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NEUMANN PROBLEM ON A HALF-SPACE

FUMIYAMA SHU, MASAKI TANAKA, AND MINORU YANAGISHITA

(Communicated by Mario Bonk)

Abstract. In this paper, a solution of the Neumann problem on a half-space
for a slowly growing continuous boundary function is constructed by the gen-
eralized Neumann integral with this boundary function. The relation between
this particular solution and certain general solutions is discussed. A solution
of the Neumann problem for any continuous boundary function is also given
explicitly by the Neumann integral with the generalized Neumann kernel de-
pending on this boundary function.

1. Introduction

Let n be a positive integer satisfying n ≥ 2. Let Rn+1 be the (n+1)-dimensional
Euclidean space. A point in Rn+1 is represented by

M = (X, y) = (x1, . . . , xn, y)

with
|M | = (x2

1 + . . .+ x2
n + y2)

1
2 .

By ∂E we denote the boundary of a subset E of Rn+1. The sphere of radius r
centered at the origin of Rn+1 is represented by Sn+1(r). By Tn+1 we denote the
open half-space

{M = (X, y) ∈ Rn+1 : y > 0}.
Then ∂Tn+1 is identified with Rn and the n-dimensional Lebesgue measure at
N ∈ ∂Tn+1 is denoted by dN . When g is a function defined on

σn+1(r) = Tn+1 ∩ Sn+1(r) (r > 0),

we define the mean of g as follows:

M(g; r) = 2(sn+1r
n)−1

∫
σn+1(r)

g(M)dσM (r > 0),

where sn+1 is the surface area of Sn+1(1) (the (n+1)-dimensional unit sphere Sn)
and dσM is the surface element on Sn+1(r) at M ∈ σn+1(r).

Let f be a continuous function defined on ∂Tn+1. A solution of the Neumann
problem on Tn+1 for f is a harmonic function h in Tn+1 such that

lim
M∈Tn+1,M→N

∂

∂y
h(M) = f(N)
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for every point N ∈ ∂Tn+1. Armitage proved

Theorem A (Armitage [1], Theorem 1 and Remarks). Let f be a continuous
function on ∂Tn+1 = Rn such that

(1.1)

∫
Rn

(1 + |N |)1−n|f(N)|dN < ∞.

Then a solution of the Neumann problem on Tn+1 for f is given by the Neumann
integral If for f ,

If (M) = −αn+1

∫
Rn

|M −N |1−nf(N)dN (M ∈ Tn+1),

which satisfies

M(|If |; r) = O(1) (r → ∞),

where αn+1 = 2{(n− 1)sn+1}−1.

The following result deals with a type of uniqueness of solutions for the Neumann
problem on Tn+1.

Theorem B (Armitage [1], Theorem 3). Let k be a positive integer and f be a
continuous function on ∂Tn+1 satisfying (1.1). If h is a solution of the Neumann
problem on Tn+1 for f satisfying

M(h+; r) = o(rk) (r → ∞),

then h is given by

h(M) = If (M) +

⎧⎪⎪⎨
⎪⎪⎩

C (k = 1),

Π(X) +

[ k2 ]∑
j=1

(−1)j

(2j)! y
2jΔjΠ(X) (k ≥ 2)

for any M = (X, y) ∈ Tn+1, where h+ is the positive part of h,

Δj =

(
∂2

∂x2
1

+
∂2

∂x2
2

+ · · ·+ ∂2

∂x2
n

)j

(j = 1, 2, . . .),

C is a constant and Π is a polynomial of X = (x1, x2, . . . , xn) ∈ Rn of degree less
than k in ∂Tn+1.

