
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 139, Number 1, January 2011, Pages 273–282
S 0002-9939(2010)10516-6
Article electronically published on July 12, 2010

FAR-FROM-EXPIRY BEHAVIOR

OF THE AMERICAN PUT OPTION

ON A DIVIDEND-PAYING ASSET

XINFU CHEN, HUIBIN CHENG, AND JOHN CHADAM

(Communicated by Walter Craig)

Abstract. We provide a rigorous proof of sharp estimates for the long time
behavior of the early exercise boundary and the price for an American put
option on a dividend-paying asset that follows a geometric Brownian motion.

1. Introduction

Recently Ahn et al. [1] announced a proof of the following long time asymptotic
behavior of the infinite horizon (Merton) problem for the American put option on

a zero dividend asset as the scaled time-to-expiry s := σ2

2 (T − t) → ∞:

b(s) = b∗ + o(1) e−(k+1)2s/4,(1.1)

‖p(·, s)− p∗(·)‖L∞(R) = O(1)

{
s−1/2e−ks if 0 < k < 1,

e−(k+1)2s/4 if k � 1,
(1.2)

where k = 2rσ−2 (r is the risk-free interest rate and σ is the volatility of the asset
that follows a geometric Brownian motion) and (b∗, p∗(·)) is the Merton solution
for the infinite horizon problem. In [2] we provided the outline of the proof of a
stronger result:

b(s) = b∗ + [m+ o(1)]s−3/2e−(k+1)2s/4 as s → ∞,

where m is a positive constant that can be easily determined numerically. In this
paper, we follow the steps outlined in [2] to provide a proof of our sharper result
in the more general setting of a dividend-paying asset (i.e., for all dividend rates
D � 0). We also provide generalizations of (1.2) for arbitrary D � 0. The precise
statements of these results are given in Theorems 1–3 in the next section. The proofs
capture the changes in the estimates arising from the variation in D. Moreover, our
proofs do not require the convexity of the free boundary in contrast with the results
in [1] where it plays a crucial role. This observation is especially significant since
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we have recently provided a rigorous proof [3] that the early exercise boundary is
not convex when 0 < D − r � 1.

Finally, we mention that the results obtained here are of practical as well as
mathematical interest. As demonstrated in [2], the far-from-expiry behavior can be
interpolated with the near-expiry behavior to produce simple analytic formulae that
approximate the early exercise boundary and price of the American put uniformly
for any time from expiry with amazing accuracy. On the mathematical side, an
open problem that has attracted increasing interest recently is the question of the
convexity of the boundary, especially for D > 0. Specifically it has been shown
rigorously that the boundary is convex when D = 0 (cf. references in [3]) and,
as mentioned earlier, not convex for 0 < D − r � 1 with the non-convex region
occurring close to expiry. Numerical evidence suggests that for all other cases the
boundary is convex. We anticipate that these precise far-from-expiry estimates will
be useful in proving that for all D ≥ 0 the boundary is convex sufficiently far from
expiry.

2. Main results

We consider a financial market consisting of a money account and a stock, whose
time t prices, Bt and St, are stochastic processes defined by the stochastic differ-
ential equations

dSt = μt St dt+ σ StdWt, dBt = rBt dt,

where σ and r are positive constants and {Wt} is the standard Brownian motion
(Wiener process). In the time interval [t, t + dt), the stock pays DStdt dividend
at time t + dt. An American put option with strike price E and expiry T is a
guaranteed right to sell a stock at price E at any time on or before expiry. It
follows from the Black-Scholes theory (cf. [3]; please see the references in [1, 2, 3]
for the standard finance terminology used in this note) that the no-arbitrage price
of the option at time t is P (St, t) and the optimal exercise time is τ∗ := sup{t �
T | Ss > B(s) ∀ s ∈ [t0, t)}, where t0 is the current time and (B,P ) is the classical
solution of the variational inequality⎧⎪⎨

