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WEIGHTED PALEY–WIENER SPACES

SHARING A MAJORANT-WEIGHT

PHILIPPE POULIN

(Communicated by Richard Rochberg)

Abstract. We point out a need to slightly modify the statement of Theorem 2
in Yurii Lyubarskii and Kristian Seip’s work Weighted Paley–Wiener spaces.
This last theorem lists all weighted Paley–Wiener spaces (in reduced form)
sharing a prescribed majorant-weight. Attention is called to a part of its proof
that requires an additional argument. Such an argument, based on a new
characterization of Beurling’s lower uniform density, is then presented.

1. Introduction

In the explorative paper [1], Lyubarskii and Seip introduced a family of de
Branges spaces subject to a natural axiom: in these spaces, the norm of a function
is comparable to its L2-norm against M(x)−2 dx, where M(x) denotes the norm of
the reproducing kernel at x ∈ R (see Section 2). In such circumstances, M(x) is
said to be a majorant-weight, while the de Branges space is said to be a weighted
Paley–Wiener space.

From a deep study of the Hermite–Biehler function associated with weighted
Paley–Wiener spaces (Theorem 1 in [1]), they showed that the majorant-weight
of a weighted Paley–Wiener space is always comparable to a function of the form
eg(x)eωm(x), where g(z) is real-entire (that is, real on the real line and entire), m(x)
is comparable to a constant, and ωm(z) is the potential of m(x) dx (see Section 2).

Furthermore, they proved that any weighted Paley–Wiener space is of the form
egPW (m) for such a g and an m, where

PW (m) = {f entire ; ‖fe−ωm‖2 < ∞, |f(z)|e−ωm(z) ≤ Cεe
ε|z|}.

They then aimed to list all weighted Paley–Wiener spaces of the form PW (·)
whose majorant-weight is comparable to a prescribed eωm(x). They obtained such
a list (Theorem 2 in [1]), which consists exactly of the following spaces,

PW−b(m) = {f entire ; ‖fe−ωm‖2 < ∞, |f(z)|e−ωm(z)+πb|�z| ≤ Cεe
ε|z|},

where b is any real number inferior to the lower uniform density of m. This last is
defined as

Dm = lim
R→∞

inf
x∈R

1

2R

∫ R

−R

m(x+ t) dt.
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However, as we shall discuss later, a close examination of their proof reveals its
incompleteness, and new ideas seem necessary for completing their work.

The present paper aims to remedy the situation. Section 2 provides the reader
with the main definitions used in the sequel. In Section 3.1, we shall question the
original argument thatDm is a majorant of b and then provide our own proof, based
on a new characterization of the lower uniform density. Finally, in Section 3.2, we
shall show that Dm is the least majorant of b.

2. Definitions

In the sequel, given two nonnegative functions f and g, f � g indicates that
f ≤ Cg for a positive constant C, and f � g indicates that f is comparable to g
(that is, f � g and g � f).

A Hilbert space H of entire functions is a de Branges space [2] if it satisfies the
following axioms:

(1) The linear functional H → C, f �→ f(z0) is bounded for all z0 ∈ C.
(2) If f(z) ∈ H, then f∗(z) = f(z̄) also belongs to H and has the same norm

as f(z).

(3) If f(z) ∈ H and f(z0) = 0, then f(z)
z − z0
z − z0

also belongs to H and has the

same norm as f(z).

By the first axiom, H admits a reproducing kernel, that is, a function kw(z) of the
variables w, z ∈ C such that kw ∈ H for all w ∈ C and

〈f, kw〉H = f(w) for all f ∈ H.

The majorant of H at z ∈ C is then defined as

M(z) = ‖kz‖H = sup
‖f‖H=1

|f(z)|.

Let M(x) be the restriction of M to the real axis. Following Lyubarskii and
Seip, we shall say that M(x) is a majorant-weight if

(1) M(x) > 0 for all x ∈ R;
(2) ‖f‖H � ‖f/M‖2 for all f ∈ H.

Then, the corresponding H is called a weighted Paley–Wiener space.

A Hermite–Biehler function E is an entire function satisfying |E(z)| > |E(z)|
for all z ∈ C+. Such a function may be factorized as

(2.1) E(z) = Czmeh(z)e−iαz
∏
γ∈Γ

(1− z/γ)ez�(1/γ),

where C ∈ C, h(z) is real-entire, α ≥ 0, and Γ is a family of nonzero elements lying
in the closed lower half-plane (with possible repetitions). Conversely, given such a
C, h(z), α, and Γ, if the right-hand side in (2.1) defines an entire function, then it
is in the Hermite–Biehler class (provided that Γ � R or α �= 0).

