Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Monomialization of morphisms and p-adic quantifier elimination
HTML articles powered by AMS MathViewer

by Jan Denef PDF
Proc. Amer. Math. Soc. 141 (2013), 2569-2574 Request permission

Abstract:

We give a short proof of Macintyre’s Theorem on Quantifier Elimination for $p$-adic numbers, using a version of monomialization that follows directly from the Weak Toroidalization Theorem of Abramovich and Karu (extended to non-closed fields).
References
  • D. Abramovich and K. Karu, Weak semistable reduction in characteristic 0, Invent. Math. 139 (2000), no. 2, 241–273. MR 1738451, DOI 10.1007/s002229900024
  • Dan Abramovich, Jan Denef, and Kalle Karu, Weak toroidalization over non-closed fields, Manuscripta Mathematica (2013), DOI:10.1007/s00229-013-0610-5
  • James Ax and Simon Kochen, Diophantine problems over local fields. I, Amer. J. Math. 87 (1965), 605–630. MR 184930, DOI 10.2307/2373065
  • Paul J. Cohen, Decision procedures for real and $p$-adic fields, Comm. Pure Appl. Math. 22 (1969), 131–151. MR 244025, DOI 10.1002/cpa.3160220202
  • Steven Dale Cutkosky, Local monomialization of transcendental extensions, Ann. Inst. Fourier (Grenoble) 55 (2005), no. 5, 1517–1586 (English, with English and French summaries). MR 2172273
  • Steven Dale Cutkosky, Toroidalization of dominant morphisms of 3-folds, Mem. Amer. Math. Soc. 190 (2007), no. 890, vi+222. MR 2356202, DOI 10.1090/memo/0890
  • J. Denef, The rationality of the Poincaré series associated to the $p$-adic points on a variety, Invent. Math. 77 (1984), no. 1, 1–23. MR 751129, DOI 10.1007/BF01389133
  • Jan Denef, $p$-adic semi-algebraic sets and cell decomposition, J. Reine Angew. Math. 369 (1986), 154–166. MR 850632, DOI 10.1515/crll.1986.369.154
  • Jan Denef, Algebraic geometric proof of theorems of Ax-Kochen and Ershov, 2011, http://perswww.kuleuven.be/˜u0009256/Denef-Mathematics
  • Ju. L. Eršov, On elementary theories of local fields, Algebra i Logika Sem. 4 (1965), no. 2, 5–30 (Russian). MR 0207686
  • Luc Illusie and Michael Temkin, Gabber’s modification theorem (log smooth case), 2012, Exposé 10 in: Travaux de Gabber sur l’uniformisation locale et la cohomologie étale des schémas quasi-excellents (Séminaire à l’ École Polytechnique 2006–2008). Luc Illusie, Yves Laszlo, Fabrice Orgogozo, editors, arXiv:1207.3648.
  • Angus Macintyre, On definable subsets of $p$-adic fields, J. Symbolic Logic 41 (1976), no. 3, 605–610. MR 485335, DOI 10.2307/2272038
Similar Articles
Additional Information
  • Jan Denef
  • Affiliation: Department of Mathematics, KU Leuven, Celestijnenlaan 200B, Bus 2400, 3001 Leuven, Belgium
  • Email: Jan.Denef@wis.kuleuven.be
  • Received by editor(s): September 1, 2011
  • Published electronically: May 6, 2013
  • Additional Notes: The author thanks Dan Abramovich, Steven Dale Cutkosky, and Kalle Karu for stimulating conversations and information.

  • Dedicated: Dedicated to the memory of Professor Patrick Sargos
  • Communicated by: Lev Borisov
  • © Copyright 2013 American Mathematical Society
    The copyright for this article reverts to public domain 28 years after publication.
  • Journal: Proc. Amer. Math. Soc. 141 (2013), 2569-2574
  • MSC (2010): Primary 11S05, 11G25, 14G20; Secondary 03C10
  • DOI: https://doi.org/10.1090/S0002-9939-2013-11562-5
  • MathSciNet review: 3056546