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NEUMANN PROBLEM ON A HALF-SPACE

FUMIYAMA SHU, MASAKI TANAKA, AND MINORU YANAGISHITA

(Communicated by Mario Bonk)

ABSTRACT. In this paper, a solution of the Neumann problem on a half-space
for a slowly growing continuous boundary function is constructed by the gen-
eralized Neumann integral with this boundary function. The relation between
this particular solution and certain general solutions is discussed. A solution
of the Neumann problem for any continuous boundary function is also given
explicitly by the Neumann integral with the generalized Neumann kernel de-
pending on this boundary function.

1. INTRODUCTION

Let n be a positive integer satisfying n > 2. Let R"*! be the (n+1)-dimensional
Euclidean space. A point in R”*! is represented by

M=(X,y)=(x1,.-..,Zn,Y)
with

IM|= (224 ...+ 22 +1%)3.
By OF we denote the boundary of a subset E of R"!. The sphere of radius r
centered at the origin of R"*! is represented by S, 1(r). By T,+1 we denote the
open half-space

{M=(X,y) e R""' 1y > 0}.
Then 90T, is identified with R™ and the n-dimensional Lebesgue measure at
N € 0T, 41 is denoted by dN. When g is a function defined on

Ony1(r) = Try1 N Spya(r) (r>0),

we define the mean of g as follows:

Mlgir) =2snar™) ™ [ gDy (> 0)
Tnt1(r)
where s,,41 is the surface area of Sp,4+1(1) (the (n 4 1)-dimensional unit sphere S™)
and do)y is the surface element on S, 11(r) at M € gp41(r).

Let f be a continuous function defined on dT,,11. A solution of the Neumann
problem on T, ;1 for f is a harmonic function A in T,,41 such that

9 ar)y = £(N)

lim —
MeT, +1,M—N 8y
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for every point N € 9T,,+1. Armitage proved

Theorem A (Armitage [I], Theorem 1 and Remarks). Let f be a continuous
function on 0T, 41 = R"™ such that

(1.1) /m(l + [N f(N)|dN < oc.

Then a solution of the Neumann problem on T,41 for f is given by the Neumann
integral Iy for f,

I (M) = —apt1 /Rn |M — N|*"f(N)dAN (M € T,y1),

which satisfies
M(|Is[;7) = O(1)  (r — o0),
where a1 = 2{(n — 1)sp11}7 1.

The following result deals with a type of uniqueness of solutions for the Neumann
problem on T, 1.

Theorem B (Armitage [I], Theorem 3). Let k be a positive integer and f be a
continuous function on 0T, 11 satisfying (1.1). If h is a solution of the Neumann
problem on T,,11 for f satisfying

M(htir) =o(r")  (r— o0),
then h is given by

yszJH X) (k>2)

H MNI*

)I

for any M = (X,y) € T,41, where hJr is the positive part of h,

2 2 2\

C' is a constant and 11 is a polynomial of X = (x1,x2,...,2,) € R™ of degree less
than k in 0T, 41.

Gardiner [7, Theorem 1] gave a solution of the Neumann problem for any con-
tinuous function on 9T, ;. His solution is constructed using approximation of
functions, and hence it is not explicit. In this paper, we will explicitly give a
solution of the Neumann problem for any continuous function on 0T, ; in the
same way as Finkelstein and Scheinberg [6] and Yoshida [10] did in the case of the
Dirichlet Problem. To do this, Theorem A will be extended by defining generalized
Neumann integrals for continuous functions under less restricted conditions than
(1.1) (Theorem 1). Siegel and Talvila [9] defined a more complicated generalized
Neumann integral for their purpose. But our generalized Neumann integral is much
simpler than theirs. By using Theorem 1, we shall give a solution of the Neumann
problem for any continuous function on 97T,,1. Our solution is much simpler than
the solution given by Gardiner (Theorem 2). We shall also extend Theorem B
(Theorem 3).



