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ORBIT EQUIVALENT SUBSTITUTION DYNAMICAL SYSTEMS

AND COMPLEXITY

S. BEZUGLYI AND O. KARPEL

(Communicated by Bryna Kra)

Abstract. For any primitive proper substitution σ, we give explicit con-

structions of countably many pairwise non-isomorphic substitution dynamical
systems {(Xζn , Tζn )}∞n=1 such that they all are (strong) orbit equivalent to
(Xσ , Tσ). We show that the complexity of the substitution dynamical sys-
tems {(Xζn , Tζn )} is the essential difference that prevents them from being
isomorphic. Given a primitive (not necessarily proper) substitution τ , we find
a stationary simple properly ordered Bratteli diagram with the least possible
number of vertices such that the corresponding Bratteli-Vershik system is orbit
equivalent to (Xτ , Tτ ).

1. Introduction

The seminal paper [11] answered, among other outstanding results, the ques-
tion of orbit equivalence of uniquely ergodic minimal homeomorphisms of a Cantor
set. It was proved that two such minimal systems, (X,T ) and (Y, S), are orbit
equivalent if and only if the clopen values sets S(μ) = {μ(E) : E clopen in X} and
S(ν) = {ν(F ) : F clopen in Y } coincide, where μ and ν are the unique invariant
measures with respect to T and S, respectively. It is well known now that Brat-
teli diagrams play an extremely important role in the study of homeomorphisms of
Cantor sets because any minimal (and even aperiodic) homeomorphism of a Cantor
set is conjugate to the Vershik map acting on the path space of a Bratteli diagram
[11], [12], [14]. This realization turns out to be useful in many cases, in particular
for the study of substitution dynamical systems, because the corresponding Bratteli
diagrams are of the simplest form. It was proved in [7] that the class of minimal
substitution dynamical systems coincides with Bratteli-Vershik systems of station-
ary simple Bratteli diagrams. Later on, it was shown in [3] that a similar result is
true for aperiodic dynamical systems. These facts allow us to easily find the clopen
values set S(μ) for a substitution dynamical system in terms of the matrix of sub-
stitution (see [4] and subsection 2.2). In order to construct a minimal substitution
dynamical system which is orbit equivalent to a given one, (Xσ, Tσ) (in other words,
a simple stationary Bratteli diagram Bσ), one has to find another stationary simple
Bratteli diagram B such that the clopen values set S(μ) is kept unchanged, where
μ is a unique Tσ-invariant measure. Moreover, if one wants to have a substitution
dynamical system which is strongly orbit equivalent to (Xσ, Tσ), then additionally
the dimension group of the diagram Bσ must be unchanged. Of course, we are not
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interested in the case when powers of σ are considered since it leads trivially to
conjugate substitution systems.

We focus here on the study of (strong) orbit equivalence of minimal substitution
dynamical systems. Aperiodic non-minimal substitution systems were considered
before in [2]. There were built countably many substitution dynamical systems
such that their full ergodic invariant measures were homeomorphic (and hence the
measures had the same clopen values sets S(μ)) but the systems were pairwise not
orbit equivalent. The non-minimality of the systems was essential for the paper [2].
We note that the simplest case for minimal systems when the invariant measure μ
has rational S(μ) and λ is an integer that was studied in [17]. There were found
numerical complete invariants for topological orbit equivalence in such a class of
systems and the assumption of rationality of S(μ) was important for the proofs.

The main results of the present paper are as follows. Let (Xσ, Tσ) be a minimal
substitution dynamical system and let Bσ be a stationary simple Bratteli diagram
corresponding to (Xσ, Tσ). We give an explicit construction of countably many
substitutions {ζn}∞n=1 defined on the Bratteli diagrams {Bn}∞n=1, obtained by tele-
scoping Bσ, such that the systems {(Xζn , Tζn)}∞n=1 are strong orbit equivalent to
(Xσ, Tσ) and pairwise non-isomorphic. In the other construction, we build pairwise
non-isomorphic orbit equivalent minimal substitution dynamical systems by using
alphabets of different cardinality.

In both constructions we use the complexity function n �→ pσ(n) to distinguish
non-isomorphic systems. Recall that the function pσ(n) counts the number of
words of length n in the infinite sequence invariant with respect to σ. In the first
construction, the incidence matrices of built substitution systems are the powers
of the incidence matrix of the substitution system (Xσ, Tσ). In the case of a fixed
alphabet, the complexity function can be made to increase by enlarging the length
of substitution and an appropriate permutation of letters. Using this method,
we produce a countable family of pairwise non-isomorphic strong orbit equivalent
substitution systems. In the second construction, the complexity of the systems
is forced to grow by increasing the number of letters in the alphabet. In other
words, for a proper substitution σ defined on the alphabet A, we find countably
many proper substitutions {ζn}∞n=1 on alphabets An of different cardinality such
that (Xσ, Tσ) is orbit equivalent to (Xζn , Tζn), but the set {(Xζn , Tζn)}∞n=1 consists
of pairwise non-isomorphic substitution dynamical systems.

Given the Bratteli-Vershik system on a simple stationary diagram (B,≤), we
find an orbit equivalent stationary Bratteli-Vershik system with the least possible
number of vertices. This number is the degree of the algebraic integer λ, the
Perron-Frobenius eigenvalue of the matrix transpose to the incidence matrix of B.

2. Preliminaries

2.1. Minimal Cantor systems. A minimal Cantor system is a pair (X,T ) where
X is a Cantor space and T : X → X is a minimal homeomorphism; i.e. for every
x ∈ X the set OrbT (x) = {Tn(x) | n ∈ Z} is dense in X.

Given a minimal Cantor system (X,T ) and a clopenA ⊂ X, let rA(x) = min{n ≥
1 : Tn(x) ∈ A} be a continuous integer-valued map defined on A. Then TA(x) =
T rA(x) is a homeomorphism of A, and (A, TA) is a Cantor minimal system and is
said to be induced from (X,T ).