⎪⎩
max{L∗P, (E − S)+ − P} = 0 in (0,∞)× (−∞, T ),

P (S, T ) = (E − S)+ := max{E − S, 0} on (0,∞)× {T},
B(t) := inf{S > 0 | P (S, t) > (E − S)+} on (−∞, T ],

where L∗P = ∂P
∂t +

σ2

2 S2 ∂2P
∂S2 +(r−D)S ∂P

∂S −rP. Using the dimensionless quantities,

x := ln(S/E), s := (T − t)σ2/2, p(x, s) := P (S, t)/E, b(s) := ln(B(t)/E),

k := 2rσ−2, � := 2Dσ−2, α := k − �− 1, β := k + α2/4,

p0(x) := max{1− ex, 0}, Lp := pxx + αpx − kp,

the variational problem for (B,P ) is transformed to{
max{Lp− ps, p0 − p} = 0 in R× (0,∞), p(·, 0) = p0;

b(s) := inf{x | p(x, s) > p0(x)} ∀ s > 0.
(2.1)
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We are interested in the behavior of b(s) and p(x, s) as s → ∞. By a comparison
argument, we have

p(·, s) ↗ p∗(·), b(s) ↘ b∗ as s ↗ ∞,

where (p∗, b∗) is the solution of the infinite horizon problem, given by

p∗(x) := max
{
1− ex,

e−λ(x−b∗)

1 + λ

}
, b∗ := ln

λ

1 + λ
, λ :=

α

2
+
√
β.

In this short paper, we prove the following:

Theorem 1. There exists a constant m > 0 such that for each s � 1,

b(s) = b∗ +
[
m+ O(1)s−

1
2

]
s−

3
2 e−βs, ḃ(s) = −

[
mβ + O(1)s−

1
2

]
s−

3
2 e−βs,

where O(1) is a generic function bounded uniformly in s ∈ [1,∞).

Theorem 2 (Decay Rates). There exist positive constants c and C such that for
each s � 1,

cρ(s) � ‖p(·, s)− p∗(·)‖L∞(R) � Cρ(s), cρ(s) � ‖ps(·, s)‖L∞(R) � Cρ(s),

where

ρ(s) =

⎧⎪⎨
⎪⎩

s−
3
2 e−βs if α > 0,

s−1 e−ks if α = 0,

s−
1
2 e−ks if α < 0.

Theorem 3 (Asymptotic Profiles). There exist constants c1 > 0 and c2 ∈ R

that depend only on k and � such that for every x ∈ R and s � 2,

ps(x, s)

ρ(s)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−ξ2
{
c1 + c2ξs

− 1
2 + O(1)(1 + ξ2)s−1

}
if α < 0,

z+e−[z+b(s)/
√
4s]2

{
c1 + O(1)

(
1 + z ln s

)
s−1/2

}
if α = 0,

[x− b(s)]+e−x2/(4s)−αx/2
{
c1 + O(1)(s−1/2 + |x|s−1 ln s)

}
if α > 0,

where ξ := (x + αs)/
√
4s, z := (x − b(s))/

√
4s, z+ := max{0, z}, and O(1) is a

function bounded uniformly in (x, s) ∈ R× [1,∞). Consequently, for some positive
constant c depending on k and �,

lim
s→∞

∥∥∥∥p∗ − p

ρ(s)
−Ψ

∥∥∥∥
L∞(R)

= 0; Ψ(x, s) :=

⎧⎨
⎩

c e−ξ2 if α < 0,

c z+e−z2

if α = 0,
c [x− b∗]+e−αx/2 if α > 0.

Proof of Theorem 1. In the case � = 0 (i.e. no dividend), we have already provided
an outline of the proof in [2]. Here we follow that outline and provide the full details
for the general case � � 0.

In [3] we showed that

b∈C∞((0,∞)), lim
s↘0

b(s)=b0 := min{0, ln(k/�)}, ḃ(s) < 0, �eb(s)−k < 0 ∀s>0.

Moreover, in §2 of [2] we showed by passing to the limit from the approximate
solution to (2.1) that p ∈ W 2,∞ and p(x, s) > p0(x) for x > b(s). Hence

Lp− ps =

{
Lp0 if x < b(s),

0 if x > b(s).
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Denoting by Γ the fundamental solution of ∂s − L,

Γ(x, s) := (4πs)−1/2e−(x+αs)2/(4s)−ks = (4πs)−1/2e−x2/(4s)−αx/2−βs,

and using Green’s Theorem, one obtains
(2.2)

p(x, s)=

∫ ∞

−∞
Γ(x−y, s)p0(y)dy+

∫ s

0

∫ ∞

b(s−t)

Γ(x−y, t)Lp0(y)dydt, ∀ (x, s)∈R×[0,∞).