NEUMANN PROBLEM ON A HALF-SPACE 1335

2. STATEMENTS OF RESULTS

Let M and N be two points in T, 1 and 0T, 1, respectively. By (M, N) we
denote the usual inner product in R**!. We note that

o0
M = NI =Y ekt [N IMF L (p) - (1M < [N,

k=0
where
<M7 N> k +n — 2
2.1 = — =
( ) P |MHN|’ Ckon+1 k

and Ly 41 is the (n+1)-dimensional Legendre polynomial of degree k. We remark
that Lk’nJ’,l(l) = 1, Lk’nJr](_l) = (—1)k, LO,n+1 =1 and Lk7n+1(t) =1 (see
Armitage [3, p. 55]).
Let [ be a non-negative integer. We set
-1
—an+lzck,n+1|N|1_k_"|M|kLk,n+1(P) (INI>1, 1>1),

Vimi1 (M, N) = k=0
LML) =1 (Nl <1, 1>1),

0 (1=0)

for any M € T,41 and any N € 9T,;1. The generalized Neumann kernel
Kipns1(M,N) (M € Ty41,N € 0T,41) is defined by

Kl,n+1(M7 N) = KO,n+1(Ma N) - Vl,n+1(M7 N) (l > 0),

where
Kon+1(M,N) = —an41|M — N[,
Since |[M|*Lg ny1(p) (k > 0) is harmonic in T,; (Armitage [3, Theorem DJ),

K n+1(-, N) is also harmonic in T4+ for any fixed N € 0T,41.
By F} n+1 we denote the set of continuous functions f on 0T, 11 = R" such that

[f (V)]
2.2 —— —_dN < o0.
22) /R 1 [N s
The following Theorem 1 generalizes Theorem A, which is our result in the case

l=0.

Theorem 1. Let ! be a non-negative integer and f € F; 1. Then the generalized
Neumann integral Hy 41 f of f, defined in Ty 1 by

Hinaf(M) = | Kinea (M, N)f(N)aN,

is a solution of the Neumann problem for f and
(2.3) M(|Hips1 fli7) = O(') (1 = o0).

Remark 1. We remark that Theorem 1 yields multiple representations in the case
that f satisfies (2.2) for more than one [. For example, if f is bounded with
bounded support, then (2.2) is satisfied for every non-negative integer ! and hence
many generalized Neumann integrals H; ,,+1f ({ =0,1,2,...) of f are obtained.
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We shall define another Neumann kernel. The construction of our Neumann
kernel is similar in spirit to Finkelstein and Scheinberg’s construction for the Poisson
kernel [6]. Let ¢(t) be a positive continuous function of ¢ > 1 satisfying

50(1) = Cn/25
where ¢, = 3(n — 1)2"a,,41. Denote the set
{t>1: " lp(t)=2""c,}

by U, (p,%) (i =1,2,3,---). Then 1 € U,(¢,1). When there is an integer L such
that Uy (¢, L) # @ and Un(o, L+ 1) = 0, we denote the set {i : 1 < i < L} of
integers by E,(¢). Otherwise, we denote the set of all positive integers by F,(¢).
Let ¢,(i) = tn(¢,4) be the minimum of elements in U, (¢,i) for each i € E, ().
In the former case, we put t,(L + 1) = co. We remark that ¢,(1) = 1. We define
V@7n+1(M, N) (M € Tn+1,N S 8Tn+1) by

0 INT < tn(1),

Von+1(M,N) = {Vi,nJrl(M7 N)  ta(i) SN[ <t (i +1) (i € Bn()).

We put
K«p,n+1(M7 N) = KO,n-i—l (M7 N) - ch,n+1(M7 N) (M € Tn+1; N e 8r:[‘n—i-l)-

It is evident that K, ,41(-, V) is also harmonic on T, ; for any fixed N € 0T, 41.
To solve the Neumann problem on T, ;; for any continuous function f on
0T, 11 = R", we have

Theorem 2. Let f be any continuous function on 0T,+1 = R"™. Then there is a
positive continuous function @(t) of t > 1, given explicitly in terms of the growth
of f, such that

Hap,nJrlf(M) = R Ktp,nJrl(Mu N)f(N)dN

is a solution of the Neumann problem on T, 1 for f.

The following Theorem 3 extends Theorem B, which is our result in the case
l=0.