There are several notions of equivalence for minimal Cantor systems.
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Definition 2.1. Let (X,T ) and (Y, S) be two minimal Cantor systems. Then:
(1) (X,T ) and (Y, S) are conjugate (or isomorphic) if there exists a homeomor-

phism h : X → Y such that h ◦ T = S ◦ h.
(2) (X,T ) and (Y, S) are orbit equivalent if there exists a homeomorphism

h : X → Y such that h(OrbT (x)) = OrbS(h(x)) for every x ∈ X. In other words,
there exist functions n,m : X → Z such that for all x ∈ X, h ◦ T (x) = Sn(x) ◦ h(x)
and h◦Tm(x) = S◦h(x). The functions n,m are called the orbit cocycles associated
to h.

(3) (X,T ) and (Y, S) are strong orbit equivalent if they are orbit equivalent and
each of the corresponding orbit cocycles has at most one point of discontinuity.

(4) (X,T ) and (Y, S) are Kakutani equivalent if they both have clopen subsets
such that the corresponding induced systems are conjugate.

(5) (X,T ) and (Y, S) are Kakutani orbit equivalent if they both have clopen
subsets such that the corresponding induced systems are orbit equivalent.

2.2. Bratteli diagrams.

Definition 2.2. A Bratteli diagram is an infinite graph B = (V,E) such that the
vertex set V =

⋃
i≥0 Vi and the edge set E =

⋃
i≥1 Ei are partitioned into disjoint

subsets Vi and Ei such that:
(i) V0 = {v0} is a single point;
(ii) Vi and Ei are finite sets;
(iii) there exist a range map r and a source map s from E to V such that

r(Ei) = Vi, s(Ei) = Vi−1, and s−1(v) 	= ∅, r−1(v′) 	= ∅ for all v ∈ V and v′ ∈ V \V0.

The pair (Vi, Ei) or just Vi is called the i-th level of the diagram B. A sequence
of edges (ei : ei ∈ Ei) such that r(ei) = s(ei+1) is called a path. We denote by XB

the set of all infinite paths starting at the vertex v0. This set is endowed with the
standard topology turning XB into a Cantor set.

Given a Bratteli diagram B = (V,E), we define a sequence of incidence matrices

Fn = (f
(n)
vw ) of B: f

(n)
vw = |{e ∈ En+1 : r(e) = v, s(e) = w}|, where v ∈ Vn+1 and

w ∈ Vn. Here and thereafter |V | denotes the cardinality of the set V . A Bratteli
diagram is called stationary if Fn = F1 for every n ≥ 2.

A Bratteli diagram B′ = (V ′, E′) is called the telescoping of a Bratteli diagram
B = (V,E) to a sequence 0 = m0 < m1 < . . . if V ′

n = Vmn
and E′

n is the set of all
paths from Vmn−1

to Vmn
, i.e. E′

n = Emn−1
◦ . . . ◦ Emn

= {(emn−1
, . . . , emn

) : ei ∈
Ei, r(ei) = s(ei+1)}.

Observe that every vertex v ∈ V is connected to v0 by a finite path, and the
set E(v0, v) of all such paths is finite. A Bratteli diagram is called simple if for
any n > 0 there exists m > n such that any two vertices v ∈ Vn and w ∈ Vm are
connected by a finite path.

A Bratteli diagram B = (V,E) is called ordered if every set r−1(v), v ∈
⋃

n≥1 Vn,

is linearly ordered. Given an ordered Bratteli diagram (B,≤) = (V,E,≤), any
two paths from E(v0, v) are comparable with respect to the lexicographical order
[12]. We call a finite or infinite path e = (ei) maximal (minimal) if every ei is
maximal (minimal) amongst the edges from r−1(r(ei)). A simple ordered Bratteli
diagram (B,≤) is properly ordered if there are unique maximal and minimal infinite
paths. Any simple stationary Bratteli diagram can be properly ordered. A Bratteli
diagram B = (V,E,≤) is called stationary ordered if it is stationary and the partial
linear order on En does not depend on n.
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Let (B,≤) = (V,E,≤) be a simple properly ordered stationary Bratteli diagram.
Define a minimal homeomorphism φB : XB → XB as follows. Let φB(xmax) =
xmin. If x = (x1, x2, . . .) 	= xmax, let k be the smallest number so that xk is
not a maximal edge. Let yk be the successor of xk (hence r(xk) = r(yk)). Set
φB(x) = (y1, . . . , yk−1, yk, xk+1, xk+2, . . .), where (y1, . . . , yk−1) is the minimal path
in E(v0, s(yk)). The resulting minimal Cantor system (XB, φB) is called a Bratteli-
Vershik system. If (B′,≤′) is a telescoping of (B,≤) which preserves the lexico-
graphical order, then the Bratteli-Vershik systems (XB, φB) and (XB′ , φB′) are
isomorphic.

Definition 2.3. Let B = (V,E) be a Bratteli diagram. Two infinite paths x = (xi)
and y = (yi) from XB are called tail equivalent if there exists i0 such that xi = yi
for all i ≥ i0. Denote by R the tail equivalence relation on XB.

A Bratteli diagram is simple if the tail equivalence relation R is minimal; i.e. for
arbitrary path x ∈ XB the set {y ∈ XB : y is tail equivalent to x} is dense in XB.

Denote X
(n)
w (e) := {x = (xi) ∈ XB : xi = ei, i = 1, . . . , n}, where e = (e1, . . . , en) ∈

E(v0, w), n ≥ 1. A measure μ on XB is called R-invariant if for any two paths

e and e′ from E(v0, w) and any vertex w, one has μ(X
(n)
w (e)) = μ(X

(n)
w (e′)). The

measure invariant for a stationary Bratteli-Vershik system is R-invariant.
In the paper, we will consider only simple stationary Bratteli diagrams. Let

A = FT be the matrix transpose to the incidence matrix of a diagram B. Let λ be
a Perron-Frobenius eigenvalue of A and let x = (x1, . . . , xK)T be the corresponding

positive eigenvector such that
∑K

i=1 xi = 1. Suppose B has no multiple edges
between levels 0 and 1. Then there is an ergodic probability measure μ defined by
λ and x that satisfies the relation

μ(X
(n)
i (e)) =

xi

λn−1
,

where i ∈ Vn and e is a finite path with r(e) = i. Therefore, the clopen values set
for μ has the form

S(μ) =

{
K∑
i=1

k
(n)
i

xi

λn−1
: 0 ≤ k

(n)
i ≤ h

(n)
i ; n = 1, 2, . . .