Gardiner [7, Theorem 1] gave a solution of the Neumann problem for any con-
tinuous function on ∂Tn+1. His solution is constructed using approximation of
functions, and hence it is not explicit. In this paper, we will explicitly give a
solution of the Neumann problem for any continuous function on ∂Tn+1 in the
same way as Finkelstein and Scheinberg [6] and Yoshida [10] did in the case of the
Dirichlet Problem. To do this, Theorem A will be extended by defining generalized
Neumann integrals for continuous functions under less restricted conditions than
(1.1) (Theorem 1). Siegel and Talvila [9] defined a more complicated generalized
Neumann integral for their purpose. But our generalized Neumann integral is much
simpler than theirs. By using Theorem 1, we shall give a solution of the Neumann
problem for any continuous function on ∂Tn+1. Our solution is much simpler than
the solution given by Gardiner (Theorem 2). We shall also extend Theorem B
(Theorem 3).
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2. Statements of results

Let M and N be two points in Tn+1 and ∂Tn+1, respectively. By 〈M,N〉 we
denote the usual inner product in Rn+1. We note that

|M −N |1−n =

∞∑
k=0

ck,n+1|N |1−k−n|M |kLk,n+1(ρ) (|M | < |N |),

where

(2.1) ρ =
〈M,N〉
|M ||N | , ck,n+1 =

(
k + n− 2

k

)

and Lk,n+1 is the (n+1)-dimensional Legendre polynomial of degree k. We remark
that Lk,n+1(1) = 1, Lk,n+1(−1) = (−1)k, L0,n+1 = 1 and Lk,n+1(t) = t (see
Armitage [3, p. 55]).

Let l be a non-negative integer. We set

Vl,n+1(M,N) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

−αn+1

l−1∑
k=0

ck,n+1|N |1−k−n|M |kLk,n+1(ρ) (|N | ≥ 1, l ≥ 1),

0 (|N | < 1, l ≥ 1),

0 (l = 0)

for any M ∈ Tn+1 and any N ∈ ∂Tn+1. The generalized Neumann kernel
Kl,n+1(M,N) (M ∈ Tn+1, N ∈ ∂Tn+1) is defined by

Kl,n+1(M,N) = K0,n+1(M,N)− Vl,n+1(M,N) (l ≥ 0),

where

K0,n+1(M,N) = −αn+1|M −N |1−n.

Since |M |kLk,n+1(ρ) (k ≥ 0) is harmonic in Tn+1 (Armitage [3, Theorem D]),
Kl,n+1(·, N) is also harmonic in Tn+1 for any fixed N ∈ ∂Tn+1.

By Fl,n+1 we denote the set of continuous functions f on ∂Tn+1 = Rn such that

(2.2)

∫
Rn

|f(N)|
1 + |N |n+l−1

dN < ∞.

The following Theorem 1 generalizes Theorem A, which is our result in the case
l = 0.

Theorem 1. Let l be a non-negative integer and f ∈ Fl,n+1. Then the generalized
Neumann integral Hl,n+1f of f , defined in Tn+1 by

Hl,n+1f(M) =

∫
Rn

Kl,n+1(M,N)f(N)dN,

is a solution of the Neumann problem for f and

(2.3) M(|Hl,n+1f |; r) = O(rl) (r → ∞).

Remark 1. We remark that Theorem 1 yields multiple representations in the case
that f satisfies (2.2) for more than one l. For example, if f is bounded with
bounded support, then (2.2) is satisfied for every non-negative integer l and hence
many generalized Neumann integrals Hl,n+1f (l = 0, 1, 2, . . .) of f are obtained.
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We shall define another Neumann kernel. The construction of our Neumann
kernel is similar in spirit to Finkelstein and Scheinberg’s construction for the Poisson
kernel [6]. Let ϕ(t) be a positive continuous function of t ≥ 1 satisfying