Theorem 3. Let k be a positive integer and I be a non-negative integer. Let
f € Fint1 and h be a solution of the Neumann problem on T, for f such that

(2.4) M(r*5r) = o(r™H) - (r = o0).
Then
Hyp1 f(M)+C (k=1),
"N s Z LEATX) (k> 2)

for any M = (X,y) € Ty41, where C is a constant and II is a polynomial of
X = (z1,2a,...,x,) € R™ of degree less than k + 1.
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3. PROOFS OF THEOREMS 1, 2 AND 3
In this section we use the following notation:
B (Q,r)={PeR™:|P-Q|<r} (QeR™,r>0)
and
B,(r)y={PeR":|P|<r} (r>0).
First of all, we note two facts concerning Ly, ,11(p). If we observe that

d kin+k—1
e Ln(p)= Mt k) sl (2 1)

from Miiller [8, Lemma 13], then we have

0 _
— (1 M| L1 (p)) = (n = 1)ep—1n42yI M ¥ Lig i1 (p)

(3.1) 9y

—(n=1)ck-1n3ylM " 2pLi_1nys(p) (k> 1).
We also know that
(3.2) |Lkm(p)] <1

for any p in (2.1), any non-negative integer k and any positive integer m > 2 (see
Armitage [3, Theorems C and DJ).

Lemma 1. Let [ be a non-negative integer. For any M € T, 1 and any N € 0T, 11
satisfying 2|M| < |N| and |N| > 1, we have

(3.3) |Ki i1 (M, N)[ < Cr(l,n)| MNP
and
0 Co(l,n)|M|'=HN|—m=t (1>1),
3.4 LK1 (M, N)| <
( ) 6@/ L, +1( )’ {02(0777,)|N1_n (120)7

where Cy(l,n) = 2" "ta, 1, Co(l,n) = 3(n — 1)2"""1a, 11 and Co(0,n) =
3(n—1)2"any1 -

Proof. Take any M € T,,4; and any N € 0T,,1; satisfying 2|M| < |[N|and |N| > 1.
Then

| Kin1 (M, N)| = anp1 ZCk,nJrl|N|1_n_k|M‘kLk,n+1(p)

k=l
00 k
e [ 2|M
< 1 Y Chmpr[N[FT27F <T||) |Lkn+1(0)]
k=l

l o]

2|M . B

< Qnt1 (ﬁ) IN|* E k127"
k=l

from (3.2). If we put C;(I,n) = 2"t 1, then we have (3.3).
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If I > 2, we similarly have

0
‘8_yKl,n+1(Ma N)‘

IN

Cer 3 (n = Den1 oy M 2N L i ()
k=l

o0
@ 30 = Ve rnrsyl M 2N ol L1 a0

k=l
. [e%s} B 21 M k—1
< (n—1)aps1|N| 221 k <T||) (Ch—1.n+2 + Ch—1,n+3)
B 2l M l—1 oo
S (n— 1)04n+1|N‘ " ( ||]V||> 221 k(ckfl,n+2 +Ck71,n+3)
k=l

from (3.1). By putting Ca(l,n) = 3(n — 1)2" "1, 11, we also obtain (3.4) in the
case [ > 2. Since for [ =1 or 0,

) LD
> Kins1(M,N) = —an 41 ch 1 [N \M| Lint1(p),

Oy
k=2
we have
B} 1
By — K nt1(M, N)‘ (n—1Day41|N|™" Z 2R (ep_1 o + Ck—1,n+3)
k=2
< 3(n = 1)2"ans [N
< 3(n —1)2 a1 |N|* ™
This gives (3.4) in the case [ =1 or 0. O

Lemma 2. Let | be a non-negative integer, § be any positive number satisfying
0<d <1, and N* be any fized point of 0T, +1. Then

‘a%vl,nﬂuw, | < c,0, 8y

for any M € Bpi1(N*,0) N Tpy1 and any N € 0T 41, where C(1,6,N*) is a
constant depending only on l, § and N*.