In the case where E does not have real zeroes, its restriction to the real axis may
be written

E(x) = |E(x)|e−iϕ(x),
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where the phase, ϕ(x), is real-analytic and well-defined (up to the addition of 2kπ).
The factorization (2.1) then implies

(2.2) ϕ′(x) = α+
∑

ξ−iη∈Γ

η

(x− ξ)2 + η2
.

From an arbitrary Hermite–Biehler function E, one may build a prototypical
example of a de Branges space, namely

H(E) =
{
f entire ; ‖f/E‖2 < ∞, |f 
(z)/E(z)| ≤ Cεe

ε|z| for z ≥ 0
}
,

for f 
 running over {f, f∗}. It is equipped with the norm ‖f‖H(E) = ‖f/E‖2. In
fact, a theorem of de Branges (Theorem 23 in [2]) shows that every de Branges
space is isometrically equal to a space of the form H(E), where E is not unique in
general.

The reproducing kernel in H(E) is given by

kw(z) =
E∗(z)E∗(w)− E(z)E(w)

2πi(z − w)
.

In particular, if E does not have real zeroes,

M(x) =
√
kx(x) =

1√
π

√
ϕ′(x)|E(x)|

for all x ∈ R.

Example 2.1. Let ϕ be the phase of a Hermite–Biehler function E without real
zero. If ϕ′(x) � 1, then H(E) is obviously a weighted PW-space. The converse
statement however does not hold in general (Remark 3 on the last page of [1]).

Lyubarskii and Seip made a bridge between Hermite–Biehler functions and a
certain kind of potentials, namely, potentials of measures of the form m(x) dx
for m(x) measurable, positive, and � 1. Such a potential cannot be defined as∫∞
−∞ log |1− z/t|m(t) dt. In fact, this last integral does not exist due to the domi-
nating term in the expansion

log |1− z/t| = −x/t−
∞∑

n=2

(1/n)�(zn)/tn

for |t| large, where z = x+ iy. It suggests defining

ωm(z) =

∫ ∞

−∞
log∗ |1− z/t|m(t) dt

where log∗ |1− z/t| = log |1− z/t|+ χ(t)x/t, χ(t) = 1− χ[−1,1](t).
We first show that ωm(z) is well-defined, indeed, that the above integral is ab-

solutely convergent. The previous expansion gives, for |t| large,

| log∗ |1− z/t| | ≤
∞∑

n=2

(1/n)|z/t|n

≤ |z/t|2(1/2− log(1− |z/t|) ).(2.3)

Since m(x) � 1, it suffices to show that
∫∞
R

−(1/t2) log(1 − |z|/t) dt < ∞ for R
large. This last relation follows from the substitution u = 1 − |z|/t. Therefore,∫∞
−∞ | log∗ |1− z/t| | dt < ∞.
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The inequality (2.3) and the dominated convergence theorem also yield that ωm

is continuous. The dominated convergence theorem then implies that for z /∈ R

(2.4) ∂yωm(z) = πPm(z),

where

Pm(z) =
1

π

∫ ∞

−∞

y

(x− t)2 + y2
m(t) dt

is the Poisson transform of m(x) dx. Similarly,

∂xωm(z) =

∫ ∞

−∞

(
x− t

(x− t)2 + y2
+

χ(t)

t

)
m(t) dt

for z /∈ R. Finally, a straight adaptation of the classical argument (Theorem 3.7.4
in [3]) gives Δωm = 2πm(x)dxdδ0(y) in the sense of distribution, where δ0 denotes
the 1-dimensional Dirac measure at 0.

Example 2.2. For m(x) = 1 and z /∈ R, ∂yω1(z) = π sgn(y), while ∂xω1(z) = 0.
Hence, ω1(z) = π|y| + C. By continuity, this last relation applies for all z ∈ C.
Since ω1(0) = 0, we deduce ω1(z) = π|y|.

The aforementioned link between Hermite–Biehler functions and potentials of
the form ωm is given by the following multiplier lemma:

Proposition 2.3. Let m(x) � 1 be a measurable function. There exists a Hermite–
Biehler function Em which satisfies

|Em(z)| � eωm(z) when z ≥ 0

and whose zeroes are simple and of the form ξk − i, where ξk+1 − ξk � 1, ξk ∈ R.

Let ϕ be the phase of Em. By (2.2),

ϕ′(x) =
∑
k

1

(x− ξk)2 + 1
.