ϕ(1) = cn/2,

where cn = 3(n− 1)2nαn+1. Denote the set

{t ≥ 1 : tn−1ϕ(t) = 2−icn}

by Un(ϕ, i) (i = 1, 2, 3, · · · ). Then 1 ∈ Un(ϕ, 1). When there is an integer L such
that Un(ϕ,L) 	= ∅ and Un(ϕ,L + 1) = ∅, we denote the set {i : 1 ≤ i ≤ L} of
integers by En(ϕ). Otherwise, we denote the set of all positive integers by En(ϕ).
Let tn(i) = tn(ϕ, i) be the minimum of elements in Un(ϕ, i) for each i ∈ En(ϕ).
In the former case, we put tn(L + 1) = ∞. We remark that tn(1) = 1. We define
Vϕ,n+1(M,N) (M ∈ Tn+1, N ∈ ∂Tn+1) by

Vϕ,n+1(M,N) =

{
0 |N | < tn(1),

Vi,n+1(M,N) tn(i) ≤ |N | < tn(i+ 1) (i ∈ En(ϕ)).

We put

Kϕ,n+1(M,N) = K0,n+1(M,N)− Vϕ,n+1(M,N) (M ∈ Tn+1, N ∈ ∂Tn+1).

It is evident that Kϕ,n+1(·, N) is also harmonic on Tn+1 for any fixed N ∈ ∂Tn+1.
To solve the Neumann problem on Tn+1 for any continuous function f on

∂Tn+1 = Rn, we have

Theorem 2. Let f be any continuous function on ∂Tn+1 = Rn. Then there is a
positive continuous function ϕ(t) of t ≥ 1, given explicitly in terms of the growth
of f , such that

Hϕ,n+1f(M) =

∫
Rn

Kϕ,n+1(M,N)f(N)dN

is a solution of the Neumann problem on Tn+1 for f .

The following Theorem 3 extends Theorem B, which is our result in the case
l = 0.

Theorem 3. Let k be a positive integer and l be a non-negative integer. Let
f ∈ Fl,n+1 and h be a solution of the Neumann problem on Tn+1 for f such that

(2.4) M(h+; r) = o(rk+l) (r → ∞).

Then

h(M) =

⎧⎪⎪⎨
⎪⎪⎩

Hl,n+1f(M) + C (k = 1),

Hl,n+1f(M) + Π(X) +

[ k+l
2 ]∑

j=1

(−1)j

(2j)! y
2jΔjΠ(X) (k ≥ 2)

for any M = (X, y) ∈ Tn+1, where C is a constant and Π is a polynomial of
X = (x1, x2, . . . , xn) ∈ Rn of degree less than k + l.
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3. Proofs of Theorems 1, 2 and 3

In this section we use the following notation:

Bm(Q, r) = {P ∈ Rm : |P −Q| < r} (Q ∈ Rm, r > 0)

and

Bm(r) = {P ∈ Rm : |P | < r} (r > 0).

First of all, we note two facts concerning Lk,n+1(ρ). If we observe that

d

dρ
Lk,n+1(ρ) =

k(n+ k − 1)

n
Lk−1,n+3(ρ) (k ≥ 1)

from Müller [8, Lemma 13], then we have

∂

∂y
(ck,n+1|M |kLk,n+1(ρ)) = (n− 1)ck−1,n+2y|M |k−2Lk,n+1(ρ)

− (n− 1)ck−1,n+3y|M |k−2ρLk−1,n+3(ρ) (k ≥ 1).

(3.1)

We also know that

(3.2) |Lk,m(ρ)| ≤ 1

for any ρ in (2.1), any non-negative integer k and any positive integer m ≥ 2 (see
Armitage [3, Theorems C and D]).

Lemma 1. Let l be a non-negative integer. For any M ∈ Tn+1 and any N ∈ ∂Tn+1

satisfying 2|M | < |N | and |N | ≥ 1, we have

(3.3) |Kl,n+1(M,N)| ≤ C1(l, n)|M |l|N |1−n−l

and

(3.4)

∣∣∣∣ ∂∂yKl,n+1(M,N)

∣∣∣∣ ≤
{
C2(l, n)|M |l−1|N |1−n−l (l ≥ 1),

C2(0, n)|N |1−n (l = 0),

where C1(l, n) = 2n+l−1αn+1, C2(l, n) = 3(n − 1)2n+l−1αn+1 and C2(0, n) =
3(n− 1)2nαn+1 .