Proof. From the definition of V} 41 (M, N) and (3.1), we can evidently assume that
[ >3 and |N| > 1. Then we have from (3.2) that
-1

0 _ e
5o Vit ()| < s 30— Descs sl M 2N L)
k=2

-1

+anir ) (0= Der—nray MIF 2Nl | Ly s ()]
k=2

-1

2
L ch L2 + Cho1 ) ([ N*| 4+ 6)F

o anrl
(l’ 6’ N*) ’
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where

-1

S (ehrnrz + kot (N[ +6)2 =
Sntl 5

Lemma 3. Letl be any non-negative integer. Let f be a locally integrable function

on 0T, 41 satisfying (2.2). Then Hyn11f is a harmonic function on Ty4q.

C(l,6,N*) =

Proof. For any fixed M € T,1, take a number R satisfying R > max{1,2|M]|}.
Then from Lemma 1 we have

N
[ sy < gy [ HEL N <o
R™\B., (R rRo\B,(r) V|

Thus Hj 41 f(M) is finite for any M € T,4;. Since the mean value equality for
H; ;11 f follows from Fubini’s theorem, Hj 41 f (M) is harmonic in T, 41. |

Lemma 4. Let [ be any non-negative integer. Let f be a locally integrable and
upper semicontinuous function on 0T, 11 satisfying (2.2). Then

. 0 *
lim sup 8—Hz,n+1f(M) < f(N7)
MeET,41,M—N* OY

for any fived N* € 0T 1.

Proof. Let N* be any fixed point on 0T, 11 = R™ and ¢ be any positive number.
Take a positive number §, § < 1, such that

(3.5) f(N) < f(N*)+¢
for any N € B, (N*,0). From (2.2) and (3.4), we can choose a number R*, R* >

2(|N*| + 1), such that
0

(36) / 5 K (M, N)| (V)N <e,

R"\B, (R*) | OY

for any M € T, 41 N Bpt1(N*,0). Put

son = [ FV) 2 K i1 (M, N)AN
B, (R*)

dy
and p
HOD == [ NS Vi (MN)AN (12 0)
B (R*) dy
Since
8 _ 2y —n—1 _
8_K0,n+l(M>N)_ |M — N| (M =(X,y) € Tpy1,N € 0Ty 11),
Y Sn+1
we observe that
0
(3.7) / f(N)a_KO,nJrl(Ma N)dN
By (R*)\ By (N*,6) Y

<
Sn+1 B,,(R*)\Bn(N*,0)

2 5 —n—1
< <—) / FV)IdN
Snt+1 \ 2 B (R*)\Bn(N*,5)

[M — N|[7"7Hf(N)|dN
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for any M € T,,41 N Bp41(IN*,6/2). Since

0 0
1- / 9 Koni1(M,N)dN = 9 Koni1(M, N)IN
B, (N*.5) OY R"\ B, (N*,5) Y

2
- y/ M — N|"""'dN
Sn+1 JR?\ B, (N*,8)

for any M € T,41 (see Armitage and Gardiner [4], p. 24]), we have

0
3.8 li —Koni1(M,N)dN = 1.
(35 o B SR ()

Finally (3.5), (3.7) and (3.8) yield

limsup  J(M) < f(N*) +e.
M—N*MET 41

From Lemma 2 we obtain

(3.9) ) <

0
V) ]—va(M, N)| v
B, (R*)

dy

< / C (1,8, N*)y|f(N)|dN
B’VL(R*)

< Csy

for any M € T,,41 N Bpy1(N*,8), where

Ca=CWAN") [ |f)jan.
Bn(R*)

These and (3.6) yield

lim sup ng,an(M)
M—N* MeT, 41 8y

0
= lim sup f(N)=—Kj11(M,N)dN
M—N* ,MeT, 11 JR? oy
0
= lim sup J(M)+J1(M)+/ f(N)zKipnt1 (M, N)N
M—N* MET R"\ B, (R*) dy
< f(N*) + 2e.
Now the conclusion immediately follows. (I

Proof of Theorem 1. It immediately follows from Lemmas 3 and 4 that Hj ,1f is
a harmonic function on T, and