}
,

where h
(n)
i = |E(v0, vi)|, vi ∈ Vn. Let H(x) be the additive subgroup of R generated

by x1, . . . , xK . We have S(μ) =
(⋃∞

N=0
1

λN H(x)
)
∩ [0, 1] (see [2]). It is easy to see

that λH(x) ⊂ H(x) and λm ∈ H(x) for any m ∈ N (see [2]).

2.3. Substitution dynamical systems. Let A = {a1, . . . , as} be a finite al-
phabet. Let A∗ be the collection of finite non-empty words over A. Denote by
Ω = AZ the set of all two-sided infinite sequences on A. A substitution σ is a map
σ : A → A∗. It extends to maps σ : A∗ → A∗ and σ : Ω → Ω by concatenation.
Denote by T the shift on Ω: T (. . . x−1.x0x1 . . .) = . . . x−1x0.x1 . . . .

Let Aσ = (aij)
s
i,j=1 be the incidence matrix associated to σ where aij is the

number of occurrences of ai in σ(aj). Clearly, Aσn = (Aσ)
n for every n ≥ 0. A

substitution σ is called primitive if there is n such that for each ai, aj ∈ A, aj
appears in σn(ai). Note that σ is primitive if and only if Aσ is a primitive matrix.
If it happens that |σ(a)| = q for any a ∈ A, then the substitution σ is said to be of
constant length q. For x ∈ Ω, let Ln(x) be the set of all words of length n occurring



ORBIT EQUIVALENT SUBSTITUTION DYNAMICAL SYSTEMS 4159

in x. Set L(x) =
⋃

n∈N Ln(x). The language of σ is the set Lσ of all finite words
occurring in σn(a) for some n ≥ 0, a ∈ A. Set Xσ = {x ∈ Ω : L(x) ⊂ Lσ}.

Throughout this paper we will consider only primitive substitutions σ such that
Xσ is a Cantor set. The dynamical system (Xσ, Tσ), where Tσ is the restriction of T
to the T -invariant set Xσ, is called the substitution dynamical system associated to
σ. It is well known (see [16]) that every primitive substitution generates a minimal
and uniquely ergodic dynamical system.

The proofs of the following statements can be found in [16]. For every integer
p > 0 the substitution σp defines the same language as σ, hence the systems (Xσ, Tσ)
and (Xσp , Tσp) are isomorphic. Substituting σp for σ if needed, we can assume that
there exist two letters r, l ∈ A such that r is the last letter of σ(r), l is the first
letter of σ(l) and rl ∈ Lσ. The sequence ω = limn→∞ σn(r.l) ∈ Xσ is a fixed point

of σ (that is, σ(ω) = ω) and ω−1 = r, ω0 = l. Then Xσ = OrbT (ω).
The complexity of u ∈ Ω is the function pu(n) which associates to each integer

n ≥ 1 the cardinality of Ln(u). It is easy to see that

(2.1) pu(k + 1)− pu(k) =
∑

w∈Lk(u)

(Card {a ∈ A : wa ∈ Lk+1(u)} − 1).

The sequence u is calledminimal if every word occurring in u occurs in an infinite
number of places with bounded gaps. A fixed point of a primitive substitution is
always minimal (see [8, 16]). Let Xu be the set of all sequences x ∈ Ω such that
Ln(x) = Ln(u) for every n ∈ N. For a primitive substitution σ with the fixed point

u, we have Xσ = Xu = OrbT (u). Hence px(n) = pu(n) for every n and every
x ∈ Xu. Sometimes we will denote pu by pσ to stress that the complexity function
is defined by σ.

The following results can be found in [6, 8, 16].

Theorem 2.4. (1) If the symbolic systems (Xu, T ) and (Xv, T ) associated to min-
imal sequences u and v are topologically conjugate, then there exists a constant c
such that, for all n > c,

pu(n− c) ≤ pv(n) ≤ pu(n+ c).

Hence a relation pu(n) ≤ ank + ō(nk) when n → ∞ is preserved by conjugacy
(isomorphism).

(2) Let ζ be a primitive substitution and p the complexity function of a fixed
sequence u = ζ(u). Then, there exists a constant C > 0 such that p(n) ≤ Cn for
every n ≥ 1.

(3) Let u ∈ {a1, . . . , as}Z and p be the complexity function of u. Suppose that
there exists a > 0 such that p(n) ≤ an for all n ≥ n0. Then

p(n+ 1)− p(n) ≤ Ksa3

for all n ≥ n0, where K does not depend on u.

Definition 2.5. A substitution σ on an alphabet A is called proper if there exists
an integer n > 0 and two letters a, b ∈ A such that for every c ∈ A, a is the first
letter and b is the last letter of σn(c).

For every primitive substitution ζ, there exists a proper substitution σ such that
the substitution systems (Xζ , Tζ) and (Xσ, Tσ) are isomorphic. The substitution σ
is built using the method of return words (see [7]). The following theorem estab-
lishes the link between incidence matrices of ζ and σ.
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Theorem 2.6 ([17]). Let ζ be a non-proper primitive substitution and let λ be the
Perron-Frobenius eigenvalue of its incidence matrix Aζ . Let σ be the corresponding
proper substitution built by means of return words. Then the Perron-Frobenius
eigenvalue of Aσ is λk for some k ∈ N.

Stationary Bratteli diagrams are naturally related to substitution dynamical
systems (primitive substitutions are considered in [7], [10], and the non-primitive
case is studied in [3]). More precisely, let (B,≤) = (V,E,≤) be a stationary ordered
Bratteli diagram with no multiple edges between levels 0 and 1. Choose a stationary
labeling of Vn by an alphabet A: Vn = {vn(a) : a ∈ A}, n > 0. For a ∈ A consider
the ordered set (e1, . . . , es) of edges with range vn(a), n ≥ 2. Let (a1, . . . , as) be
the corresponding ordered set of the labels of the sources of these edges. The map
a �→ a1 · · · as from A to A∗ does not depend on n and determines a substitution
called the substitution read on (B,≤). Conversely, for any substitution dynamical
system we can build the corresponding ordered stationary Bratteli diagram. The
following theorem, proved in [7], shows the link between simple Bratteli diagrams
and primitive substitution dynamical systems.