By differentiating (2.2), we obtain

ps(x, s) =Γ(x, s)+

∫ 0

b0

[�ey−k]Γ(x− y, s)dy−
∫ s

0

ḃ(t)[�eb(t) − k]Γ(x−b(t), s− t) dt,

psx(x, s) = Γx(x, s) +

∫ 0

b0

[�ey − k]Γx(x− y, s)dy

−
∫ s

0

ḃ(t)[�eb(t) − k]Γx(x− b(t), s− t) dt.

Evaluating these at x = b(s) and noting that ps(b(s)±, s) = 0 and psx(b(s)±, s) =

(1/2± 1/2)ḃ(s)[�eb(s) − k], we obtain

0 = Γ(b(s), s) +

∫ 0

b0

[�ey − k]Γ(b(s)− y, s)dy(2.3)

−
∫ s

0

ḃ(t)[�eb(t) − k]Γ(b(s)− b(t), s− t) dt,

ḃ(s)[�eb(s) − k] = 2Γx(b(s), s) + 2

∫ 0

b0

[�ey − k]Γx(b(s)− y, s)dy(2.4)

−2

∫ t

0

ḃ(t)[�eb(t) − k]Γx(b(s)− b(t), s− t) dt.

Multiplying (2.3) by b(s)/s+ α and adding it to (2.4) yields the equation

ḃ(s)[�eb(s) − k] =
1

s

∫ 0

b0

[�ey − k] y Γ(b(s)− y, s)dy

(2.5)

−
∫ s

0

ḃ(t)[�eb(t) − k]
(b(s)

s
− b(s)− b(t)

s− t

)
Γ(b(s)− b(t), s− t) dt,

where we used Γx(x, s) = −(x+αs)/2sΓ(x, s). Dividing (2.3) and (2.5) by Γ(b(s), s)
and Γ(b(s), s)/s, respectively, we obtain the following integral identities that are
valid for all � ≥ 0:

1 +

∫ 0

b0

A(s, y)dy =

∫ s

0

B(s, t)dt ,(2.6)

ḃ(s)[�eb(s) − k]s

Γ(b(s), s)
=

∫ 0

b0

yA(s, y) dy +

∫ s

0

[t δ(s, t)− b(t)]B(s, t) dt,(2.7)
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where, for s > 0, y ∈ (b0, 0), t ∈ (0, s),

A(s, y) := [�ey − k]
Γ(b(s)− y, s)

Γ(b(s), s)
= A∞(y) eδ1(s,y),

B(s, t) := ḃ(t)[�eb(t) − k]
Γ(b(s)− b(t), s− t)

Γ(b(s), s)
= ζ(t)

(
1− t

s

)−1/2
eδ2(s,t),

A∞(y) := [�ey − k]eαy/2, ζ(t) := ḃ(t)[�eb(t) − k]eβt+αb(t)/2,

δ(s, t) :=
b(s)− b(t)

s− t
, δ1(s, y) :=

2b(s)y − y2

4s
, δ2(s, t) :=

b2(s)

4s
− [b(s)− b(t)]2

4(s− t)
.

Note that the terms
∫ 0

b0
Ady and

∫ 0

b0
yA dy do not appear in [2] since b0 = 0 when

� � k.
Observe that A > 0, B > 0, δ < 0. It then follows from (2.7) and (2.6) that for

every s � 1,

0 <
ḃ(s)[�eb(s) − k]s

Γ(b(s), s)
� |b(s)|

∫ s

0

B(s, t)dt = |b(s)|
{
1 +

∫ 0

b0

A(s, y) dy
}
� |b∗|C1,

where C1 = 1 + |b0|(�− k)e|b0α|/2+b0b
∗/2. Hence, ḃ(s) = O(1)s−3/2e−βs for s � 1.

Once we have the upper bound of |ḃ|, we can study the asymptotic behavior of
the right-hand side of (2.7) as s → ∞. First, for each s � 1, t ∈ [0, s], and y ∈ [b0, 0],

δ(s, t) = O(1)s−1, δ1(s, y) = O(1)s−1, δ2(s, t) = O(1)s−1.

