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EXACT DECAY RATE OF A NONLINEAR ELLIPTIC
EQUATION RELATED TO THE YAMABE FLOW

SHU-YU HSU

(Communicated by Walter Craig)
n—2 _ 2B+4+p mp
ABSTRACT. Let 0 < m < =, n > 3, a = {=F and 8 > —*t—
for some constant p > 0. Suppose v is a radially symmetric solution of

—1 _ : _ n-2
AV +av + Bz - Vo = 0, v > 0, in R". When m = Z+2, the met-

_4
ric g = vn+2dz? corresponds to a locally conformally flat Yamabe shrink-
ing gradient soliton with positive sectional curvature. We prove that the

solution v of the above nonlinear elliptic equation has the exact decay rate
yl=m = 2(n—1)(n(1—m)—2)
1-m)(a(1-m)—2B)"

limy—s 00 720(7

1. INTRODUCTION

Recently, there has been a lot of study of the equation

1
(1.1) D A" +av+ Bz Vo=0, v>0, inR"
m
where
)
(1.2) O<m< 22 pn>3
n
and
28+p
1.3 =
(1.3) a=T—

for some constant p € R by P. Daskalopoulos and N. Sesum [DS2]; S.Y. Hsu [HI],
[H2]; M.A. Peletier and H. Zhang [PZ]; and J.L. Vézquez [V1]. In the paper [DS2]
P. Daskalopoulos and N. Sesum (cf. [CSZ], [CMM]) proved the important result
that any locally conformally flat non-compact gradient Yamabe soliton g with pos-
itive sectional curvature on an m-dimensional manifold, n > 3, must be radially
symmetric and have the form g = v%ﬂd:ﬁ, where dz? is the Euclidean metric on
R™ and v is a radially symmetric solution of (L)) with m = Z—jrg, and «, (3 sat-
isfy ([L3)) for some constant p > 0, p = 0 or p < 0, depending on whether g is a
shrinking, steady, or expanding Yamabe soliton.

On the other hand, as observed by B.H. Gilding, M.A. Peletier and H. Zhang
[GP], [PZ], and others ([DS1], [DS2], [V1], [V2]), (LI also arises in the study of
the self-similar solutions of the degenerate diffusion equation

-1
(1.4) up = 2

Au™ in R" x (0,7).

m
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For example (cf. [HI], [V1]) if v is a radially symmetric solution of (LI with

20+ 1
1—m

o= > 0,

then for any T" > 0 the function
(1.5) u(z,t) = (T — t)v(x(T — t)°)

is a solution of (L4) in R™ x (—o0,T). We refer the reader to the book [V1] and
the paper [HI] for the relation between solutions of (L)) and the other self-similar
solutions of (4 for the other parameter ranges of a, S.

Note that when v is a radially symmetric solution of (ILI]), then v satisfies

r

-1 -1
(1.6) I ((vm)” + 2 (’Um)/) +av+pBrv' =0, v>0, in(0,00)
m

and
(1.7) { v,(o) -7

for some constant n > 0. Existence of solutions of (L6), (I7), for the case n > 3,
0<m<(n—2)/n,8>0and a < B(n—2)/mis proved by S.Y. Hsu in [HI]. On
the other hand, by the result of and Theorem 7.4 of if (I2)) holds, then

n—2 2p+1

there exists a constant 8 with 8 = 0 when m = o such that for any o = 3=~

and 3 > B, there exists a unique solution of (I6), (7). Moreover, if 0 < a = 215_—:}
and B < B, then (L), (L7) have no global solution.

Since the asymptotic behavior of solutions of (4] is usually similar to the behav-
ior of the radially symmetric self-similar solutions of (L4]), in order to understand
the asymptotic behavior of solutions of (I4]) and the asymptotic behavior of locally
conformally flat non-compact gradient Yamabe solitons, it is important to study
the asymptotic behavior of the solutions of (L), (IT).