Theorem 2.7. Let (B,≤) be a stationary, properly ordered Bratteli diagram with
only simple edges between the top vertex and the first level. Let σ be the substitution
read on (B,≤).

(i) If σ is aperiodic, then the Bratteli-Vershik system (XB, φB) is isomorphic to
the substitution dynamical system (Xσ, Tσ).

(ii) If σ is periodic, the Bratteli-Vershik system (XB, φB) is isomorphic to a
stationary odometer.

In [17], the following result was proved:

Theorem 2.8. Let σ be a primitive substitution whose incidence matrix has a nat-
ural Perron-Frobenius eigenvalue. Then (Xσ, Tσ) is orbit equivalent to a stationary
odometer system.

We will need the next result (see [7, 10]):

Theorem 2.9. Let (B,≤) be a stationary properly ordered Bratteli diagram. Then
there exists a stationary properly ordered Bratteli diagram (B′,≤′) such that B′ has
no multiple edges between levels 0 and 1 and the systems (XB, φB), (XB′ , φB′) are
isomorphic.

3. Orbit equivalence class for a primitive substitution

Given a primitive proper substitution σ, we build countably many pairwise non-
isomorphic substitution dynamical systems {(Xζn , Tζn)}∞n=1 in the orbit equivalence
class of (Xσ, Tσ). Two essentially different constructions are elaborated. In the first
one, we obtain countably many strong orbit equivalent substitution systems defined
on the same alphabet. The second construction produces countably many orbit
equivalent substitution systems with increasing cardinality of alphabets. Finally,
given a primitive (not necessarily proper) substitution τ , we find a stationary simple
properly ordered Bratteli diagram with the least possible number of vertices such
that the corresponding Bratteli-Vershik system is orbit equivalent to (Xτ , Tτ ).

Theorem 3.1. Let σ be a primitive proper substitution. Let (B,≤) be the cor-
responding stationary properly ordered simple Bratteli diagram. Then there exist



ORBIT EQUIVALENT SUBSTITUTION DYNAMICAL SYSTEMS 4161

countably many telescopings Bn of B with proper orders ≤n and corresponding
substitutions ζn read on Bn such that the substitution dynamical systems
{(Xζn , Tζn)}∞n=1 are pairwise non-isomorphic and strong orbit equivalent to
(Xσ, Tσ).

Proof. Let A = {a1, . . . , as} be the alphabet for σ. Fix a number l ∈ N. Let

{ωr}s
l

r=1 denote the set of all possible words of length l over the alphabet A. For
any N ∈ N we can consider the telescoping BN of B with respect to a sequence
{kN}∞k=0. Later in the proof we will choose some specific N . Let F = AT be the
incidence matrix of B. Then FN is the incidence matrix of BN . In our construction
we will define a proper substitution ζ = ζ(l) that is read on the Bratteli diagram BN

whose incidence matrix is Aζ = AN . This means that the number of occurrences
of any letter ai in ζ(aj) is known but we are free to choose any order of letters in
the word ζ(aj). In other words, we will change the lexicographical order ≤, which
obviously determines σN , in order to define ζ. Since the matrix A is primitive,
we can take N = N(l) sufficiently large to guarantee that ζ satisfies the following
conditions:

(1) for all 1 ≤ j ≤ s the word ζ(aj) starts with the word a1aj and ends with the
letter a1;

(2) the word ζ(a1) contains as subwords all words {ωiaj} for 1 ≤ i ≤ sl and
1 ≤ j ≤ s.

Obviously, it follows that ζ is a proper substitution. The two substitution dy-
namical systems, (Xζ , Tζ) and (Xσ, Tσ), are strongly orbit equivalent. Indeed, if we
consider the Bratteli diagrams corresponding to (XσN , TσN ) and (Xζ , Tζ) as being
unordered, they are identical. Hence the dimension groups associated to these min-
imal Cantor systems are order isomorphic by a map preserving the distinguished
order unit (see Theorem 2.1 in [11]).

We need to show that for an appropriate choice of l the substitution ζ = ζ(l)
is such that the systems (Xζ(l), Tζ(l)) and (Xσ, Tσ) are not isomorphic. We see
that ζ∞(a1.a1) = limn→∞ ζn(a1.a1) is a fixed point. The parameter l should now
be chosen in such a way that the complexity function pζ of ζ∞(a1.a1) grows es-
sentially faster then the complexity function associated to (Xσ, Tσ). We use the
proof by contradiction. Suppose that for any l the dynamical systems (Xσ, Tσ)
and (Xζ(l), Tζ(l)) are isomorphic. By Theorem 2.4 (2), there exists C > 0 such
that pσ(n) ≤ Cn for every n ≥ 1. Then it follows from Theorem 2.4 (1) that
pζ(n) ≤ (C + 1)n for sufficiently large n. Then, by Theorem 2.4 (3), we have
pζ(n + 1) − pζ(n) ≤ Ks(C + 1)3 for sufficiently large n, where K is the universal
constant which depends only on the slope C + 1 (see [5]). We show that we can
choose the parameter l and an increasing sequence of natural numbers {nk}∞k=0

such that the difference pζ(nk +1)− pζ(nk) is larger than Ks(C+1)3 for all k ≥ 0.
Thus, we get a contradiction.

To clarify the method of the proof, we first prove the theorem in the case when
σ is a substitution of constant length q. Then ζ is a substitution of length qN .