Next note that ζ(t) = O(1)t−3/2 for t ∈ [1,∞) and ζ(t) = O(1)ḃ(t) for t ∈ [0, 1].
Hence, for s � 1, ∫ ∞

s

ζ(t)dt = O(1)

∫ ∞

s

t−3/2 dt = O(1)s−1/2,(2.8)

∫ s

s/2

ζ(t)
(
1− t

s

)− 1
2

dt = O(1)

∫ s

s/2

t−3/2
√
s√

s− t
dt =

O(1)√
s
,(2.9)

∫ s/2

0

t+ 1

s
ζ(t)dt =

O(1)

s

∫ 1/2

0

ḃ(t) dt+
O(1)

s

∫ s/2

1/2

t−1/2dt =
O(1)√

s
.(2.10)

Thus, using (1− t/s)−1/2 = 1 + O(1) t/s for t ∈ [0, s/2] we obtain from (2.7) that

ḃ(s)[�eb(s) − k]s

Γ(b(s), s)
= m1 +

O(1)√
s
; m1 :=

∫ 0

b0

yA∞(y) dy −
∫ ∞

0

b(t)ζ(t) dt.

Since b(s) = b∗+O(1)e−βs, this implies that ḃ(s) = −[mβ+O(1)s−1/2]s−
3
2 e−βs and

after integration, b(s) = b∗ + [m + O(1)s−1/2]s−3/2e−βs, where m = m1e
−αb∗/2/

(
√
4π[k − �eb

∗
]β). To see that m is positive, we let s → ∞ in (2.6) to obtain the

identity 1+
∫ 0

b0
A∞(y) dy−

∫∞
0

ζ(t) dt = 0. Adding a multiple of −b0 of this identity

to the defining equation of m1 we find that

m1 = −b0 +

∫ 0

b0

[y − b0]A∞(y) dy +

∫ ∞

0

[b0 − b(t)]ζ(t) dt > 0.

This completes the proof of Theorem 1. �

Proof of Theorem 2. Note that the function q(x, s) := ps(x, s)e
αx/2+βs satisfies

qs − qxx = 0 in Qb := {(x, s) | x > b(s), s > 0}, q(b(s), s) = 0 ∀ s > 0.
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Since p � p0 implies that q(·, 0) = ps(·, 0) � 0, so by the maximum principle
and Hopf’s Lemma, q > 0 in Qb (see [3, section 2] for the details of a rigorous
derivation). We shall construct comparison functions to estimate the upper and
lower bounds of q. �

Upper bound. Fix an arbitrary T > 0. Let q̄ be the solution of

q̄s − q̄xx = 0 in [b(T ),∞)× (0, T ], q̄ = 0 on {b(T )} × [0, T ],

q̄ = q on [b(T ),∞)× {0}.
Then by comparison, q � q̄ on [b(T ),∞)× [0, T ]. In particular, for x � b(T ),

q(x, T ) � q̄(x, T ) =

∫ ∞

b(T )

e−(x−y)2/(4T ) − e−(x+y−2b(T ))2/(4T )

√
4πT

q(y, 0) dy.

Using e−a − e−b � e−a(b − a) for 0 � a � b, (x + y − 2b(T ))2 − (x − y)2 =
4(x − b(T ))(y − b(T )), and the fact that q(x, 0) = δ(x) + eαx/2[�ex − k]χ[b0,0](x),
where δ is the Dirac measure and χA is the characteristic function of the set A, we
then obtain, for x � b(T ),

q(x, T ) �
∫ ∞

b(T )

[x− b(T )][y − b(T )]e−(x−y)2/(4T )

√
4πT 3

q(y, 0) dy

=
(x− b(T ))e−x2/(4T )

√
4πT 3

×
{
− b(T ) +

∫ 0

b0

(y − b(T ))(�ey − k)e−y2/(4T )+αy/2+xy/(2T )dy
}

� (x− b(T ))e−x2/(4T )|b(T )|√
4πT 3

{
1 + |b0| (�− k)eb

∗b0/(2T )+|αb0|/2
}
.

Replacing T by s � 1, we obtain

ps(x, s) = q(x, s)e−αx/2−βs � |b(s)| [x− b(s)]+s−1Γ(x, s)C1,

where C1 = 1 + |b0|(� − k)e(b
∗+α)b0/2. Consequently, noting that ps(x, s) = 0 for

x < b(s),

‖ps(·, s)‖L∞(R) � C1|b∗| max
x>b∗

{
(x− b∗)s−1Γ(x, s)

}
� C2ρ(s),

where C2 is a constant depending only on k and �, and the explicit form of ρ(s)
follows from a direct calculation of the above maximum. In addition, for s � 1,

‖p(·, s)− p∗(·)‖L∞(R) �
∫ ∞

s

‖ps(·, t)‖L∞(R)dt �
∫ ∞

s

C2ρ(t)dt �
C2ρ(s)

k
.