The condition ξk+1−ξk � 1 then implies ϕ′(x) � 1. Therefore H(Em) is a weighted
PW-space. By the multiplier lemma, |Em| may be replaced with eωm in the def-
inition of H(Em). Since ωm(z) = ωm(z), it follows that H(Em) is equal with
equivalent norms to the space

PW (m) = {f entire ; ‖fe−ωm‖2 < ∞, |f(z)|e−ωm(z) < Cεe
ε|z| for z ∈ C},

equipped with the norm ‖f‖PW (m) = ‖fe−ωm‖2.
In particular, for any measurable m(x) � 1, PW (m) is a weighted PW-space

whose majorant-weight is comparable to |Em| � eωm(x). Consequently, given a real-
entire g, egPW (m) is also a weighted PW-space; its majorant-weight is comparable
to egeωm . The converse statement constitutes the remarkable achievement in [1]:
Lyubarskii and Seip proved that all weighted PW-spaces have a representation
egPW (m), where g is real-entire and m � 1 is measurable.

Example 2.4. We have seen that ω1(z) = π|y|. Consequently, PW (1) is the
classical Paley–Wiener space, L2

π.
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3. Spaces sharing a given majorant-weight

In [1], Lyubarskii and Seip investigated the following question: which weighted
PW-spaces share a prescribed majorant-weight? They gave special attention to
spaces of the form eazPW (m), a ∈ R, which we will call linearly reduced PW-
spaces. They obtained an answer for these last spaces, involving the following
object: for m measurable and � 1 and for τ ∈ R,

PWτ (m) = {f entire ; ‖fe−ωm‖2 < ∞, |f(z)|e−ωm(z) ≤ Cεe
ε|z|eπτ |�z|}.

Notice that PWτ (m) = PW (m + τ ) if m + τ � 1, but this last relation is not
assumed.

Proposition 3.1. Suppose ea0xeωm0
(x) � eaxeωm(x) on the real axis, where a, a0

are in R and m,m0 are measurable and � 1. Then, there exists a real number b
such that

ea0xeωm0
(z) � eaxeωm(z)e−πb|y|

on the whole complex plane, where z = x+ iy.

Proof. By hypothesis |ωm0−m(x) + (a0 − a)x| is bounded, and hence there exists a
C > 0 such that

|ωm0−m(z) + (a0 − a)x| ≤ |ωm0−m(z)− ωm0−m(x)|+ |ωm0−m(x) + (a0 − a)x|
≤ C(|y|+ 1).

In particular, Cy+ωm0−m(z)+(a0−a)x is bounded below on the upper half-plane
and hence admits a Poisson representation

Dy +
y

π

∫ ∞

−∞

ωm0−m(t) + (a0 − a)t

(x− t)2 + y2
dt (y > 0).

Observe that the last term in the previous expression is bounded. Consequently,
letting b = (C −D)/π,

|πby + ωm0−m(z) + (a0 − a)x| � 1 (z ≥ 0),

that is, ea0xeωm0
(z) � eaxeωm(z)e−bπ�z when z ≥ 0. The result follows. �

Corollary 3.2. Each linearly reduced weighted PW-space whose majorant-weight
is comparable to eaxeωm(x) is of the form eazPW−b(m) for a certain b ∈ R.

Remark 3.3. In their original paper Lyubarskii and Seip stated their result not in
terms of linearly reduced PW-spaces, but in terms of linearly reduced majorant-
weights (that is, weights of the form eaxeωm(x)). Their statement is too general:
clearly, exp(exp(−z2))PW (1) is a weighted PW-space whose majorant-weight is
� 1, but it is not equal to PW−b(1) = L2

π(1−b) for any b.

Linearly reduced PW-spaces of majorant eaxeωm (a ∈ R) thus take the form
eazPW−b(m), but for which possible b? Clearly each b < infx∈R m(x) is possible,
since then PW−b(m) = PW (m − b) with m − b � 1. However, this majoration
cannot be optimal in general, since it is easy to change the infimum of m without
altering eωm (using for instance Proposition 2.3). Lyubarskii and Seip stated that
the optimal majoration is b < Dm, where

Dm = lim
R→∞

inf
x∈R

1

2R

∫ R

−R

m(x+ t) dt
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is the uniform lower density of m. Notice that this last limit exists by Fekete’s

lemma, since infx
∫ R

−R
m(x+ t) dt = infx

∫ 2R

0
m(x+ t) dt is superadditive.

3.1. The lower density is a majorant. For showing that b < Dm is necessary,
Lyubarskii and Seip argued by contradiction: they assumed that given an ε > 0,
for all sufficiently large R there exists an xR satisfying

(3.1)

∫ R

−R

(m(xR + s)− b) ds ≤ εR.