By definition of ζ, we have pζ(1) = s, pζ(2) = s2 and pζ(k) = sk for 1 ≤ k ≤ l+1.
The word ζ2(a1) contains the words ζ(ωi)ζ(aj) for 1 ≤ i ≤ sl and 1 ≤ j ≤ s. Recall

that ζ(aj) starts with a1aj . Thus, ζ
2(a1) contains s

l different words {ζ(ωi)a1}s
l

i=1,
and each word can be followed by any letter from A. Since lq + 1 = |ζ(ωi)|+ |a1|,
we obtain pζ(lq + 2)− pζ(lq + 1) ≥ sl(s− 1) by (2.1).
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Consider ζ3(a1). Then apply the previous arguments with ζ(ai) instead of ai.
Since |ζ2(ωi)|+ |ζ(a1)|+ |a1| = lq2+ q+1, we get pζ(lq

2+ q+2)−pζ(lq
2+ q+1) ≥

sl(s− 1). Thus, we conclude by induction that for all m ∈ N,

pζ(lq
m +

m−1∑
i=0

qi + 1)− pζ(lq
m +

m−1∑
i=0

qi) ≥ sl(s− 1).

Taking l large enough, we can make the difference pζ(k+1)−pζ(k) arbitrarily large
for an infinite number of values of k.

To prove the theorem in the general case, denote qm = |ζm(a1)| for m ∈ N.
Let Dm = max1≤i≤s |ζm(ai)| and dm = min1≤i≤s |ζm(ai)|. Since |ωi| = l, we have
ldm ≤ |ζm(ωi)| ≤ lDm for any 1 ≤ i ≤ sl and m ≥ 1. The matrix Aζ is strictly
positive; hence there exist positive constants M1, M2 such that for every m ≥ 1 we
haveM1λ

m ≤ dm ≤ Dm ≤ M2λ
m, where λ is the Perron-Frobenius eigenvalue of Aζ

(see [16]). Hence Dm

dm
≤ M2

M1
for all m ≥ 1. For r > 0, set l = l(r) =

([
M2

M1

]
+ 1

)
r.

Then l ≥ rM2

M1
≥ rDm

dm
and ldm ≥ rDm for all m ≥ 1. Thus, {ζm(ωi)}s

l

i=1 contains
at least sr different suffixes of length Dmr and each suffix can be followed by any
word from {ζm(aj)}sj=1. By the same argument as in the case of substitution of
constant length, we conclude that

pζ(Dmr +
m−1∑
i=0

qi + 1)− pζ(Dmr +
m−1∑
i=0

qi) ≥ sr(s− 1).

Thus, the systems (Xσ, Tσ) and (Xζ , Tζ) are not isomorphic.
Recall that pσ(n) ≤ Cn for all n ≥ 1 and the parameter l is such that the in-

equality pζ(l)(n) ≤ (C+1)n does not hold for infinitely many values of n. Therefore,
for any N ∈ N there exists M > N such that pζ(M) > (C + 1)M . Set ζ1 = ζ.
There exists C1 > 0 such that pζ1(n) ≤ C1n for every n ≥ 1. By the same method
as above, we construct ζm+1 using ζm for m ∈ N. We obtain pζm(n) ≤ Cmn for
n ≥ 1, and for any N ∈ N there exists M > N such that pζm+1

(M) > (Cm + 1)M .
Hence, by Theorem 2.4, we obtain countably many pairwise non-isomorphic sub-
stitution dynamical systems {(Xζm , Tζm)}∞m=1 in the strong orbit equivalence class
of (Xσ, Tσ). �

In contrast to the first construction, where the cardinality of the alphabet was
fixed and which led us to a class of strongly orbit equivalent substitution systems, we
will now consider a class of substitution dynamical systems defined on the alphabets
of variable cardinality.

Recall that for a vector x, we denote by H(x) the additive subgroup generated
by the coordinates of x. For a primitive matrix A ∈ Mat(N, s) with the Perron-
Frobenius eigenvalue λ and the corresponding normalized eigenvector x, we denote
it by S(A) =

⋃∞
N=0

1
λN H(x).

Lemma 3.2. Let A ∈ Mat(N, s) be a primitive matrix. Then there exist primitive
matrices {An}∞n=1, where An ∈ Mat(N, s + n) such that S(A) = S(An) for all
n ∈ N.

Proof. Let λ be the Perron-Frobenius eigenvalue of A and x = (x1, . . . , xs)
T the

corresponding normalized eigenvector. We construct an (s + 1) × (s + 1) matrix
A1 such that A1 satisfies the condition of the lemma and y = (x1, . . . , xs, λ − 1)T
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is the Perron-Frobenius eigenvector of A1. Since x is the normalized eigenvector of
A, we have

∑s
j=1 aijxj = λxi and

∑s
i=1

∑s
j=1 aijxj = λ. Then

λ− 1 =

s∑
j=1

xj

(
s∑

i=1

aij − 1

)
∈ H(x1, . . . , xs).

Denote by a
(k)
ij the entries of the matrix Ak. We have

λkxi =

s∑
j=1

a
(k)
ij xj =

s∑
j=1

(
a
(k)
ij − (

s∑
l=1

alj − 1)

)
xj + λ− 1.

Clearly, all the coefficients a
(k)
ij − (

∑s
l=1 alj − 1) are positive integers for sufficiently

large k. We have λk(λ − 1) =
∑s

j=1(
∑s

i=1(a
(k+1)
ij − a

(k)
ij ))xj . It is obvious that

the numbers
∑s

i=1(a
(k+1)
ij − a

(k)
ij ) are positive integers for all k ∈ N and 1 ≤ j ≤ s.

Hence we define

A1 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

a
(k)
11 − (

∑s
i=1 ai1 − 1) . . . a

(k)
1n − (

∑s
i=1 ai,n − 1) 1

...
. . .

...
...

a
(k)
n1 − (

∑s
i=1 ai1 − 1) . . . a

(k)
nn − (

∑s
i=1 ai,n − 1) 1

∑s
i=1(a

(k+1)
i1 − a

(k)
i1 ) . . .

∑s
i=1(a

(k+1)
i,n − a

(k)
i,n) 0

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠
.

It is straightforward to check that A1y = λky. Since λ−1 ∈ H(x1, . . . , xs), we have
H(y1, . . . , ys+1) = H(x1, . . . , xs). The normalized Perron-Frobenius eigenvector of
A1 is z = 1

λy. Since λH(x) ⊂ H(x), we see that S(A) = S(A1).
To complete the proof, we note that the construction of An+1 uses An in the

same way as the construction of A1 uses A. �

Theorem 3.3. Let σ be a proper substitution. Then there exist countably many
proper substitutions {ζn}∞n=1 such that (Xσ, Tσ) is orbit equivalent to (Xζn , Tζn) but
the systems {(Xζn , Tζn)}∞n=1 are pairwise non-isomorphic.