. 0 .
MHN}}J%}GT"H 8—sz,n+1f(M) = f(N™)

for any N* € 0T, 41.
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We now turn to the proof of (2.3). For any positive number r > 1 we have

ST (| Hya f i) = /

2 Tnt1(r)

K1 (M, N)f(N)dN |dopy
R L

< / / |Kiss (M, N) f(N)|dNdops
‘7n+1(7") "

- / / Ky 1 (M, N) F(N)|doardN
" Jonq1(r)

=T(r) + To,(r),
where
1) = | [ KON SN doragay
R"\B, (2r) Jon11(r)
and

Tou(r) = / / | K11 (M, N)f(N)|dondN.
Bn(QT) O‘n+1("")

We note that if / > 1 and 1 < |N| < 2|M], then
-1

Vi1 (M, N)| < 0ng1 Y gt [N 7F7" | M|F| Ly ()
k=0

-1 k
. N 2|M
< an+1|N|1 E 2 kck,nJrl <T||)
k=0

< C4|N‘2_l_n|M|l_l,

where

C4:2l_1an+1l max 2_kck’n+1.
0<k<i-1

Hence we have

/ Lf(N)] Vint1(M, N)|dopydN
By (2r) ont1(r)

< 2_1C4$n+17’n+l_1/ 7‘f(]jl)_|2 dN = C57“"+la
Bn(2r\B, (1) I N|™
where V)
Cs = Cys, 1/ —————dN (< 00).
e s, [N (<20
Since )
/ |M—N‘1ind0'1\/[ STlin
Sn+17" Snt1(r)

(see Armitage and Gardiner [4, p. 99]), we obtain
[ [ KoL N)dowdN <2 asir [ JfV)IaN
B, (2r) ont1(r) B, (2r)

<927 1(p—1)? M MNIAN < Cartt
> (n ) r 3(2)1+‘N|n+l_1|f( )| > GeTr ’

_ ontio1(, _ 1y-1 [f (V)]
C = 2" (n — 1) /Rn1—|—|N|"+l—1dN'

where
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These immediately yield

Tz,l(?“)é/ ( )\f(N)I (IKon41(M, N)| + [Vin41 (M, N)|) dorrdN
B, (2r

Tn1(r)

<(Cs+ Cﬁ)?”"-H.

From Lemma 1 we easily see that

- |f(V)] !
Ty (r) <271C (1 n)sn 1r"+l/ — LN < Cor™tH,
" R\ B, (2r) [V["TL
where
- |f(V)]
07 =2 101(1771)5 1/ 76”\7
n+ R\ B, (1) ‘N|"+l_1
These give (2.3). O

To prove Theorem 2, we need

Lemma 5. Let (t) be a positive continuous function of t > 1 satisfying p(1) =
¢n/2. Then for any M € T, 1 and any N € 0T, 11 satisfying |N| > max{1,4|M|},

(3.10) |Kpnt1(M, N)| < o(|N])
and

0
(311) gwa,nnLl(Ma N) < 4‘»0(‘N|)

Proof. Take any M € T, and any N € 0T, 1, satisfying |N| > max{1,4|M|}.
Choose an integer iy € E, (@) such that ¢, (ig) < |N| < t,(io + 1). Then

Kga,n+1(M7 N) = Kio,n+1(M7 N)
From Lemma 1 we easily see that
|Kig nt1(M, N)| < Cy(ig, n) | M| |N|'="7% < Cy(ig,n)2 2 [N T

Hence
| Ko ns1(M, N)| < Cilio, )27 2 [N['"" < o(|N)).
In the same way we can also see (3.11) by applying Lemma 1 to %Ki07,L+1(M, N).
U

Proof of Theorem 2. Let (t,0) be the spherical coordinates in R™. We identify
(1,0) € S~ ! with ©. Put

Cg:%max{l,/ |f(1,®)|d®}
S’n.fl

and
sty 2 L e 17(6.0)1d0) ™ (1120100 > 0).
for t > 1, where d© is the surface element of S"~! at (1,0) € S~ 1. If we define
o(t) (t = 1) by
. Cn
e(t) = min { 2 (1)}