For convenience they set xR = 0. Let ea0zPW (m0) be a representation of
eazPW−b(m) as a weighted Paley–Wiener space. By an elegant argument based on
Green’s formula they proved∣∣∣∣∣

∫ R

−R

(m0(t)−m(t) + b)(R2 − t) dt

∣∣∣∣∣ � R2.

They claimed however that (3.1) would imply

2

∫ R

0

t

∫ t

−t

(m0(s)−m(s) + b) ds dt ≥ (infm0)
4

3
R3 − εR3,

a contradiction. Unfortunately the use of the estimate

2

∫ R

0

t

∫ t

−t

(m(s)− b) ds dt ≤ εR3

is not explicitly justified. A conscientious reader may get puzzled: one cannot for
instance restrict the domain of integration to large t and invoke (3.1) with t instead
of R, since xt �= xR.

We prefer to present another proof, based on a new characterization of the
uniform lower density:

Proposition 3.4. If m � 1 is measurable, then

Dm = lim
R→∞

inf
x∈R

1

R

∫ R

0

1

2ρ

∫ ρ

−ρ

m(x+ t) dt dρ.

Proof. For R > 0 and x ∈ R, let us write

mR(x) =
1

2R

∫ R

−R

m(x+ t) dt and AR(x) =
1

R

∫ R

0

mρ(x) dρ.

In this notation we want to prove Dm = limR→∞ infx AR(x), given that Dm =
limR→∞ infx mR(x).

Given ε > 0, let R0 be such that | infx mρ(x) −Dm| < ε when ρ ≥ R0. Then,
for R large

inf
x
AR(x) ≥

1

R
(

∫ R0

0

+

∫ R

R0

) inf
x

mρ(x) dρ ≥ R0 infm

R
+

R −R0

R
(Dm − ε).

Letting R → ∞ along an appropriate sequence, we conclude

lim inf
R→∞

inf
x

AR(x) ≥ Dm.
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Let us derive the converse inequality. Let 0 < ε < 1/4 be given, and define
η = ε/log(1/2ε). There exists an R0 depending on ε such that

| inf
x

mρ(x)−Dm| < η whenever ρ ≥ R0.

Let R ≥ R0 be arbitrarily fixed, and let S = R/ε. By the previous relation there
exists an x∗ such that mS(x

∗) < Dm + 2η. Consequently, for ρ < S − 2R

S − ρ

2S
mS−ρ

2
(x∗ − S + ρ

2
) +

ρ

S
mρ(x

∗) +
S − ρ

2S
mS−ρ

2
(x∗ +

S + ρ

2
) < Dm + 2η

(since the left-hand side is equal to mS(x
∗) ), while

mS−ρ
2

(x∗ ± S + ρ

2
) ≥ inf

x
mS−ρ

2
(x) > Dm − η.

It follows that mρ(x
∗) < Dm +

3ηS

ρ
for such ρ. Therefore, for ρ ∈ [R,S − 2R]

Aρ(x
∗) =

1

ρ
(

∫ R

0

+

∫ ρ

R

)mr(x
∗) dr ≤ R supm

ρ
+

3ηS

ρ
log

( ρ

R

)
+Dm.

Letting ρ = S/2 = R/2ε, the definition of η yields

inf
x∈R

AR/2ε(x) ≤ AR/2ε(x
∗) ≤ Dm + Cε,

where C = 2 supm+ 6. This last relation holds for all R ≥ R0. In other words

sup
R≥R0/2ε

inf
x∈R

AR(x) ≤ Dm + Cε.

Therefore, lim supR→∞ infx AR(x) ≤ Dm +Cε. Since ε > 0 is arbitrarily small, we
conclude

lim sup
R→∞

inf
x∈R

AR(x) ≤ Dm,

as desired. �

The following identity is also useful:

Lemma 3.5. For m measurable and bounded and R > 0,

1

π

∫ π

0

ωm(Reiθ) dθ =

∫ R

0

1

ρ

∫ ρ

−ρ

m(t) dt dρ.

Proof. Fubini’s theorem and the relation
∫ π

0
cos θ dθ = 0 give

1

π

∫ π

0

ωm(Reiθ) dθ =
1

π

∫ ∞

−∞
m(t)

∫ π

0

log

∣∣∣∣1− Reiθ

t

∣∣∣∣ dθ dt.
Moreover, Jensen’s formula gives

1

π

∫ π

0

log

∣∣∣∣1− Reiθ

t

∣∣∣∣ dθ =
1

2π

∫ π

−π

log

∣∣∣∣1− Reiθ

t

∣∣∣∣ dθ = χ[−R,R](t) log(R/|t|).