Proof. Let A be the incidence matrix of substitution σ defined on an alphabet
{a1, . . . , as}. Let λ be the Perron-Frobenius eigenvalue of A and x = (x1, . . . , xs)

T

be the normalized Perron-Frobenius eigenvector. By Theorem 2.4, there exists
C > 0 such that pσ(n) ≤ Cn for every n ≥ 1. We can assume C ∈ N and

C + 1 > s. By Lemma 3.2, there exists a primitive matrix Ã ∈ Mat(N, C + 2)

such that S(Ã) = S(A). We define a primitive substitution ζ on the alphabet

{a1, . . . , aC+2} such that Aζ = Ã. We can always assume that (Ã)1i ≥ 2 for

i = 1, . . . , C + 2; otherwise we would take the power of Ã instead of Ã. We require
also that the word ζ(aj) starts with the letters a1aj and ends with the letter a1 for
all j = 1, . . . , C + 2. Then ζ is a proper primitive substitution.

Denote by u = limn→∞ ζn(a1.a1) the unique fixed point for ζ. Since ζ is prim-
itive, the sequence u contains ζk(aj) = ζk−1(a1)ζ

k−2(a1) . . . ζ(a1)a1aj . . . a1 as a
subword for k ≥ 1 and j = 1, . . . , C + 2. We have pu(1) = C + 2. Since all let-

ters {aj}C+2
j=1 can follow the word ζk−1(a1)ζ

k−2(a1) . . . ζ(a1)a1 for any k, we have
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pu(n + 1) − pu(n) ≥ C + 1 for n ≥ 1 by (2.1). It follows that pu(n) > (C + 1)n
for all n ≥ 1. Hence, by Theorem 2.4, the systems (Xσ, Tσ) and (Xζ , Tζ) are not
isomorphic.

We will apply induction to produce a needed sequence of substitutions. For ζ1 :=
ζ, there exists C1 > 0 such that pζ1(n) ≤ C1n for every n ≥ 1. By the same method
as above, we can construct ζm+1 using ζm for m ∈ N such that S(Aζm) = S(A). We
obtain Cmn ≤ pζm+1

(n) ≤ Cm+1n for m ∈ N and n ≥ 1. Hence, by Theorem 2.4
and Lemma 3.2, we obtain countably many pairwise non-isomorphic substitution
dynamical systems {(Xζm , Tζm)}∞m=1 in the orbit equivalence class of (Xσ, Tσ). �

In the case of a primitive substitution, we find a stationary simple properly
ordered Bratteli diagram with the least possible number of vertices such that the
corresponding dynamical systems are orbit equivalent. In the case of a primitive
substitution whose incidence matrix has a natural Perron-Frobenius eigenvalue, the
corresponding diagram has only one vertex on each level (see Theorem 2.8). We
recall some notions and results from [2].

Let A ∈ Mat(N, s) be a primitive matrix. Let λ be a Perron-Frobenius eigenvalue
of A and x = (x1, . . . , xs)

T be the normalized Perron-Frobenius eigenvector. Denote
by k the degree of the algebraic integer λ. The number field Q(λ) is a subfield of R
whose elements are written as {a0 + a1λ+ . . . + ak−1λ

k−1 : a0, a1, . . . , ak−1 ∈ Q}.
The numbers 1, λ, . . . , λk−1 form a basis of Q(λ) as a vector space over Q. If we
need to emphasize that a real number y = a0 + a1λ + . . . + ak−1λ

k−1 ∈ Q(λ) is
considered as a vector (a0, a1, . . . , ak−1)

T ∈ Qk, we will use the notation y. Let n
denote the vector (1, λ, . . . , λk−1)T ∈ Rk. Then, for any y ∈ Qk, the corresponding
number y ∈ R can be written as y = 〈y,n〉.

Let B be a stationary simple Bratteli diagram with incidence matrix F = AT and
no multiple edges between levels 0 and 1. Let μ be its unique ergodic probability
R-invariant measure. Let G(S(μ)) be an additive subgroup of reals generated by
S(μ). It is not hard to see that S(A) = G(S(μ)) ⊂ Q(λ).

Let p(λ) be the polynomial in Q(λ) such that λ−1 = p(λ). The map y �→ p(λ)y
in Q(λ) determines a linear transformation in the vector space Qk. Let D be
the matrix which corresponds to this transformation. The following results can
be found in the proof of Theorem 3.2 in [2]. The matrix D ∈ Mat(Q, k) is a
non-singular matrix, and for any x ∈ Qk the vector Dx ∈ Qk corresponds to the
number x

λ ∈ R. Let C = D−1. The matrix C has only one eigenvector y1 with
eigenvalue λ, the absolute value of any other eigenvalue of C is less than λ, and y1

is the only eigenvector of C that is not orthogonal to n. Obviously, we can assume
〈y1,n〉 > 0. Denote by π = {y ∈ Rk : 〈y,n〉 = 0}. The iterations of C drive any
ray which is not in π to the limit ray generated by y1; the iterations of D = C−1 do
the opposite. More precisely, if 〈y,n〉 	= 0 for some y ∈ Qk, then the angle between
the line generated by DNy and π can be made arbitrarily small when N tends to
infinity.

Remark 3.4. For A ∈ Mat(N, s), let λ be the Perron-Frobenius eigenvalue for A
and x = (x1, . . . , xs)

T be the corresponding eigenvector. Then deg λ = deg λm

for all m ∈ N. Indeed, since the Perron-Frobenius eigenvalue of Am is λm and
Amx = λmx, we have deg λm = dim(LinQ{x1, . . . ,xk}) = deg λ.
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Lemma 3.5. Let A ∈ Mat(N, s) be a primitive matrix. Let λ be the Perron-
Frobenius eigenvalue of A. Let k ≥ 2 be the degree of algebraic number λ. Then

there exists a primitive matrix Ã ∈ Mat(N, k) such that S(Ã) = αS(A) for some
positive α ∈ Q(λ). Moreover, k is the least possible dimension for which this equality
holds.

