,Z�(2))

has kernel that is torsion prime to �. By the rigidity lemma and its corollary, the
image of the injective map

H1(C,Q(2)) → lim
−→

[K:Q]<∞
lim
−→

Lf.g./K

H1(K,Q�(2))

is countable, and hence the group on the left is countable. Finally, one knows
that the torsion of H1(C,Z(2)) is countable by Suslin’s rigidity theorem [Su1] (also
proved by Gabber and Gillet-Thomason [GT]). This completes the proof of the
theorem. �
Remark 2.2. The rigidity part of this result was proved by Suslin [Su2], who also
noticed the remark about finite generation implying countability. Since this last
part was not in the literature, we included it here.

Before stating the next result, we define H3(X,Q(2))ind for X smooth and pro-
jective over a field K. Consider the product map

[Pic(X)⊗Z Q]⊗Q [K∗ ⊗Z Q] → H3(X,Q(2))

(here we use the identifications Pic(X) = H2(X,Z(1)),K∗ = H1(X,Z(1))).
Let H3(X,Q(2))dec be the image of this map. Then we define H3(X,Q(2))ind

to be the quotient H3(X,Q(2))/H3(X,Q(2))dec. If C is a curve over K, we have
that H3(C,Q(2))ind = 0, as follows easily from the Gersten-Quillen complex which
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computes the cohomology of K2 (note that we have H3(C,Z(2)) = H1(C,K2)).
If K is algebraically closed, we can define H3(X,Z(2))ind in a similar way. To
define H3(X,Z(2))ind when K is not algebraically closed is not difficult but is a bit
tedious, as we have to take norms from finite extensions of K. However, this is not
necessary for what we want to prove here.

Theorem 2.3. Let X be a smooth projective, geometrically connected variety over
C. Assume that

(i) for any smooth proper model X of X over a ring A that is finitely field over
Z, the group H3(X ,Z(2)) is finitely generated (as is expected),

(ii) the Tate conjecture for divisors is true for any model Y of X over a field K
that is finitely generated over Q, and the absolute Galois group of K acts
semi-simply on H2(YK ,Q�(1)).

Then H3(X,Z(2))ind is countable.

Proof. The proof is very similar to the proof of Theorem 2.1, and we only sketch
it here. Let Y and K be as in the statement of the theorem. Let Y be a smooth
proper model of Y over a suitable ring A that is finitely generated over Z with
fraction field K. Then the injection (see e.g. [Su2], Corollary 4.4)

H3(Y,Z(2))/�n → H3
et(Y,Z/�

n(2))

and the assumption of finite generation of H3(Y ,Z(2)) give us an injection

H3(Y,Q(2))ind → H3(Y,Q�(2))
ind,

where the group on the right is the quotient of H3(Y,Q�(2)) by the image of the
product map

H1(Y,Q�(1))×H2(Y,Q�(1)) → H3(Y,Q�(2)).

Let Y = Y ×K K, let Br(Y ) be the Brauer group of Y , and let

V�Br(Y ) = (lim
←−
n

Br(Y )[�n])⊗Z�
Q�

be its �-adic Tate vector space. Note that for any algebraically closed field M
containing K, we have

V�Br(Y ) ∼= V�Br(YM ).

Consider the exact sequence

0 → NS(Y )⊗Q�(1) → H2(Y ,Q�(2)) → V�Br(Y )(1) → 0

that comes from taking cohomology of the Kummer exact sequence of sheaves on
Y and Tate-twisting by 1. Then for any field L that is finitely generated over K,
we have a map

H3(YL,Q(2))ind → H1(L, V�Br(Y )(1)).

The hypotheses ensure that the rigidity lemma applies to the Gal(K/K))-repre-
sentation V�Br(Y )(1) (see Example 1.3 (ii)), and so by Corollary 1, the image of
the map

H3(X,Q(2))ind = lim
−→

Lf.g./K

H3(YL,Q(2))ind → lim
−→

Lf.g./K

H1(L, V�Br(Y )(1))

is countable. We claim that the other graded quotients of H3(X,Q(2))ind for the
Hochschild-Serre filtration (see §1) do not give any additional contribution. To see
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this for F 2, take a generic curve C on Y , e.g. by taking the (complete) (d − 1)-
fold intersection of smooth hyperplane sections, where d = dim(Y ). Consider the
diagram

F 2H3(Y,Q(2)) → H2(K,H1(Y ,Q�(2)))
↓ ↓

F 2H3(C,Q(2)) → H2(K,H1(C,Q�(2))).

By the weak Lefschetz theorem and Poincaré complete reducibility (see [CTR2],
§4 for this argument), the right vertical arrow is injective. But H3(C,Q(2))ind = 0
by the remark preceding the statement of this theorem, and hence the top horizontal
arrow is zero after passing to the indecomposable quotients. This proves the claim
for F 2. As for F 3, an argument similar to that in ([R], Proposition 2.2) shows that
F 3 = F 3+j for any j ≥ 0. By hypothesis, the filtration is separated, and hence
F 3 = 0. Thus we have an injection

H3(Y,Q(2))ind → H1(K,V�(Br(Y )(1)).

Since the group on the left is countable and the image of these maps as Y ranges
over models of X over finitely generated fields is rigid, we see that H3(X,Q(2))ind is
countable. Now by ([CTR1], Theorem 2.1) the torsion of H3(X,Z(2)) is countable,
and this completes the proof of the theorem. �
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