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NON-EXISTENCE OF QUADRATIC HARMONIC MAPS

OF S4 INTO S5 OR S6

FAEN WU AND XINNUAN ZHAO

(Communicated by Chuu-Lian Terng)

Abstract. In this paper, we settle the last two open cases of non-existence of
full quadratic harmonic maps from S4 to S5 or S6. Assume that there exist full
quadratic harmonic maps from S4 to Sn for some integer n. As a consequence
of our theorem we obtain that the sufficient and necessary condition of the
existence of such maps is that n satisfy 4 ≤ n ≤ 13 and n �= 5, 6.

1. Introduction

Let Sn denote the unit sphere in the Euclidean space R
n+1. A quadratic har-

monic map f : Sm → Sn is the restriction of a map F : Rm+1 → R
n+1 whose

components are harmonic polynomials of homogeneous degree 2. Such a map f is
called full if the image of f spans R

n+1. A spherical harmonic on Sm of order p
is an eigenfunction of the spherical Laplacian with eigenvalue λp = p(p +m − 1).
It is well known that a spherical harmonic of order p is the restriction to Sm of a
harmonic polynomial of homogeneous degree p in R

m+1. So a quadratic harmonic
map f : Sm → Sn is also called a λ2-eigenmap, and generally one can investigate
a λp-eigenmap. A λp-eigenmap is a harmonic map with constant energy density
λp/2. Up to isometries on the domain and the range, how many equivalence classes
are there for the given m,n and p? The range dimension n obviously depends on
the given m and p. What are the possible values of n for the given m and p? These
problems are far from being solved even for p = 2 [2, 3, 5, 10, 11]. Besides the
classical examples such as the Hopf constructions and the Veronese maps, there are
several available effective ways of constructing new eigenmaps out of the old ones
[4, 7, 8, 10, 11]. Calabi proved that any full λ2-eigenmap f : S2 → Sn is rigid; that
is, any such map is equivalent to the Veronese map S2 → S4. In 1987, G. Toth [6]
gave a complete classification of full λ2-eigenmaps from S3 to Sn. In 2003, after
giving a rigidity result for a λ2-eigenmap from S4 to itself, Huixia He, Hui Ma, and
Feng Xu [7] completely solved the existence problem of λ2-eigenmaps from S2n−k to
Sn for k = 1, · · · , 5. Gauchman, Toth, Lam, Tang, Ueno and Yiu have done much
work on quadratic harmonic maps between spheres; see [5, 6, 7, 8, 9, 10, 11, 12] for
more details.

The existence problem of λp-eigenmaps between the Euclidean spheres constantly
generates great interest from researchers since many challenging problems are still
open. In 1994, Gauchman and Toth [4] showed that full λ2-eigenmaps f : S4 → Sn
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exist for n = 4, 7 and 9 ≤ n ≤ 13. As a special case of their results, Huixia He et al.
[7] showed that the existence result is also true for n = 8. As remarked in [7], the
only unsettled range dimensions of full λ2-eigenmaps f : S4 → Sn are n = 5 and
n = 6. In this paper we prove

Theorem 1.1. There are no full λ2-eigenmaps f : S4 → Sn for n = 5, 6.

Combining Theorem 1.1 with the known results [4, 7, 10] we claim immediately

Corollary 1.2. There exist full λ2-eigenmaps f : S4 → Sn if and only if 4 ≤ n ≤ 13
and n �= 5 or 6.

In section 2, we introduce some preliminaries which are needed in the proof of
our main Theorem 1.1. Finally, in section 3 we give the proof of Theorem 1.1.

2. Preliminaries

Suppose that F : Rm → R
n is a quadratic form; that is, each component of F is

a homogeneous polynomial of degree 2. We may assume that

F (x) =

m∑
i=1

m∑
j=1

aijxixj ,aij = aji ∈ R
n,x = (x1, · · · , xm) ∈ R

m.