Therefore,

1

π

∫ π

0

ωm(Reiθ) dθ =

∫ R

−R

log(R/|t|)m(t) dt =

∫ R

0

1

ρ

∫ ρ

−ρ

m(t) dt dρ,

by Fubini’s theorem again. �

Proposition 3.6. In Corollary 3.2, b < Dm.
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Proof. Let ea0zPW (m0) = eazPW−b(m) be the linearly reduced space in question,
and suppose by contradiction that b ≥ Dm. By our characterization of Dm, for any
large R there exists an xR such that

1

R

∫ R

0

1

2ρ

∫ ρ

−ρ

(m(xR + t)− b) dt dρ ≤ infm0

2
.

In particular, for R large

1

R

∫ R

0

1

2ρ

∫ ρ

−ρ

(m0(xR + t)−m(xR + t) + b) dt dρ ≥ infm0

2
.

The last lemma then implies

1

2πR

∫ π

0

(ωm0(xR+·)(Reiθ)− ωm(xR+·)(Reiθ) + πbR sin θ) dθ ≥ infm0

2
.

Notice that in general

ωM(X+·)(z) = ωM (z +X)− ωM (X) + �z
∫ ∞

−∞

(
χ(t−X)

t−X
− χ(t)

t

)
M(t) dt,

and hence ∫ π

0

ωM(X+·)(Reiθ) dθ =

∫ π

0

(ωM (Reiθ +X)− ωM (X)) dθ.

Therefore,

(3.2)
1

2πR

∫ π

0

(ωm0−m(Reiθ + xR) + πbR sin θ − ωm0−m(xR)) dθ ≥ infm0

2
.

However, Proposition 3.1 implies that

|ωm0−m(Reiθ + xR) + πbR sin θ + (a0 − a)(R cos θ + xR)| � 1,

while |ωm0−m(xR) + (a0 − a)xR| � 1. Since
∫ π

0
R cos θ dθ = 0, the integral in the

relation (3.2) is bounded, a contradiction. �

3.2. The lower density is the least majorant. For showing that any b < Dm

is suitable, Lyubarskii and Seip replaced m with a smoothing of m of the form

mR(x) =
1

2R

∫ R

−R

m(x+ t) dt.

They justified this replacement by the relation |ωm(z) − ωmR
(z)| � 1, which is

essentially right (after addition of a linear term αx). In fact, ωmR
(z) − ωm(z) is

equal to

1

2R

∫ R

−R

(∫ ∞

−∞
log∗ |1− z/t|m(t+ s) dt−

∫ ∞

−∞
log∗ |1− z/t|m(t) dt

)
ds

=
1

2R

∫ R

−R

∫ ∞

−∞

(
log

∣∣∣∣1− z

t− s

∣∣∣∣+ χ(t− s)

t− s
x− log

∣∣∣1− z

t

∣∣∣− χ(t)

t
x

)
m(t) dt ds

= F (z) + αx,
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where

F (z) =
1

2R

∫ R

−R

∫ ∞

−∞
log

|1− z/(t− s)|
|1− z/t| m(t) dt ds and

α =
1

2R

∫ R

−R

∫ ∞

−∞

(
χ(t− s)

t− s
− χ(t)

t

)
m(t) dt ds.

Notice that both α and ωmR−m(z) are absolutely convergent, forcing F (z) to be
such.

Let us prove that F (z) is bounded. In fact,

∫ ∞

−∞
log

|1− x/(t− s)|
|1− x/t| m(t) dt is

equal to

(3.3) ωm(x+·)(s)− ωm(s) + s

∫ ∞

−∞

(
χ(t)

t
− χ(t− x)

t− x

)
m(t) dt.

Clearly |ωm(x+·)(s)| �
∫∞
−∞ | log∗ |1− (s/t)| | dt < ∞ uniformly in s ∈ [−R,R], and

similarly for |ωm(s)|. Moreover, the last term in (3.3) disappears when averaging
over s ∈ [−R,R]. Hence, |F (z)| � 1.

In total, eωm(z) is comparable to eωmR (z)e−αx, and hence PW−b(m) equals
e−αzPW (mR − b), which is a weighted PW-space for all b < infx mR(x), even-
tually for all b < Dm.

Joining this result with Corollary 3.2 and Proposition 3.6, we have completed
the proof of the following theorem:

Theorem 3.7. Let m � 1 be measurable and a ∈ R. The family of linearly reduced
weighted Paley–Wiener spaces whose majorant-weight is comparable to eaxeωm(x)

consists of all eazPW−b(m) with b < Dm.
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