Exact decay rate of the solutions of (L6), (I7)) for the case

20

1—m

>0

and the case

20

T max(a, 0),

with m, n satisfying (2], was obtained by S.Y. Hsu in [H1]. When (L2) and ([L3)
hold for some constant p > 0, although it is known ([DS2], [V1]) that solution v

of ([L6l), (L) satisfies v(r) = O(riﬁ) as r — oo, nothing is known about the
exact decay rate of v. In [H2] S.Y. Hsu proved, by using estimates for the scalar

curvature of the metric g = vtz dz? where v is a radially symmetric solution of
(D), thatwhenm:Z—;g,ﬁ> —£- >0,
n—1)(n-2

(1.8) lim r2v(r) = ()#

T—00 14
In this paper we will extend the above result and prove the exact decay rate of
radially symmetric solution v of (1)) when ([2)) and (3] hold for some constant
p > 0. More precisely we will prove the following theorem.
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Theorem 1.1. Let n >0, p > 0, m, n, «, 8, satisfy (L2), (L3, and

mp
() P
Suppose v is a solution of (L), (L7). Then
) e 2(n—=1)(n(1—=m)—2)
(110) A ) = et —m) — 29

Remark 1.2. The function
2(n — 1)(n(1 —m) — 2) )—

(1.11) %@:<u—mma—m—wmﬂ

is a singular solution of (1) in R™ \ {0}. If v is a solution of (IIJ), then for any
A > 0 the function

(1.12) ua(x) = )\ﬁv()\x)
is also a solution of (I).

Corollary 1.3. Let p, m, n, o, B satisfy (L2), (L3), (LI). Suppose v is a radially
symmetric solution of (L)), and vy, vy are given by (LII) and [LI2)), respectively.
Then vy(z) converges uniformly on R™\ Bgr(0) to vo(x) for any R > 0 as A — co.

Corollary 1.4 (cf. [H2]). The metric g;; = v#?d;ﬁ, n > 3, of a locally con-
formally flat non-compact gradient shrinking Yamabe soliton where v is radially
symmetric and satisfies (1) with m = 212, and 3 > § >0, a, satisfying (L3)
has the ezact decay rate (L))

Since the scalar curvature of the metric g;; = v7+2 dxz?, n > 3, where v is a

radially symmetric solution of (L)) with m = 2=2 is given by ([DS2], [H2])

rv’(r)
R(r)=(1-
) =1=m) (a+s),
by Corollary [[4] and an argument similar to the proof of Lemma 3.4 and Theo-
rem 1.3 of [H2], we obtain the following extensions of Theorem 1.2 and Theorem

1.3 of [H2).

Theorem 1.5. Let m = 2=2 n>3,8>5>0,a satisfy (L3). Let v be a

n+2’
radially symmetric solution of ([[d)). Then
/
2
(1.13) lim ")
r—oo () 1-m

and the scalar curvature R(r) of the metric g;; = v 4o satisfies
Jm R(r) =
If Ko and Ki are the sectional curvatures of the 2-planes perpendicular to and
tangent to the spheres {x} x S"~1, respectively, then
lim Ky(r)=0
T—>00
and

. p
A ey
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Corollary 1.6. Let n > 0, p > 0, m, n, «, 8 satisfy (L2), (L3), and ([LI).
Suppose v is a solution of (L6), (LT). Then (LIJ) holds.

The plan of the paper is as follows. We will prove the boundedness of the function
(1.14) w(r) =r2u(r)t=m

where v is the solution of (II]) in section two. We will also find the lower bound of
w in section two. In section three we will prove Theorem [[LTland Corollary [[L31 We
will assume that (L2), (L3) hold for some constant p > 0 and let v be a radially
symmetric solution of (LI or equivalently the solution of (@), (L), for some
n >0, and

2(n —1)(n(1 —=m)—2)

(1 =m)(a(l —m) - 25)

for the rest of the paper. Note that when a = nf and o =

(@) is given explicitly by (cf. [DS2])

o () = 2(n—1)(n—2—mnm) =
A7) ((1—m><v+|x|2>> A0

Woo =

25“ , the solution of

which satisfies (TI0]).

2. L°° ESTIMATE OF w

Lemma 2.1. Let p >0, m, n, o, B satisfy (L2) and [L3) and let v be a radially
symmetric solution of (Idl). Let w be given by (LI4). Suppose there exists a
constant C7 > 0 such that

(2.1) w(r)<Cp VYr>1.

Then any sequence {w(r;)}2,, ri = 00 as i — o0, has a subsequence {w(r;)}52,

such that

0 or we if vgLYR"),
(2.2) lim w(r))=40 or w; if veL'R") and B8>0,
0 if ve LYR") and B <0,
where
_ 2(n—1) .