Proof. Take anyM ∈ Tn+1 and anyN ∈ ∂Tn+1 satisfying 2|M | < |N | and |N | ≥ 1.
Then

|Kl,n+1(M,N)| = αn+1

∣∣∣∣∣
∞∑
k=l

ck,n+1|N |1−n−k|M |kLk,n+1(ρ)

∣∣∣∣∣
≤ αn+1

∞∑
k=l

ck,n+1|N |1−n2−k

(
2|M |
|N |

)k

|Lk,n+1(ρ)|

≤ αn+1

(
2|M |
|N |

)l

|N |1−n
∞∑
k=l

ck,n+12
−k

from (3.2). If we put C1(l, n) = 2n+l−1αn+1, then we have (3.3).
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If l ≥ 2, we similarly have∣∣∣∣ ∂∂yKl,n+1(M,N)

∣∣∣∣
≤ αn+1

∞∑
k=l

(n− 1)ck−1,n+2y|M |k−2|N |1−n−k|Lk,n+1(ρ)|

+ αn+1

∞∑
k=l

(n− 1)ck−1,n+3y|M |k−2|N |1−n−k|ρ||Lk−1,n+3(ρ)|

≤ (n− 1)αn+1|N |−n
∞∑
k=l

21−k

(
2|M |
|N |

)k−1

(ck−1,n+2 + ck−1,n+3)

≤ (n− 1)αn+1|N |−n

(
2|M |
|N |

)l−1 ∞∑
k=l

21−k(ck−1,n+2 + ck−1,n+3)

from (3.1). By putting C2(l, n) = 3(n− 1)2n+l−1αn+1, we also obtain (3.4) in the
case l ≥ 2. Since for l = 1 or 0,

∂

∂y
Kl,n+1(M,N) = −αn+1

∞∑
k=2

ck,n+1|N |1−n−k ∂

∂y
|M |kLk,n+1(ρ),

we have∣∣∣∣ ∂∂yKl,n+1(M,N)

∣∣∣∣ ≤ (n− 1)αn+1|N |−n
∞∑
k=2

21−k(ck−1,n+2 + ck−1,n+3)

≤ 3(n− 1)2nαn+1|N |−n

≤ 3(n− 1)2nαn+1|N |1−n.

This gives (3.4) in the case l = 1 or 0. �

Lemma 2. Let l be a non-negative integer, δ be any positive number satisfying
0 < δ < 1, and N∗ be any fixed point of ∂Tn+1. Then∣∣∣∣ ∂∂yVl,n+1(M,N)

∣∣∣∣ ≤ C(l, δ, N∗)y

for any M ∈ Bn+1(N
∗, δ) ∩ Tn+1 and any N ∈ ∂Tn+1, where C(l, δ, N∗) is a

constant depending only on l, δ and N∗.

Proof. From the definition of Vl,n+1(M,N) and (3.1), we can evidently assume that
l ≥ 3 and |N | ≥ 1. Then we have from (3.2) that

∣∣∣∣ ∂∂yVl,n+1(M,N)

∣∣∣∣ ≤ αn+1

l−1∑
k=2

(n− 1)ck−1,n+2y|M |k−2|N |1−k−n|Lk,n+1(ρ)|

+ αn+1

l−1∑
k=2

(n− 1)ck−1,n+3y|M |k−2|N |1−k−n|ρ||Lk,n+3(ρ)|

≤ 2y

sn+1

l−1∑
k=2

(ck−1,n+2 + ck−1,n+3)(|N∗|+ δ)k−2

= C(l, δ, N∗)y,



NEUMANN PROBLEM ON A HALF-SPACE 1339

where

C(l, δ, N∗) =
2

sn+1

l−1∑
k=2

(ck−1,n+2 + ck−1,n+3)(|N∗|+ δ)k−2. �

Lemma 3. Let l be any non-negative integer. Let f be a locally integrable function
on ∂Tn+1 satisfying (2.2). Then Hl,n+1f is a harmonic function on Tn+1.