Then a direct computation shows that

Lemma 2.1. The notation is as above. Then the following identity holds:

|F (x)|2

=

m∑
i=1

|aii|2x4
i +

∑
1≤i<j≤m

[2(2|aij |2 + aiiajj)(xixj)
2

+ 4(aijaiix
3
ixj + aijajjxix

3
j )]

+ 4
∑

1≤i<j<k≤m

[(2aijaik + aiiajk)x
2
ixjxk + (2aijajk + ajjaik)xix

2
jxk

+ (2aikajk + akkaij)xixjx
2
k]

+ 8
∑

1≤i<j<k<l≤m

(aijakl + aikajl + ailajk)xixjxkxl.

An orthogonal multiplication is a bilinear map f : R
p × R

q → R
r satisfying

|f(x, y)| = |x| · |y| for x ∈ R
p, y ∈ R

q. Here |x| is the standard Euclidean norm. If
p = q, then the Hopf construction Φ(f) defined by

Φ(f) : R2p → R
r+1, (x, y) ∈ R

p × R
p �→ (|x|2 − |y|2, 2f(x, y))

induces a λ2-eigenmap f : S2p−1 → Sr. There is a close relationship between
orthogonal multiplication and λ2-eigenmaps. The following elegant result is due to
Zi Zhou Tang [10]. The first part of it plays a crucial role in the present paper.

Theorem 2.2 (Tang). Let g : Sm → Sn be a non-constant λ2-eigenmap. Then
for each p ∈ Im(g), g−1(p) is a great sphere with dim(g−1(p)) ≤ m−1

2 , and g

is homotopic to the Hopf construction on the orthogonal multiplication R
k+1 ×

R
m−k → R

n, where k = dim(g−1(p)). Furthermore, if the equality dim(g−1(p)) =
1
2 (m − 1) is achieved, then g is exactly the Hopf construction on the orthogonal

multiplication R
m+1

2 × R
m+1

2 → R
n.
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The existence of a full λ2-eigenmap f : Sm → Sn is equivalent to the existence
of a map F : Rm+1 → R

n+1, x �→ (F1(x), · · · , Fn+1(x)), x ∈ R
m+1, such that F is

the extension of f , that is,

F (x) = |x|2f
(

x

|x|

)
, x ∈ R

m+1, x �= 0.

The function F (x) is also called a quadratic form. Each component Fi(x) of F
is a harmonic polynomial of homogeneous degree 2. By Theorem 2.2, there must
be some point p ∈ Im(f) with dim(f−1(p)) = k. By suitable orthogonal transfor-
mations on R

m+1 and R
n+1 respectively, we may assume that p = (1, 0, · · · , 0) ∈

R
n+1, f−1(p) = (ξ1, · · · , ξk+1, 0, · · · , 0) ∈ R

m+1, and

(2.1)
k+1∑
i=1

ξ2i = 1, k = dim(f−1(p)).

Since F1(x) can always be diagonalized, from (2.1) and using the same arguments
as in [7], we find that

(2.2) F1(x) =
m+1∑
i=1

λix
2
i ,

m+1∑
i=1

λi = 0,

where

λ1 = · · · = λk+1 = 1,−1 ≤ λi < 1, i = k + 2, · · · ,m+ 1.

We can express

(F2(x), · · · , Fn+1(x)) ≡ (0, F2(x), · · · , Fn+1(x)) ∈ R
n = span{E2, · · · ,En+1}

as

(2.4) (F2(x), · · · , Fn+1(x)) =

m+1∑
i=1

m+1∑
j=1

bijxixj , bij = bji ∈ R
n+1,

where E2, · · · ,En+1 is the orthonormal basis of Rn+1, but E1 is missing here.

Lemma 2.3. Suppose that there exists a full λ2-eigenmap f : Sm → Sn and F :
R

m+1 → R
n+1 as its extension with components Fi(x), x ∈ R

m+1, i=1, 2, · · · , n+1.
We can always assume that F1(x) satisfies (2.2). Define bij as in (2.4). Then we
have the following identities:

|bii|2 = 1− λ2
i , i = 1, · · · ,m+ 1.(2.5)

biibij = 0; bjjbij = 0, 1 ≤ i < j ≤ m+ 1.(2.6)

2|bij |2 + biibjj = 1− λiλj , 1 ≤ i < j ≤ m+ 1.(2.7)