Proof. Let {r;}2, be a sequence such that r; — oo as i — oo. By (2] the sequence
{w(r;)}22; has a subsequence that we may assume, without loss of generality, to
be the sequence itself that converges to some constant a € [0,C4] as i — oo.
Integrating (L) over (0,r) and simplifying,

"Ly () = Brogr) + 210

n—1
m T 0

Integrating ([24) over (r,00), by ([21]) we get

(2.5) n- 1 B/ ds+/ 045;__116 (/OS 2" u(z) dz) ds Vr>0.

(2.4) - “lu(z)dz Vr > 0.
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Let b=a™m = lim;_o0 r; "™ v(r;). Then by 210, (Z3), and the 'Hospital rule,

7

n—=1),, (n-=1) 2
——b" =2 lim (7" (7))
o Tsu(s)ds [ e (f) 2 e(2) dz) ds
= lim ——— + lim —rn
100 r. 1—m 71— 00 r Tom
1 i n—1
1-— v(r; ==t Jo 2" () dz
0= (gt T ()t T
oo 1-m 1—>00 T—m
Ti T;
1— Ti  n—1 d
o) = g (0 tim U
2m 1—00 n—s=5

We now divide the proof into two cases.

Case 1: v & L*(R™). By (2.8) and the 1’'Hospital rule,

Dy _(mm) [ and
m 2m n— 4 z—>ooTi"*17m*1
(1—m) a—np
oy a)
(- m)la(t—m) 23],
— 2m[n(1—m) -2
(2.7) = a=b=0 or a=b""=uw..

Case 2: v € L}(R"). By (2.8,

(2.8)
(n—l)bm_(l—m)ﬁb N a=b=0 or a=bl""=w ifB>0,
m - 2m a=b=0 if <0,
By ([27) and ([Z8)) the lemma follows. O

Remark 2.2. When 8 > 0, w; > ws if and only if o > ng.

Corollary 2.3. Suppose there exist constants C; > Cy > 0 such that
Co<w(r)<Cp; VYr>1.

Then (LIQ) holds.

Lemma 2.4. Letn >0, p>0, 5> 0, m, n, « <nf satisfy (LA) and [L3). Then

1
_ 1-m)pB TTem
2.9 > (et L=m)B s Vr > 0.
(2.9 olr) 2 (i G ">
Hence, there exists a constant Co > 0 such that

(2.10) w(r) > Cy Vr>1.
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Proof. ([2.9) is proved on page 22 of [DS2]. For the sake of completeness, we will
give a simple different proof here. By (24)),

_n-l (™) (r) <Brv(r) Vr>0
= —(n— 1™ 2/ (r) <Br Vr >0
1”__7711 (w(r)™ "t =y <5r2 Wr > 0
and (29) follows. By [29), we get (210) and the lemma follows. O

We now recall a result of [H2].

Lemma 2.5 (cf. Lemma 2.3 of [H2]). Let n >0, p >0, m, n, a > nf > 0 satisfy
[@2) and [L3). Then there exists a constant C1 > 0 such that (1)) holds.

Proof. This result is proved in [H2|. For the sake of completeness, we will repeat
the proof here. By ([24), v'(r) < 0 for all » > 0. Then by (24,

n= 1r"_1(vm)’(r) < —Br*v(r) — (a — np) /07“ 2" to(r) dz

= —%r”v(r) Vr >0
= o™ 2(r)(r) < — (a ) Vr >0
iy < (et al=m) \TET (1) L\
= < (e gy <(<1—> )" o

Hence, (2.1)) holds with Cy = il—_m)) and the lemma follows. O

Lemma 2.6. Letn >0, p >0, m, n, 0 < a < nf satisfy (L2) and [3). Then
there exists a constant Cy > 0 such that (ZI) holds.

Proof. Let A= {r € [1,00) : w'(r) > 0}. We now divide the proof into two cases.

Case 1: AN[Ry,0) # ¢ VRy > 1. We will use a modification of the proof of
Lemma 3.2 of to prove this case. By Lemma[Z4] there exists a constant Cy > 0

such that (2ZI0) holds. Hence, by (2.10),
r"o(r) = r"_%w(r)ﬁ > C’gr"_& Vr>1
(2.11) = r"(r) > o0 asr — oo.
We now claim that
T n—1
(2.12) limsup s Zrnv?:)z) de n(ll__m”;_ -

r—00

We divide the proof of the above claim into two cases.