Proof. For any fixed M ∈ Tn+1, take a number R satisfying R ≥ max{1, 2|M |}.
Then from Lemma 1 we have∫

Rn\Bn(R)

|Kl,n+1(M,N)||f(N)|dN ≤ C1(l, n)|M |l
∫
Rn\Bn(R)

|f(N)|
|N |n+l−1

dN < ∞.

Thus Hl,n+1f(M) is finite for any M ∈ Tn+1. Since the mean value equality for
Hl,n+1f follows from Fubini’s theorem, Hl,n+1f(M) is harmonic in Tn+1. �

Lemma 4. Let l be any non-negative integer. Let f be a locally integrable and
upper semicontinuous function on ∂Tn+1 satisfying (2.2). Then

lim sup
M∈Tn+1,M→N∗

∂

∂y
Hl,n+1f(M) ≤ f(N∗)

for any fixed N∗ ∈ ∂Tn+1.

Proof. Let N∗ be any fixed point on ∂Tn+1 = Rn and ε be any positive number.
Take a positive number δ, δ < 1, such that

(3.5) f(N) < f(N∗) + ε

for any N ∈ Bn(N
∗, δ). From (2.2) and (3.4), we can choose a number R∗, R∗ >

2(|N∗|+ 1), such that

(3.6)

∫
Rn\Bn(R∗)

∣∣∣∣ ∂∂yKl,n+1(M,N)

∣∣∣∣ |f(N)|dN < ε,

for any M ∈ Tn+1 ∩Bn+1(N
∗, δ). Put

J(M) =

∫
Bn(R∗)

f(N)
∂

∂y
K0,n+1(M,N)dN

and

Jl(M) = −
∫
Bn(R∗)

f(N)
∂

∂y
Vl,n+1(M,N)dN (l ≥ 0).

Since

∂

∂y
K0,n+1(M,N) =

2y

sn+1
|M −N |−n−1 (M = (X, y) ∈ Tn+1, N ∈ ∂Tn+1),

we observe that ∣∣∣∣∣
∫
Bn(R∗)\Bn(N∗,δ)

f(N)
∂

∂y
K0,n+1(M,N)dN

∣∣∣∣∣(3.7)

≤ 2y

sn+1

∫
Bn(R∗)\Bn(N∗,δ)

|M −N |−n−1|f(N)|dN

≤ 2y

sn+1

(
δ

2

)−n−1 ∫
Bn(R∗)\Bn(N∗,δ)

|f(N)|dN
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for any M ∈ Tn+1 ∩Bn+1(N
∗, δ/2). Since

1−
∫
Bn(N∗,δ)

∂

∂y
K0,n+1(M,N)dN =

∫
Rn\Bn(N∗,δ)

∂

∂y
K0,n+1(M,N)dN

=
2y

sn+1

∫
Rn\Bn(N∗,δ)

|M −N |−n−1dN

for any M ∈ Tn+1 (see Armitage and Gardiner [4, p. 24]), we have

(3.8) lim
M→N∗,M∈Tn+1

∫
Bn(N∗,δ)

∂

∂y
K0,n+1(M,N)dN = 1.

Finally (3.5), (3.7) and (3.8) yield

lim sup
M→N∗,M∈Tn+1

J(M) ≤ f(N∗) + ε.

From Lemma 2 we obtain

|Jl(M)| ≤
∫
Bn(R∗)

|f(N)|
∣∣∣∣ ∂∂yVl,n+1(M,N)

∣∣∣∣ dN(3.9)

≤
∫
Bn(R∗)

C(l, δ, N∗)y|f(N)|dN

≤ C3y

for any M ∈ Tn+1 ∩Bn+1(N
∗, δ), where

C3 = C(l, δ, N∗)

∫
Bn(R∗)

|f(N)|dN.