Proof. Let x = (x1, . . . , xs)
T be the normalized Perron-Frobenius eigenvector of A.

Let Λ(x1, . . . ,xs) be the lattice in Rk generated by x1, . . . ,xs. Then Λ(x1, . . . ,xs) ⊂
Qk corresponds to the group H(x1, . . . , xs) ⊂ R. There exist f1, . . . , fk ∈ Qk such
that Λ(f1, . . . , fk) = Λ(x1, . . . ,xs) (see [15]). Since 1, λ, . . . , λk−1 ∈ H(x), the vec-
tors {fi}ki=1 form a basis of Qk. By changing fi to −fi, we can make all vectors
{fi}ki=1 satisfy the inequality 〈fi,n〉 > 0. Since D is a non-singular linear trans-
formation of Qk, the vectors {DN fi}ki=1 form a basis of Qk for every N ∈ N and
Λ(DN f1, . . . , D

N fk) = Λ(DNx1, . . . , D
Nxs). Consider the cone

K(DN f1, . . . , D
N fk) = {

k∑
i=1

βiD
N fi : βi ≥ 0, i = 1, . . . , k}.

Recall that y1 is an eigenvector of C such that 〈y1,n〉 > 0 and the iterations of
C drive any ray which is not in π to the limit ray generated by y1. There exists
N ∈ N such that the vectors y1,x1, . . . ,xs lie in the cone K(DN f1, . . . , D

N fk).
Then there exists an integer M > 0 such that DN−M fi ∈ K(DN f1, . . . , D

N fk) for
i = 1, . . . , k. Since λH(x) ⊂ H(x), we also have DN−M fi ∈ Λ(DN f1, . . . , D

N fk) for
i = 1, . . . , k. Since f1, . . . , fk are linearly independent, there exist positive integers

{ãij}ki,j=1 such that DN−M fi =
∑k

j=1 ãijD
N fj for i = 1, . . . , k. Set zi = 〈DN fi,n〉

and Ã = (ãij)
k
i,j=1. Then

z =

(
z1∑k
l=1 zk

, . . . ,
zk∑k
l=1 zk

)T

∈ Rk

is a normalized Perron-Frobenius eigenvector for Ã with eigenvalue λM . Setting α =∑k
l=1 zk, we obtain that αS(A) = S(Ã) because H(z1, . . . , zk) =

1
λN H(x1, . . . , xs).

Now we show that if P ∈ Mat(N, l) such that S(P ) = αS(A) for some α ∈ R,
then l ≥ k. First, we show that deg β = d ≥ k. Assume that the converse holds.
Suppose deg β = d < k. Recall that 1, λ, . . . , λk−1 ∈ H(x1, . . . , xs). We have
S(P ) ⊂ Q(β). Then the elements of S(P ) = αS(A) can be represented as some
vectors of Qd. In particular, α, αλ, . . . , αλk−1 can be represented as v1, . . . ,vk ∈
Qd. Since d < k, the vectors {vi}ki=1 are linearly dependent over Q; hence there

exist rational numbers {ri}ki=1 such that
∑k

i=1 rivi = 0. Returning from Qd to R

we obtain α
∑k

i=1 riλ
i = 0. But then the algebraic degree of λ is less than k. This

is a contradiction, and hence d ≥ k. Since β is a root of characteristic polynomial
for P , the dimension of P is not less than k. �

Remark 3.6. Given a Perron number λ with deg λ = k, we show that there exists a

primitive matrix Ã ∈ Mat(N, k) such that λM is the Perron-Frobenius eigenvalue

of Ã for some M ∈ N. In [13], it was shown that there may not exist a matrix

Ã ∈ Mat(N, k) with the Perron-Frobenius eigenvalue λ (see Example 3.13 below).

Recall that a stationary Bratteli diagram may have multiple edges between levels
0 and 1. The following theorem is a generalization of Theorem 2.8.
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Theorem 3.7. Let σ be a primitive substitution whose incidence matrix has a
Perron-Frobenius eigenvalue λ and k = deg λ. Then (Xσ, Tσ) is orbit equivalent to
a Bratteli-Vershik system defined on a stationary Bratteli diagram with k vertices
on each level. Moreover, there is no stationary Bratteli-Vershik system with less
than k vertices which is orbit equivalent to (Xσ, Tσ).

Proof. Suppose σ is not a proper substitution. Then, by Theorem 2.6, there exists
a proper substitution ζ with incidence matrix Aζ such that (Xζ , Tζ) is isomorphic
to (Xσ, Tσ) and the Perron-Frobenius eigenvalue of Aζ is λd for some d ∈ N. By
Remark 3.4, we have deg λ = deg λd = k. Thus, without loss of generality, we may
assume that σ is a proper substitution.

We will use the notation from Lemma 3.5. Let A be the incidence matrix for
σ. There exist a primitive matrix Ã ∈ Mat(N, k) and a positive number α ∈ Q(λ)

such that S(Ã) = αS(A). Let (B,≤) be a stationary ordered Bratteli diagram cor-
responding to σ and let μ be the unique invariant measure for the Bratteli-Vershik

system (XB, φB). Suppose B̃ is the stationary Bratteli diagram with incidence ma-

trix F̃ = ÃT and no multiple edges between levels 0 and 1. Let x = (x1, . . . , xs)
T

be a normalized Perron-Frobenius eigenvector for A. The diagram B̃ has k vertices
and 1

α (〈DN f1,n〉, . . . , 〈DN fk,n〉)T is the normalized Perron-Frobenius eigenvector

for Ã. Since the vectors x1, . . . ,xs lie in the positive cone K(DN f1, . . . , D
N fk) and

in the lattice Λ(DN f1, . . . , D
N fk), each xi is a linear combination of {DN fj}kj=1

with natural coefficients. We make a finite change between the zero and first levels

of B̃ and obtain B1 as follows. If xi =
∑k

j=1 bijD
N fj , then let B1 have

∑s
i=1 bij

edges between v0 and the j-th vertex of the first level. Let ≤1 be a proper order
on B1. Let ν be the unique invariant measure for (XB1