2bijbik + biibjk = 0; 2bijbjk + bjjbik = 0; 2bikbjk + bkkbij = 0,(2.8)

1 ≤ i < j < k ≤ m+ 1.

bijbkl + bikbjl + bilbjk = 0, 1 ≤ i < j < k < l ≤ m+ 1.(2.9)

Proof. From the discussion above, we see that the first part of Lemma 2.3 is true. By
applying Lemma 2.1 and comparing the coefficients of the leftmost and rightmost
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terms of the following equality:

(
m+1∑
i=1

m+1∑
j=1

bijxixj)
2 =

n+1∑
i=2

F 2
i (x) = F 2(x)− F 2

1 (x)

=

m+1∑
i=1

(1− λ2
i )x

4
i + 2

∑
1≤i<j≤m+1

(1− λiλj)(xixj)
2,

we obtain the five desired identities (2.5)–(2.9). �

3. Proof of Theorem 1.1

The main idea to prove Theorem 1.1 is different from that given in [7]. He, Ma,
and Xu use a property of quaternion algebras and a result due to Casseles, while

we try to diagonalize two vectors Ñ1, Ñ2 simultaneously; see more details below.
We first consider the case n = 6. That is, we suppose that there exists a full

λ2-eigenmap

f : S4 → S6

with the extension map F : R5 → R
7. Since RP 4 cannot be immersed into S6,

both (2.1) and (2.2) hold true for k = 1, m = 4 and n = 6.
For i = 1, 2, we can express (F2(x), · · · , F7(x)) ∈ R

6 = span{E2, · · · , E7} as
the sum Li + Mi + Ni of three vector-valued functions, where E2, · · · , E7 is the
standard orthonormal basis of R7 but E1 is missing here. Furthermore

Li = biix
2
i ,Mi =

∑
1≤α,β≤5;α,β �=i

bαβxαxβ , bα,β = bβα,

(3.1) Ni = 2

5∑
α=1;α�=i

biαxixα, biα = bαi; bii, bαβ , biα ∈ R
6.

Define Ñi by

(3.2) Ni =
√
2xiÑi.

Then we have the following.

Lemma 3.1. Both Ñ1 and Ñ2 can be diagonalized simultaneously. To be more
precise, by performing an orthogonal transformation we may assume that

(3.3) Ñ1 =
√
2(c3x3, 0, c4x4, c5x5, 0, 0), Ñ2 =

√
2(0, c3x3, c5x5,−c4x4, 0, 0),

where

cα =

√
1− λα

2
, α = 1, 2, · · · , 7,

and λα is determined by (2.2).

Proof. From (3.1) and (3.2) it is easy to see that

(3.4) Ñi =
√
2

5∑
α=1;α�=i

biαxα, i = 1, 2.
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First note that bij = bji. It is easy to check that (2.9) still holds for all 1 ≤
i, j, k, l ≤ 5. Since k = dim(f−1(p)) = 1, from (2.5) and (2.7) we have bij = 0 for

1 ≤ i, j ≤ 2. Thus the inner product of Ñ1 and Ñ2 satisfies

Ñ1Ñ2 = 2
5∑

α=1;α�=1

b1αxα

5∑
β=1;β �=2

b2βxβ

= −2
∑

α,β;α�=1,β �=2

(b12bαβ + b1βb2α)xαxβ

= −2
∑

α,β;α�=1,β �=2

b1βb2αxαxβ

= −Ñ1Ñ2.

(3.5)

Consequently, Ñ1Ñ2 = 0. On the other hand, for i = 1, 2, comparing the coefficients
of the leftmost and rightmost terms of the following equality

x4
i + (

5∑
α=1;α�=i

x2
α)

2 + 2x2
i

5∑
α=1;α�=i

x2
α = |x|4 = |F |4

= x4
i +(

5∑
α=1;α�=i

x2
α)

2+2x2
i

5∑
α=1;α�=i

λαx
2
α+L2

i +M2
i +N2

i +2(LiMi+LiNi+MiNi),

we obtain

(3.6) Li = 0, MiNi = 0,

and

(3.7) |Ni|2 = 2x2
i

5∑
α=3

μ2
αx

2
α, μα =

√
1− λα.