These and (3.6) yield

lim sup
M→N∗,M∈Tn+1

∂

∂y
Hl,n+1f(M)

= lim sup
M→N∗,M∈Tn+1

∫
Rn

f(N)
∂

∂y
Kl,n+1(M,N)dN

= lim sup
M→N∗,M∈Tn+1

(
J(M) + Jl(M) +

∫
Rn\Bn(R∗)

f(N)
∂

∂y
Kl,n+1(M,N)dN

)

≤ f(N∗) + 2ε.

Now the conclusion immediately follows. �

Proof of Theorem 1. It immediately follows from Lemmas 3 and 4 that Hl,n+1f is
a harmonic function on Tn+1 and

lim
M→N∗,M∈Tn+1

∂

∂y
Hl,n+1f(M) = f(N∗)

for any N∗ ∈ ∂Tn+1.
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We now turn to the proof of (2.3). For any positive number r > 1 we have

sn+1r
n

2
M(|Hl,n+1f |; r) =

∫
σn+1(r)

∣∣∣∣
∫
Rn

Kl,n+1(M,N)f(N)dN

∣∣∣∣ dσM

≤
∫
σn+1(r)

∫
Rn

|Kl,n+1(M,N)f(N)|dNdσM

=

∫
Rn

∫
σn+1(r)

|Kl,n+1(M,N)f(N)|dσMdN

= T1,l(r) + T2,l(r),

where

T1,l(r) =

∫
Rn\Bn(2r)

∫
σn+1(r)

|Kl,n+1(M,N)f(N)| dσMdN

and

T2,l(r) =

∫
Bn(2r)

∫
σn+1(r)

|Kl,n+1(M,N)f(N)| dσMdN.

We note that if l ≥ 1 and 1 ≤ |N | < 2|M |, then

|Vl,n+1(M,N)| ≤ αn+1

l−1∑
k=0

ck,n+1|N |1−k−n|M |k|Lk,n+1(ρ)|

≤ αn+1|N |1−n
l−1∑
k=0

2−kck,n+1

(
2|M |
|N |

)k

≤ C4|N |2−l−n|M |l−1,

where

C4 = 2l−1αn+1l max
0≤k≤l−1

2−kck,n+1.

Hence we have ∫
Bn(2r)

|f(N)|
∫
σn+1(r)

|Vl,n+1(M,N)|dσMdN

≤ 2−1C4sn+1r
n+l−1

∫
Bn(2r)\Bn(1)

|f(N)|
|N |n+l−2

dN = C5r
n+l,

where

C5 = C4sn+1

∫
Rn\Bn(1)

|f(N)|
|N |n+l−1

dN (< ∞).

Since
1

sn+1rn

∫
Sn+1(r)

|M −N |1−ndσM ≤ r1−n

(see Armitage and Gardiner [4, p. 99]), we obtain∫
Bn(2r)

|f(N)|
∫
σn+1(r)

|K0,n+1(M,N)|dσMdN ≤ 2−1αn+1sn+1r

∫
Bn(2r)

|f(N)|dN

≤ 2−1(n− 1)−1r

∫
Bn(2r)

2(2r)n+l−1

1 + |N |n+l−1
|f(N)|dN ≤ C6r

n+l,

where

C6 = 2n+l−1(n− 1)−1

∫
Rn

|f(N)|
1 + |N |n+l−1

dN.
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These immediately yield

T2,l(r) ≤
∫
Bn(2r)

|f(N)|
∫
σn+1(r)

(|K0,n+1(M,N)|+ |Vl,n+1(M,N)|) dσMdN

≤ (C5 + C6)r
n+l.