Lower bound. Fix an arbitrary ε > 0. Let q be the solution of

qs − qxx = 0 in [0,∞)× (ε,∞), q = 0 on {0} × [ε,∞), q = q on [0,∞)× {ε}.
Then by comparison, q > q on [0,∞)× (ε,∞). Thus, for s > 0 and x > 0,

q(x, s+ ε) � q(x, s+ ε) =

∫ ∞

0

e−(x−y)2/(4s) − e−(x+y)2/(4s)

√
4πs

q(y, ε) dy

=
e−x2/(4s)

√
4πs

∫ ∞

0

e−y2/(4s)
(
exy/(2s) − e−xy/(2s)

)
q(y, ε) dy.
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Using ez − e−z � 2z for every z � 0 we then obtain, when x > 0 and s > 1,

q(x, s+ ε) � xe−x2/(4s)

√
4πs3

∫ ∞

0

yq(y, ε)e−y2

dy.

Setting Cε =
∫∞
0

ye−y2

ps(y, ε)e
αy/2dy we obtain for every x > 0 and s > 1,

ps(x, s+ ε) = q(x, s+ ε)e−αx/2−β(s+ε) � xs−1Γ(x, s)Cε,(2.11)

p∗(x)− p(x, s+ ε) =

∫ ∞

s

ps(x, t+ ε) dt �
∫ s+1

s

xt−1Γ(x, t) dtCε

� xs−1Γ(x, s)

∫ 1

0

Cεe
−βt̂

√
8

dt̂.

Fixing ε = 1/2 and finding the maximum of xs−1Γ(x, s) for x ∈ (0,∞) we then
obtain

‖ps(·, s)‖L∞(R) � C3ρ(s), ‖p(·, s)− p∗(·)‖L∞(R) � C3ρ(s),

where C3 is a positive constant depending only on k and �. This completes the
proof. �

Proof of Theorem 3. We can derive from [3, §4]: for every x ∈ R and s > 0,

ps(x, s) = Γ(x, s)
{
1 + I1(x, s)− I2(x, s)

}
,(2.12)

where

I1(x, s) :=

∫ 0

b0

[�ey − k]
Γ(x− y, s)

Γ(x, s)
dy =

∫ 0

b0

[�ey − k]eαy/2+xy/(2s)−y2/(4s),

I2(x, s) :=

∫ s

0

ḃ(t)[�eb(t) − k]
Γ(x− b(t), s− t)

Γ(x, s)
dt.

Note that I2 is positive and I1(x, s) � |b0|(�−k)e(α+b∗)b0/2 when s � 1 and x � b∗.
Since we know that ps(x, s) = 0 for x � b(s), we hence have the bound

0 � ps(x, s) � C1 Γ(x, s) ∀x ∈ R, s � 1,

where the first inequality follows from the Maximum Principle.

The case α < 0. Set η = (x+ αs)/(2s). For s � 1,

I1(x, s) =

∫ 0

b0

[�ey − k]e−y2/(4s)+ηy dy

= e−ŷ2/(4s)

∫ 0

b0

[�ey − k]eηydy =
[
1 +

O(1)

s

]
φ1(η),

where ŷ ∈ [b0, 0] and φ1 ∈ C∞(R) is defined by

φ1(η) =

∫ 0

b0

[�ey − k]eyηdy ∀ η ∈ R.

We write I2(x, s) =
∫ s

0
B0(s, t)e

wdt, where

B0(s, t) = ζ(t)
(
1− t

s

)− 1
2

, w := − tx2

4s(s− t)
+

xb(t)

2(s− t)
− b2(t)

4(s− t)
.
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First consider the case |η| � |α|/4. Then x/s = 2η − α > |α|/2, and w �
−tx2/[4s2] � −α2t/16. Hence, for t > ŝ := min{ s

2 ,
16
α2 ln s}, we have∫ s

ŝ

B0(s, t)e
wdt � e−α2ŝ/16

∫ s

0

B0(s, t)dt =
O(1)

s
.