We may have a similar formula for |Mi|2, but we do not need it later. So we omit
it here. From (3.2) and (3.7) we deduce that

(3.8) |Ñi|2 =
5∑

α=3

μ2
αx

2
α, i = 1, 2.

If we choose Ñ1 and Ñ2 as in (3.3), then it is easy to check that Ñ1Ñ2 = 0 and
furthermore (3.8) is also satisfied. Hence up to an orthogonal transformation on R

6,

Ñ1 and Ñ2 can take the form as in (3.3). This completes the proof of Lemma 3.1.
Now by using the results of previous lemmas and theorems, we continue to prove

Theorem 1.1. From Lemma 3.1 and comparing the components of Ñi in (3.3) and
(3.4) we get

(3.9)
b13 = c3E2, b14 = c4E4, b15 = c5E5,
b23 = c3E3, b24 = −c4E5, b25 = c5E4.

Applying Lemma 2.3, a direct computation shows that all components of vectors
bij are shown as in Table 1. For example, if we assume that b44 ·E2 = r, from (2.8)
and (3.9) we have

b34 ·E4 = b34 ·
1

c4
b14 = −1

2

1

c4
b44 · b13 = −1

2

c3
c4
b44 ·E2 = −1

2

c3
c4

r.
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Table 1

b33 b44 b55 b34 b35 b45

E2 0 r −r 0 0 − 1
2 (

c5
c4

+ c4
c5
)s

E3 0 s −s 0 0 1
2 (

c5
c4

+ c4
c5
)r

E4 0 0 0 − 1
2
c3
c4
r 1

2
c3
c5
s 0

E5 0 0 0 1
2
c3
c4
s 1

2
c3
c5
r 0

E6 t1 u1 −(t1 + u1) α1 β1 γ1

E7 t2 u2 −(t2 + u2) α2 β2 γ2

Other components can be calculated similarly. Let

t =

(
t1
t2

)
,u =

(
u1

u2

)
,α =

(
α1

α2

)
,β =

(
β1

β2

)
,γ =

(
γ1
γ2

)
.

These are all vectors in R
2 = span{E6,E7}. From (2.6) and Table 1 we obtain

(3.10) t ·α = t · β = t · γ = u ·α = u · β = u · γ = 0,

where t · α denotes the inner product of two vectors. From Table 1 and (3.10) we
also have α · β = b34 · b35 = − 1

2b33 · b45 = − 1
2t · γ = 0. Similarly, we have

(3.11) α · γ = β · γ = 0.

From (2.5) and Table 1 we have

|t|2 = 1− λ2
3,(3.12)

r2 + s2 + |u|2 = 1− λ2
4,(3.13)

r2 + s2 + |t|2 + |u|2 + 2t · u = 1− λ2
5.(3.14)

These three equalities imply that

(3.15) 2t · u = −1 + λ2
3 + λ2

4 − λ2
5.

From (2.7), (3.15) and Table 1 we have

(3.16)
c23
c24
(r2 + s2) + 4|α|2 = −4λ5 − 1,

(3.17)
c23
c25
(r2 + s2) + 4|β|2 = −4λ4 − 1.

To derive a contradiction from the above equations, we discuss case by case accord-
ing to the rank of the system of two-dimensional vectors {α,β,γ}.

Case 1: rank{α,β,γ} = 2. Without loss of generality, we may assume that α �=
0,β �= 0. From (3.10) and (3.11) we have t = u = γ = 0. From (3.12), λ3 = ±1.
On the other hand, by Theorem 2.2, the preimage of each point in the image of
the map is a great sphere with maximum dimension 1. From (2.2) we deduce that
λ3 �= 1 and consequently λ3 = −1 and λ4 = λ5 = − 1

2 . From (3.13) we have

r2 + s2 = 3
4 and from (3.16) α = 0. This is a contradiction. If we assume that

α �= 0,γ �= 0 or β �= 0,γ �= 0, a similar contradiction can be derived.
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Case 2: rank{α,β,γ} = 1. Since α,β,γ are pairwise orthogonal, two of them
must be zero and the third one is non-zero. We assume first that

α = 0,β = 0,γ �= 0.