From Lemma 1 we easily see that

T1,l(r) ≤ 2−1C1(l, n)sn+1r
n+l

∫
Rn\Bn(2r)

|f(N)|
|N |n+l−1

dN ≤ C7r
n+l,

where

C7 = 2−1C1(l, n)sn+1

∫
Rn\Bn(1)

|f(N)|
|N |n+l−1

dN.

These give (2.3). �

To prove Theorem 2, we need

Lemma 5. Let ϕ(t) be a positive continuous function of t ≥ 1 satisfying ϕ(1) =
cn/2. Then for any M ∈ Tn+1 and any N ∈ ∂Tn+1 satisfying |N | > max{1, 4|M |},
(3.10) |Kϕ,n+1(M,N)| < ϕ(|N |)
and

(3.11)

∣∣∣∣ ∂∂yKϕ,n+1(M,N)

∣∣∣∣ < 4ϕ(|N |).

Proof. Take any M ∈ Tn+1 and any N ∈ ∂Tn+1 satisfying |N | > max{1, 4|M |}.
Choose an integer i0 ∈ En(ϕ) such that tn(i0) ≤ |N | < tn(i0 + 1). Then

Kϕ,n+1(M,N) = Ki0,n+1(M,N).

From Lemma 1 we easily see that

|Ki0,n+1(M,N)| ≤ C1(i0, n)|M |i0 |N |1−n−i0 ≤ C1(i0, n)2
−2i0 |N |1−n.

Hence

|Kϕ,n+1(M,N)| ≤ C1(i0, n)2
−2i0 |N |1−n ≤ ϕ(|N |).

In the same way we can also see (3.11) by applying Lemma 1 to ∂
∂yKi0,n+1(M,N).

�

Proof of Theorem 2. Let (t,Θ) be the spherical coordinates in Rn. We identify
(1,Θ) ∈ Sn−1 with Θ. Put

C8 =
cn
2

max

{
1,

∫
Sn−1

|f(1,Θ)|dΘ
}

and

ψ(t) =

{
C8t

−n−1
(∫

Sn−1 |f(t,Θ)|dΘ
)−1 (∫

Sn−1 |f(t,Θ)|dΘ > 0
)
,

∞
(∫

Sn−1 |f(t,Θ)|dΘ = 0
)

for t ≥ 1, where dΘ is the surface element of Sn−1 at (1,Θ) ∈ Sn−1. If we define
ϕ(t) (t ≥ 1) by

ϕ(t) = min
{cn

2
, ψ(t)

}
,
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then ϕ(t) is a positive continuous function satisfying ϕ(1) = cn/2. For any fixed
M ∈ Tn+1 we can choose a number R1 > max{1, 4|M |} such that

(3.12)

∫
Rn\Bn(R1)

|Kϕ,n+1(M,N)f(N)|dN

≤
∫ ∞

R1

(∫
Sn−1

|f(t,Θ)|dΘ
)
ϕ(t)tn−1dt ≤ C8

∫ ∞

R1

t−2dt < ∞

from Lemma 5. It is evident that∫
Bn(R1)

|Kϕ,n+1(M,N)f(N)|dN < ∞.

These give that ∫
Rn

|Kϕ,n+1(M,N)f(N)|dN < ∞.

To see that Hϕ,n+1f(M) is harmonic in Tn+1, we observe from Fubini’s theorem
that Hϕ,n+1f(M) has the locally mean-value property.

Finally we shall show that

(3.13) lim
M∈Tn+1, M→N∗

∂

∂y
Hϕ,n+1f(M) = f(N∗)

for any fixed N∗ ∈ ∂Tn+1. In a similar way to (3.12) we also have∫
Rn\Bn(R1)

∣∣∣∣ ∂∂yKϕ,n+1(M,N)f(N)

∣∣∣∣ dN < ∞

for any fixed M ∈ Tn+1 and any number R1 > max{1, 4|M |}. Let ε be any positive
number. Choose a sufficiently large number R∗ (R∗ > 4(|N∗|+ 1)) such that∫

Rn\Bn(R∗)

∣∣∣∣ ∂∂yKϕ,n+1(M,N)f(N)

∣∣∣∣ dN < ε.