, φB1
). Then (B1,≤1) is

a stationary Bratteli diagram such that G(S(ν)) = G(S(μ)). Hence the Bratteli-

Vershik system on (B1,≤1) is orbit equivalent to (Xσ, Tσ). Let ≤̃ be any proper

order on B̃. Note that the proper substitution systems associated to (B,≤) and

(B̃, ≤̃) are Kakutani orbit equivalent. Indeed, two Bratteli-Vershik systems asso-
ciated to properly ordered Bratteli diagrams are Kakutani equivalent if and only
if one diagram can be obtained from the other by a finite change, i.e. by doing a
finite number of finite telescopings and adding and/or removing a finite number of
edges (see [7]). By Lemma 3.5, there is no stationary Bratteli-Vershik system on
the diagram with less than k vertices which is orbit equivalent to (Xσ, Tσ). �

Remark 3.8. The diagram (B1,≤1) has multiple edges between levels 0 and 1. By
Theorem 2.9, there exists a stationary Bratteli diagram (B2,≤2) such that B2 has
no multiple edges between levels 0 and 1, and Bratteli-Vershik systems (XB1

, φB1
),

(XB2
, φB2

) are isomorphic. Let A2 be the matrix transpose to the incidence matrix
of B2. Then S(A2) = S(A).

The corollary easily follows from the proof of Theorem 3.7 and Remark 3.8.
A Perron number is a real algebraic integer greater than one, that is, larger than

the absolute value of any of its Galois conjugates [13].

Corollary 3.9. Let λ ∈ R be a Perron number and {xi}si=1 ⊂ Q(λ) ∩ (0,∞) with∑s
i=1 xi = 1. Let H = H(x1, . . . , xs) be the additive group generated by x1, . . . , xs.

Suppose {xi}si=1 are vectors in Qk corresponding to {xi}si=1 and LinQ{xi}si=1 de-
notes the set of all rational linear combinations of {xi}si=1.
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(i) If LinQ{xi}si=1 = Qk and λMH ⊂ H for some M ∈ N, then there exists a
primitive matrix A with natural entries such that S(A) =

⋃∞
N=0

1
λN H(x1, . . . , xs).

(ii) If λH ⊂ H, then there exists a primitive matrix A with natural entries such
that S(A) =

⋃∞
N=0

1
λN H(x1, . . . , xs).

Proposition 3.10. Let λ ∈ Q and {xi}si=1 ⊂ Q ∩ (0,∞) with
∑s

i=1 xi = 1. Let
H(x) = H(x1, . . . , xs) be an additive group generated by x1, . . . , xs. Let Y =⋃

l∈N{{yj}lj=1 ⊂ Q ∩ (0,∞) :
∑l

j=1 yj = 1 and H(y) = H(x)}. Then Y is a
finite set.

Proof. Let xi = pi

q , where gcd(p1, . . . , ps) = 1. We have H(x) = 1
qZ. Then

Y =
⋃

l∈N{{yj}lj=1 ⊂ Q ∩ [0,∞) :
∑l

j=1 yj = 1 and H(y) = 1
qZ}. Hence yi =

qi
q

for some qi ∈ N such that
∑l

i=1 qi = q. Since the number of partitions of q into
natural numbers is finite, we obtain |Y | < ∞. �

More results, which are related to the two statements above, can be found in
[13].

Example 3.11. Here is an example illustrating Theorem 3.3. Let B0 be a station-
ary simple Bratteli diagram with the matrix A0 transpose to the incidence matrix
of the diagram where

A0 =

(
1 1
1 2

)
.

Let ≤0 be a proper order for B0 and σ be a substitution read on (B0,≤0). For
example, choose

σ =

{
a �→ ab,
b �→ abb.

Since substitution σ is Sturmian, we have pσ(n) = n+ 1 (see [9]). By Lemma 3.2,
we build a primitive matrix A1 ∈ Mat(N, 3) such that S(A1) = S(A):

A1 =

⎛⎝1 1 1
2 3 1
8 13 0

⎞⎠ .

Consider a proper order ≤1 on B1 with the following substitution ζ read on
(B1,≤1):

ζ =

⎧⎨⎩
a �→ abbcccccccc,
b �→ abbbccccccccccccc,
c �→ ab.

It can be proved that pζ(n) ≥ 3n. Hence we already obtain that (Xσ, Tσ) and
(Xζ , Tζ) are non-isomorphic orbit equivalent systems.

Remark 3.12. Let λ be the Perron-Frobenius eigenvalue of A0 and x be the Perron-
Frobenius eigenvector. Let μ be the uniqueR-invariant measure for the correspond-
ing diagram. Then λH(x) = H(x) and G(S(μ)) = H(x) (see [2]).

Example 3.13. The following example concerns Lemma 3.5. Lind [13] pointed
out an example of Perron number λ (λ ≈ 3.8916 is the Perron root of the equation
f(t) = t3 + 3t2 − 15t − 46 and deg λ = 3) such that there exists no matrix A ∈
Mat(N, 3) with Perron-Frobenius eigenvalue λ. The reason is that a 3-dimensional
matrix with spectral radius λ has trace −3 and hence cannot be non-negative.
Lemma 3.5 states that such a matrix must exist for some power of λ. Here we
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present a matrix Ã ∈ Mat(N, 3) with Perron-Frobenius eigenvalue λM for some
M ∈ N. In the notation used in Lemma 3.5, we notice that

C =

⎛⎝0 0 46
1 0 15
0 1 −3

⎞⎠ ,

and y1 = (1, 1
λ + 15

46 ,
1
λ2 + 15

46
1
λ − 3

46 )
T has positive coordinates (see also [2]). Let

{ei}3i=1 be the standard basis of Q3; hence 〈ei,n〉 = λi−1 > 0. Then the iterates
of matrix C drive each ei closer to y1 when M is growing; hence CMei has all

positive coordinates for sufficiently large M . We can choose Ã = CM . In this
specific example, it suffices to take M ≥ 49.
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