C’ase(la) 2" l(2) dz < oo, By (1) we get (Z12).

Case ( fo ~19(2) dz = co. Since
1 2 m
_ n—1 = T T /
= (n > v(r) + =" wT-m (r)w'(r)
> (n > r"lo(r) Vre A
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by (2II) and the I'Hospital rule,
Jo 2" tu(z) dz

lim sup =2
rcA ’I”n’U(T‘)
T—>00
n—1
= lim sup T o(r) >
754 (n o) )+ e ()

< 2\
=\" 1—-m

and (2.12)) follows. Let 0 < § < m. By ([2I12) there exists a constant Ry > 1
such that

fr Zn—lflj(z) dz (1 _ m) s
0 ru(r) <n(1—m)—2+1+nﬁ—a Vr > Ry,r € A,
(2.13)
:> /Oz"—lv(z)dzg (n(l(l—_mrgl)—2+1+n(;_a> r'u(r) Vr=Ry,r€ A
By ([Z4) and 2I3),
=Lty < — gy 4+ (PEZ A=)
mr v r) < ro(r (= m) =2 ru(r
<~ (s 0) ) Wz Rrea
= (n—l)’Um—Qv/('f)S_<m—5)T VrthfreA_

Hence, there exists a constant C3 > 0 such that

”s(g) < —Cyr?u(r)' "™ = —Csw(r) Vr> Ry,r € A,
= 0<w/(r)= Qwr(r) <1 +2 - Ts;g))
(2.14) . gwr(r) (1 e —;71)03w(r)> Vr> Rure Al
= w(@gﬁ Vr > Ry,r € A.

Let r1 € AN[Ry,00). Then for any v’ € (r;,00) \ A, there exists ro € AN [ry,00)
such that

w'(r)<0 Vro<r<r and w'(r2)=0

!/ 2 / /
(215) = w(r ) S ’IU(TQ) S m VT' > r1,T g A (by (m))
By (214) and (2I5),
w(r) < 2 Yr >ry
(1 —m)C3

and (2] holds with C; = max (ﬁ,maxlggh w(r)).
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Case 2: There exists a constant Ry > 1 such that AN[Ry,00) = ¢. Then w'(r) <0
for all » > Ry. Hence, (ZI)) holds with C; = max;<,<pg, w(r) and the lemma
follows. O

3. PROOF OF THEOREM [[T]
We first recall a result of [HIJ:
Lemma 3.1 (cf. Lemma 2.1 of [HI]). Let n >0, m, n, « >0, B # 0 satisfy ([L2)

and
mo

7 <n-—2.
Let v be the solution of (LO), (). Then
(3.1) v(r) + grv'(r) >0 Vr>0
and
(3.2) v'(r)<0  Vr>0.
Lemma 3.2. Let p >0, m, n, a« > nf satisfy (L2), (C3) and (L3). Then
(3.3) rlggo 2™ (1) = oo.

Proof. Suppose ([3.3]) does not hold. Then there exists a sequence {r;}2,, r;, = o0
as ¢ — oo, such that r?*zvm(ri) — ap as i — oo for some constant a; > 0. By
Lemma 211 the sequence {r;}$2; has a subsequence which we may assume without
loss of generality to be the sequence itself such that w(r;) — ag as i — oo where
az =0, Weo, or wy with wy being given by ([Z3)). By (Z5]), Lemma 25 Lemma 2.6]

and the I’'Hospital rule,

-1 -1
(n )a1 :(n ) lim 7" 2v(r;)™
m m 1—>00
f A sv)ds SR (fo 2 v(e) dz) ds
_B zigolo r?_n + 7,1>Igo r?_n
Tn—2 zlggo rivv(r:) + an_—nQB zlggo 0 " o(z) dz
_ IB . n—2 m . 2 1-m a _nﬂ > n—1
S zlif?o r " u(r;) 11_1)%10 riv(r;) + w2 ), 2" u(z) dz
=5 a1as + ozn—_nf | 2" t(z) dz.
Hence,
- o 1) (n—2
(3.4) a—np / 2" (2)dz = (n=Dn=2) Bas.
ay 0 m
By @.4) and (B.4),
(3.5)
! . — Ti
—(n—1) lim riv(ri) =4 lim r2v(r)'™™ + lim (CL—nﬂ)/ 2" (z) dz
i—00 U(Ti) i—00 i—00 TZTL ’U(Ti)m 0