When t ∈ [0, ŝ],

w =
{
− tx2

4s2
+

xb(t)

2s
− b2(t)

4s

}(
1− t

s

)−1

= −
(
η − α

2

)2

t+
(
η − α

2

)
b(t) + O(1)

t2 + 1

s
.

Thus,

I2(x, s) =

∫ s

0

B0(s, t)e
wdt =

∫ s

ŝ

B0(s, t)e
w dt+

∫ ŝ

0

B0(s, t)e
w dt

=
O(1)

s
+

∫ ŝ

0

ζ(t)
[
1 +

O(1)t

s

]
e−(η−α/2)2t+(η−α/2)b(t)

[
1 +

O(1)(t2 + 1)

s

]
dt

=

∫ ŝ

0

ζ(t)e−[η−α/2]2t+[η−α/2]b(t)dt+
O(1)

s
= φ2(η) +

O(1)

s
,

where φ2 is defined by

φ2(η) :=

∫ ∞

0

ḃ(t)[�eb(t) − k]e[β−(η−α/2)2]t+ηb(t)dt.

Since ḃ(t) = O(1)t−3/2e−βt for t � 1 and ḃ(t)dt = db(t) is a bounded measure
on [0, 1] with integrand being continuous in t and analytic in η, φ2 ∈ C(R) ∩
C∞((−∞, α/2) ∪ (α/2,∞)).

In summary, setting φ(η) = 1 + φ1(η) − φ2(η) we have, when |η| � |α|/4 and
s � 1,

ps(x, s)

Γ(x, s)
= 1 + I1 − I2 = φ(η) + O(1)s−1 = φ(0) + φ′(0)η + O(1)η2 + O(1)s−1.

Note that when |η| > |α|/4, both η and s−1 are O(1), so the last expansion is still
valid since it was established earlier that ps/Γ = O(1). The assertion of Theorem

3 for ps/ρ(s) with α < 0 thus follows with c1 := φ(0)/
√
4π and c2 := φ′(0)/

√
4π;

here the positivity of c1 follows from the inequality (2.11).

The case α � 0. Then k � �+ 1, so b0 = 0. Using ps(b(s), s) = 0 we obtain from
(2.12) that

ps(x, s)

Γ(x, s)
=

ps(x, s)

Γ(x, s)
− ps(b(s), s)

Γ(b(s), s)
=

∫ s

0

B(s, t)
{
1− eu

}
dt,

where B(s, t) is the same as before and

u =
x2 − b2(s)

4s
− [x− b(t)]2 − [b(s)− b(t)]2

4(s− t)
= (x− b(s))

{ b(t)

2(s− t)
− t[x+ b(s)]

4s(s− t)

}

= − t[x− b(s)]2

4s(s− t)
+

[x− b(s)]

2s

{
b(t)− t δ(s, t)

}
.
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Note that u < 0 when x + b(s) � 0. When |x| < −b(s), u � |b(s)δ(s, t)| = O(1)/s.

Hence, u � O(1)/s for all x � b(s). Denoting z = [x− b(s)]/
√
4s, we can write

u = u1 + u2, u1 := − t z2

s− t
, u2 :=

z√
s
[b(t)− t δ(s, t)].

We first consider the case when z ∈ [0,
√
s], i.e., b(s) < x < b(s) + 2s. We write

(2.13)
ps(x, s)

Γ(x, s)
=

∫ s

0

{
[B−B0][1−eu]+B0[1−eu2 ]+B0[1−eu1 ]−B0[1−eu2 ][1−eu1 ]

}
dt.

Since B − B0 = B0[e
δ2(s,t) − 1] = O(1)B0s

−1 and u � O(1)/s, we have for z � 0
and s � 1,∫ s

0

[B −B0][1− eu]ds =
O(1)

s

∫ s

0

B0|1− eu|dt = O(1)

s

z√
s
,

since
∫ s

0
B0|1− eu|dt = O(1)z/

√
s by the estimation below. Recalling that δ(s, t) =

O(1)s−1, we also have∫ s

0

B0(s, t)[1− eu2 ]dt =

∫ s

0

B0(s, t)
{
− z[b(t) + t δ(s, t)]√

s
+ O(1)

z2

s

}
dt

= − z√
s

∫ ∞

0

ζ(t)b(t)dt+ O(1)
z + z2

s
=

m1z√
s

+ O(1)
z + z2

s
,

where m1 = −
∫∞
0

b(t)ζ(t)dt and the second equality is obtained by using (2.8)–
(2.10).