Since f is continuous on ∂Tn+1, take a positive number δ (δ < 1) such that

f(N) < f(N∗) + ε

for any N ∈ Bn(N
∗, δ). In the completely same way as the proof of Lemma 4, we

also obtain

lim sup
M∈Tn+1, M→N∗

∫
Bn(R∗)

f(N)
∂

∂y
K0,n+1(M,N)dN ≤ f(N∗) + ε.

If we take an integer i0 ∈ En(ϕ) satisfying tn(i0) ≤ R∗ < tn(i0 + 1), then we see
from Lemma 2 that
∫
Bn(R∗)

|f(N)|
∣∣∣∣ ∂∂yVϕ,n+1(M,N)

∣∣∣∣ dN ≤
∫
Bn(R∗)

i0∑
i=1

∣∣∣∣ ∂∂yVi,n+1(M,N)f(N)

∣∣∣∣ dN

≤ y

∫
Bn(R∗)

i0∑
i=1

C(i, δ,N∗)|f(N)|dN = C9y

for any M ∈ Bn+1(N
∗, δ) ∩Tn+1, where C9 is a constant. These yield

lim sup
M∈Tn+1, M→N∗

∫
Rn

f(N)
∂

∂y
Kϕ,n+1(M,N)dN ≤ f(N∗) + 2ε.
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By replacing f with −f , we also have

lim inf
M∈Tn+1, M→N∗

∫
Rn

f(N)
∂

∂y
Kϕ,n+1(M,N)dN ≥ f(N∗)− 2ε.

From these, (3.13) follows immediately. �

To prove Theorem 3 completely we shall first give an easy proof of the following
lemma, which is proved in a different way from Armitage [1].

Lemma 6 (Armitage [1, Lemma 2]). If H(M) is a harmonic polynomial of M =
(X, y) ∈ Rn+1 of degree m and ∂H/∂y vanishes on ∂Tn+1, then there is a polyno-
mial Π of X ∈ Rn of degree m such that

H(X, y) =

{
Π(X) +

∑[ 12m]
j=1

(−1)j

(2j)! y
2jΔjΠ(X) (m ≥ 2),

Π(X) (m = 0, 1).

Proof. Put

(3.14) H(X, y) = Π0(X) + Π1(X)y + · · ·+Πm(X)ym ((X, y) ∈ Rn+1),

where Πj(X) is a polynomial of X ∈ Rn of degree at most m− j. We remark that
a sequence of the equations

(3.15) Πj(X) = −j−1(j − 1)−1ΔΠj−2(X) (j = 2, 3, · · · ,m)

and

(3.16) Π1(X) = 0

follows from

ΔH = 0 on Rn+1 and ∂H/∂y = 0 on Rn,

respectively. If we set Π(X) = Π0(X) on Rn, then

H(X, y) = Π(X) +

[ 12m]∑
j=1

(−1)j

(2j)!
y2jΔjΠ(X)

from (3.14), (3.15) and (3.16). �

Proof of Theorem 3. Suppose that f and h are two functions given in Theorem 3.
Then we know from Theorem 1 that h−Hl,n+1f has a harmonic continuation H to
Rn+1 such that H is an even function of y (see Armitage [2, §8.2]). Now we have

M(H+; r) = M((h−Hl,n+1f)
+; r)

≤ M(h+; r) +M(|Hl,n+1f |; r)
= o(rk+l) + o(rl+1) = o(rk+l) (r → ∞),

by (2.4) and (2.3) of Theorem 1. This implies that H is a polynomial of degree
less than k + l (see Brelot [5, Appendix]). The conclusions of the theorem follow
immediately from Lemma 6. �
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