(n—1) n—2)'
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Hence,
/
. T (ry n—2
(3.6) lim - (i) = —( )

isoo v(r;) m
By [L.2), ([L3) and (L.9),

mo
—<n-2
B
holds. Hence, there exists a constant € > 0 such that
(3.7) e p—2—e
B
By 1) and Lemma Bl (31) and (8:2) hold. Then by BI), B2) and @B,
rv’(r) «a n—2 €

3.8 > ——= > — 4+ — Vr>0
35 o B

= m riv'(r;) Z_n 2+£7

i—oo v(1;) m m

which contradicts (B.6)). Hence, no such sequence {r;}3°, exists, and the lemma
follows. =

Lemma 3.3. Let p > 0, m, n, a > nf satisfy (L), (L3J) and (LI). Then
there exists a constant € € (0, min(1,ws/2)) such that for any Ro > 1 there exists
r’ > Ry such that

w(r') > e.
Proof. Suppose the lemma is false. Then
(3.9) rlig’lo w(r) = 0.

We claim that
/

(3.10) im 720

r—00 1)(7')
By the proof of Lemma there exists a constant € > 0 such that (38) holds.
Suppose (BI0) does not hold. Then by B.8) and (39) there exists a sequence
{ri}°,, s — o0 as i — oo, such that r;v'(r;)/v(r;) — a3 as i — oo for some
constant ag satisfying

n—2

(3.11) - + £ <a3<0
and (BA) holds. By Lemma B2 (BE) (B:QI) and (BII)), we get
oy i TV () , e
(n—1) zliglo o) 0 if v e L*(R"),

and if v ¢ L'(R™), then by the 'Hospital rule,

v (ry) : i to(r)
—(n—1) lim = (o —np) lim L
(n—1) lim, v(r;) ( f) lim (n —2)r"u(r ) + mr 2o (r) ™ (r;)
—nf) lim riv(ri)’ -
(Oé 6) 7,1—>oo n—2+ ’ITL(?“ (Tz)/v(rl))
—_a " | nf lim r2v(ry)—™

n—2+4+mag i—oo
=0.
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Hence,
a3 = lim —Tivl(’f‘i) =0,
i—oo v(r;)
which contradicts (BI1). Thus, no such sequence {r;}2; exists and (B.I0) follows.
Since
2
W =22 (14

r

<2.58).

by BI0) there exists a constant Ry > 0 such that
w'(r) >0 Vr > Ry,

which contradicts (B3] and the lemma follows. O
We are now ready for the proof of Theorem [LL11

Proof of Theorem [LIl. We divide the proof into two cases.
Case 1: a < nf. By Corollary 23], Lemma 24 and Lemma 2.6l we get (ILI0I).

Case 2: « > nf. By Lemma there exists a constant Cy > 0 such that (21
holds. Let 0 < & < min(l,we/2) be as in Lemma B3l Suppose there exists
a sequence {r;}°,, r; — oo as i — oo, such that w(r;) < ¢ for all i € Z*.
Then by Lemma there exists a subsequence of {r;}°; which we may assume
without loss of generality to be the sequence itself and a sequence {r}}2°, such that
rp <7 <rgyq forali=1,2 ... and

(3.12) w(r) <e<w(r) Vi=1,2,....
By (BI2) and the intermediate value theorem, for any ¢ = 1,2,..., there exists
a; € (r;,r}) such that

w(a;)) =¢ Vi=1,2,....

Hence, a; — o0 as i — oo and

lim w(a;) =e.
71— 00

This contradicts Lemma 2] and Remark Hence no such sequence {r;}2;
exists. Thus there exists a constant R; > 1 such that w(r) > ¢ for all » > R;.
Hence ([210) holds with C = min(e, mini<,<pg, w(r)) > 0. By Corollary 23] we
get (LI0) and the theorem follows. O

Proof of Corollary L3l By Theorem [I.1]

[2*oa(2)' ™™ = (Aa]) o (Aa) 7
2(n —1)(n(1 —=m) —2)
(1 =m)(a(l —m) - 25)

as A — oo for any R > 0 and the corollary follows. O

uniformly on R™ \ Br(0)
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