NEUMANN PROBLEM ON A HALF-SPACE 1343

then ¢(t) is a positive continuous function satisfying ¢(1) = ¢, /2. For any fixed
M € T, 1 we can choose a number Ry > max{1,4|M|} such that

(3.12) / (K pms1 (M, N) F(N)[dN
R,”\B (Rl)

< [7([ o) et a <o [t <o
Ry Sn—1 Ry

from Lemma 5. It is evident that
[ e OL NSV N < .
By (R1)

These give that
/ |Kpns1(M,N)f(N)[dN < oc.
Rn

To see that H, ;41 f(M) is harmonic in T4, we observe from Fubini’s theorem
that H, ;11 f(M) has the locally mean-value property.
Finally we shall show that
0

(3.13) wer, - By

Hw,n-&-lf(M) = f(N*)

for any fixed N* € 0T, 11. In a similar way to (3.12) we also have

0

/R"\Bn(Rl) Ay

for any fixed M € T,,4+1 and any number Ry > max{1,4|M|}. Let € be any positive
number. Choose a sufficiently large number R* (R* > 4(|N*| + 1)) such that

/ 0
R"\B,(R*)

dy
Since f is continuous on 0T, 11, take a positive number ¢ (6 < 1) such that
FIN) < f(N7) +e

for any N € B,,(N*,0). In the completely same way as the proof of Lemma 4, we
also obtain

Ktp,nJrl(MuN)f(N)‘ dN < oo

Ktp,n-‘rl(Ma N)f(N)‘ dN <e.

0
fimsup [ JON) S Ko (ML V)N < (V) +
MET, 41, M—N* JB, (R*) dy

If we take an integer iy € E,(p) satistying t,(io) < R* < €,(ip + 1), then we see
from Lemma 2 that

0

/ (V)| ’a Vomsr (M, N)’dN < Vi1 (M, NYF(N)| dN
B, (R*) Y

B, (R*)

< S (1,6, F V)N = Coy

B.(R*) ;4
for any M € B, +1(N*,0) N T, 11, where Cy is a constant. These yield
0
lim sup f(N ) Ky pnt1(M,N)N < f(N*) + 2e.

MeT,t1, M—N* JR"
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By replacing f with —f, we also have
0

) > *) —
e[ IO R O N)N 2 J(V) — 22
From these, (3.13) follows immediately. O

To prove Theorem 3 completely we shall first give an easy proof of the following
lemma, which is proved in a different way from Armitage [I].

Lemma 6 (Armitage [I, Lemma 2]). If H(M) is a harmonic polynomial of M =
(X,y) € R"! of degree m and OH /0y vanishes on 0T, 11, then there is a polyno-
mial 11 of X € R™ of degree m such that

[3m] 1 7 AJ
H(X’w:{ (0 + X2 SR AT (m > 2),
II(X) (m=0,1).
Proof. Put
(3.14)  H(X,y) =To(X) + I (X)y+ -+ L(X)y™  ((X,y) € R,

where II;(X) is a polynomial of X € R" of degree at most m — j. We remark that
a sequence of the equations

(315) H](X) = _jil(j_l)ilAHj*Q(X) (j :2a3,"' ﬂm)
and
(3.16) I (X) =0

follows from
AH=0 onR"™ and 0H/0y=0 onR",
respectively. If we set II(X) = IIp(X) on R™, then

[
H(X,y) =TI(X) +

N
3

]

(;;)j ¥ NTI(X)

<.
Il
i

from (3.14), (3.15) and (3.16). O

Proof of Theorem 3. Suppose that f and h are two functions given in Theorem 3.
Then we know from Theorem 1 that h — Hj 5,41 f has a harmonic continuation H to
R such that H is an even function of y (see Armitage [2, §8.2]). Now we have

M(H+;T) = M((h - Hl,n+1f)+;r)
< M(hT5r) + M( Hinga fli7)
= o(rF ) + o(r'™h) = o(r* Y (r — o),
by (2.4) and (2.3) of Theorem 1. This implies that H is a polynomial of degree

less than k + [ (see Brelot [B, Appendix]). The conclusions of the theorem follow
immediately from Lemma 6. O
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