To evaluate
∫ s

0
B0(s, t)[1− eu1 ]dt, we use the expansion

ζ(t) = ḃ(t)[�eb(t) − k]eαb(t)/2+βt = m̂t−3/2 +O(t−2),

where m̂ = mβ[k − �eb
∗
]eαb

∗/2 = m1/
√
4π. When ζ(t) is replaced by m̂t−3/2, the

corresponding integral can be evaluated by the substitution t̂ = −u1 = tz2/(s− t),
giving ∫ s

0

m̂t−3/2[1− eu1 ]
(
1− t

s

)−1/2

dt =
2
√
πm̂z√
s

=
m1z√

s
.(2.14)

We estimate the error of replacing ζ by m̂t−3/2 as follows. Taking t1 = max{s/2,
s/(1+ z2)} and using ζ(t) = O(1)ḃ(t) for t ∈ (0, 1] and ζ(t)− m̂t−3/2 = O(1)t−2 for
t ∈ [1, s], we obtain, when s � 2,∫ s

0

∣∣∣B0 − m̂t−3/2(1− t
s )

−1/2
∣∣∣(1− eu1) <

∫ s

0

∣∣ζ − m̂t−3/2
∣∣min

{
1,

tz2

s− t

} √
s√

s− t
dt

= O(1)
{∫ 1

0

(t−3/2 + |ḃ|) tz
2

s
dt

+

∫ s/2

1

z2

ts
dt+

∫ t1

s/2

z2
√
s
√
(s− t)3

dt+

∫ s

t1

1

s3/2
√
s− t

dt
}

= O(1)
(z2
s

+
z2 ln s

s
+

z2√
s
√
s− t1

+

√
s− t1
s3/2

)
= O(1)

(z
s
+

z2 ln s

s

)
.

Finally, since |1− eu2 | = O(1)z/
√
s,∫ s

0

B0|[1− eu2 ]|[1− eu1 ]dt =
O(1)z√

s

∫ s

0

B0[1− eu1 ]dt = O(1)
z2

s
.
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In summary, we obtain from (2.13) that when s � 2 and 0 � z � √
s with

z = (x− b(s))/
√
4s,

ps(x, t)

Γ(x, s)
=

z√
s

{
2m1 +

O(1)√
s

(
1+z ln s

)}
=

x− b(s)

s

{
m1+O(1)(s−1/2 + |x|s−1 ln s)

}
.

Since ps(x, s)/Γ(x, s) = O(1), this expansion is also valid when z >
√
s. This

implies the assertion of Theorem 3 for ps/ρ(s) with c1 = m1/
√
π for the case α = 0

and c1 = m1e
αb∗/2/

√
4π for the case α > 0.

Finally, the asymptotic behavior for p∗ − p follows by integrating ps over [s,∞).
It first requires observing that for n > 0 (n = 3/2 for α ≥ 0 and n = 1/2 for α < 0)

J :=

∫ ∞

s

t−ne−x2/(4t)−βt = −
∫ ∞

s

t−n d(e
−x2/(4t)−βt)

β − x2/(4t2)
=

s−ne−x2/(4s)−βs

β − x2/(4s2)
−AJ,

A :=
1

t̂

[ n

β − x2/(4t̂2)
+

x2

2t̂2
1

(β − x2/(4t̂2))2

]
, t̂ ∈ [s,∞),

which implies that for a small number ε > 0,

J =
1

1 +O(1/s)

s−ne−x2/(4s)−βs

β − x2/(4s2)
if |x| < 2

√
β − ε s, i.e., β − x2

4s2
> ε

(since 0 < A = O(1/s) for t̂ ≥ s, |x| < 2
√
β − ε s). Then after integration and

letting s → ∞ for (p∗ − p)/ρ(s) − Ψ, we have the assertion of the theorem with
c = c1/β for α � 0 and c = c1/k for α < 0. For α ≥ 0, the corresponding integration

by parts produces an extra integral involving ḃ(t). Using Theorem 1 this integral
tends to zero faster than ρ(s) and is assigned to the error terms. This completes
the proof of Theorem 3. �
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