From (3.16) and (3.17) we have λ4 = λ5. Letting (i, j) = (4, 5) in (2.7), we obtain

(3.18) r2 + s2 − |u|2 = λ2
4 + 4λ4 +

5

2
− 2|γ|2.

We also obtain from (3.16) in return

(3.19) r2 + s2 =
c24
c23
(−4λ4 − 1).

Combining (3.13) and (3.18) we solve

(3.20) r2 + s2 = 2λ4 +
7

4
− |γ|2.

Noting that λ3 + λ4 + λ5 = −2, λ4 = λ5, from (3.18) and (3.20) we have

2(4|γ|2 − 25)λ4 = −12|γ|2 + 25.

Obviously 4|γ|2 − 25 �= 0, and we have

λ4 = λ5 =
1

2

−12|γ|2 + 25

4|γ|2 − 25
.

So we get

(3.21) λ3 =
4|γ|2 + 25

4|γ|2 − 25
.

If 4|γ|2 − 25 > 0, then λ3 > 1, contradicting the fact that −1 ≤ λ3 < 1. If
4|γ|2 − 25 < 0, then λ3 ≤ −1 and only if γ = 0, then λ3 = −1. This contradicts
the assumption that γ �= 0. Next we consider the subcase α = 0,γ = 0, but β �= 0.
From (3.10) we know that t ⊥ β,u ⊥ β. Since all the vectors are two-dimensional,
we conclude that t and u are parallel. Letting (i, j) = (4, 5) in (2.7) we have

(3.22) [(
c4
c5
)2 + (

c5
c4
)2](r2 + s2)− 2|u|2 = 2λ2

4 + 4λ4 + 4λ5 + 5.

Combining (3.22) with (3.13) we get

(3.23) (
c4
c5

+
c5
c4
)2(r2 + s2) = −4λ3 − 1.

From (3.23) and (3.16) and noting that α = 0, we get

λ2
3 + 7λ3λ5 + λ3 + 13λ5 + 3 = 0.

Hence we have

λ5 = −λ2
3 + λ3 + 3

7λ3 + 13
, λ4 = −(λ3 + λ5 + 2) = −6λ2

3 + 26λ3 + 23

7λ3 + 13
.

From (3.13) and (3.23) we deduce that

|u|2 = −3(1− λ4)(λ3 + 1)(2λ3 + 3)

7λ3 + 13
.

Since t and u are parallel, (3.15) becomes

4|t|2 · |u|2 = (−1 + λ2
3 + λ2

4 − λ2
5)

2.
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Substituting the expressions for |t|2 and |u|2 into the above equality, we obtain
−16 = 9. This is impossible. For the subcase β = 0,γ = 0,α �= 0, a similar
contradiction can be derived.

Case 3: rank{α,β,γ} = 0. In this case, we deduce from (3.16) and (3.17) that
λ4 = λ5. Letting (i, j) = (4, 5) in (2.7) we get

(3.24) r2 + s2 − t · u− |u|2 = 1− λ2
4.

Together with (3.13) we solve

(3.25) |u|2 =
1

4
(1− λ2

3), r
2 + s2 = 1− λ2

4 −
1

4
(1− λ2

3).

Substituting these into (3.16) we have λ4 = − 1
2 . Thus λ5 = λ4 = − 1

2 , λ3 = −1.
Therefore t = u = 0 and the last two components of bij vanish identically. This
contradicts the assumption that the map f is full.

For the case n = 5, only two possible cases of the rank can occur. In fact, vectors
{α,β,γ} now reduce to one-dimensional, that is, they are scalars. The proof in
this case is much simpler than the previous one. We omit the details here. This
completes the proof of Theorem 1.1.

Remark. We can give another proof of Theorem 1.1 by using a similar idea as in
[7] and the property of Octernion. However, this method involves discussing 35
possible cases and the proof is complicated.
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4. H. Gauchman, G. Tóth, Constructions of harmonic polynomial maps between spheres, Geom.

Dedicata 50 (1994), 57-79. MR1280796 (95m:58043)
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