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EXACT DECAY RATE OF A NONLINEAR ELLIPTIC

EQUATION RELATED TO THE YAMABE FLOW

SHU-YU HSU

(Communicated by Walter Craig)

Abstract. Let 0 < m < n−2
n

, n ≥ 3, α = 2β+ρ
1−m

and β > mρ
n−2−mn

for some constant ρ > 0. Suppose v is a radially symmetric solution of
n−1
m

Δvm + αv + βx · ∇v = 0, v > 0, in R
n. When m = n−2

n+2
, the met-

ric g = v
4

n+2 dx2 corresponds to a locally conformally flat Yamabe shrink-
ing gradient soliton with positive sectional curvature. We prove that the
solution v of the above nonlinear elliptic equation has the exact decay rate

limr→∞ r2v(r)1−m =
2(n−1)(n(1−m)−2)
(1−m)(α(1−m)−2β)

.

1. Introduction

Recently, there has been a lot of study of the equation

(1.1)
n− 1

m
Δvm + αv + βx · ∇v = 0, v > 0, in R

n

where

(1.2) 0 < m <
n− 2

n
, n ≥ 3,

and

(1.3) α =
2β + ρ

1−m

for some constant ρ ∈ R by P. Daskalopoulos and N. Sesum [DS2]; S.Y. Hsu [H1],
[H2]; M.A. Peletier and H. Zhang [PZ]; and J.L. Vázquez [V1]. In the paper [DS2]
P. Daskalopoulos and N. Sesum (cf. [CSZ], [CMM]) proved the important result
that any locally conformally flat non-compact gradient Yamabe soliton g with pos-
itive sectional curvature on an n-dimensional manifold, n ≥ 3, must be radially

symmetric and have the form g = v
4

n+2 dx2, where dx2 is the Euclidean metric on
R

n and v is a radially symmetric solution of (1.1) with m = n−2
n+2 , and α, β sat-

isfy (1.3) for some constant ρ > 0, ρ = 0 or ρ < 0, depending on whether g is a
shrinking, steady, or expanding Yamabe soliton.

On the other hand, as observed by B.H. Gilding, M.A. Peletier and H. Zhang
[GP], [PZ], and others ([DS1], [DS2], [V1], [V2]), (1.1) also arises in the study of
the self-similar solutions of the degenerate diffusion equation

(1.4) ut =
n− 1

m
Δum in R

n × (0, T ).
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For example (cf. [H1], [V1]) if v is a radially symmetric solution of (1.1) with

α =
2β + 1

1−m
> 0,

then for any T > 0 the function

(1.5) u(x, t) = (T − t)αv(x(T − t)β)

is a solution of (1.4) in R
n × (−∞, T ). We refer the reader to the book [V1] and

the paper [H1] for the relation between solutions of (1.1) and the other self-similar
solutions of (1.4) for the other parameter ranges of α, β.

Note that when v is a radially symmetric solution of (1.1), then v satisfies

(1.6)
n− 1

m

(
(vm)′′ +

n− 1

r
(vm)′

)
+ αv + βrv′ = 0, v > 0, in (0,∞)

and

(1.7)

{
v(0) = η,

v′(0) = 0,

for some constant η > 0. Existence of solutions of (1.6), (1.7), for the case n ≥ 3,
0 < m ≤ (n− 2)/n, β > 0 and α ≤ β(n− 2)/m is proved by S.Y. Hsu in [H1]. On
the other hand, by the result of [PZ] and Theorem 7.4 of [V1] if (1.2) holds, then

there exists a constant β with β = 0 when m = n−2
n+2 such that for any α = 2β+1

1−m

and β > β, there exists a unique solution of (1.6), (1.7). Moreover, if 0 < α = 2β+1
1−m

and β < β, then (1.6), (1.7) have no global solution.
Since the asymptotic behavior of solutions of (1.4) is usually similar to the behav-

ior of the radially symmetric self-similar solutions of (1.4), in order to understand
the asymptotic behavior of solutions of (1.4) and the asymptotic behavior of locally
conformally flat non-compact gradient Yamabe solitons, it is important to study
the asymptotic behavior of the solutions of (1.6), (1.7).

Exact decay rate of the solutions of (1.6), (1.7) for the case

α =
2β

1−m
> 0

and the case
2β

1−m
> max(α, 0),

with m,n satisfying (1.2), was obtained by S.Y. Hsu in [H1]. When (1.2) and (1.3)
hold for some constant ρ > 0, although it is known ([DS2], [V1]) that solution v

of (1.6), (1.7) satisfies v(r) = O(r−
2

1−m ) as r → ∞, nothing is known about the
exact decay rate of v. In [H2] S.Y. Hsu proved, by using estimates for the scalar

curvature of the metric g = v
4

n+2 dx2 where v is a radially symmetric solution of
(1.1), that when m = n−2

n+2 , β > ρ
n−2 > 0,

(1.8) lim
r→∞

r2v(r) =
(n− 1)(n− 2)

ρ
.

In this paper we will extend the above result and prove the exact decay rate of
radially symmetric solution v of (1.1) when (1.2) and (1.3) hold for some constant
ρ > 0. More precisely we will prove the following theorem.
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Theorem 1.1. Let η > 0, ρ > 0, m, n, α, β, satisfy (1.2), (1.3), and

(1.9) β >
mρ

n− 2−mn
.

Suppose v is a solution of (1.6), (1.7). Then

(1.10) lim
r→∞

r2v(r)1−m =
2(n− 1)(n(1−m)− 2)

(1−m)(α(1−m)− 2β)
.

Remark 1.2. The function

(1.11) v0(x) =

(
2(n− 1)(n(1−m)− 2)

(1−m)(α(1−m)− 2β)|x|2

) 1
1−m

is a singular solution of (1.1) in R
n \ {0}. If v is a solution of (1.1), then for any

λ > 0 the function

(1.12) vλ(x) = λ
2

1−m v(λx)

is also a solution of (1.1).

Corollary 1.3. Let ρ, m, n, α, β satisfy (1.2), (1.3), (1.9). Suppose v is a radially
symmetric solution of (1.1), and v0, vλ are given by (1.11) and (1.12), respectively.
Then vλ(x) converges uniformly on R

n \BR(0) to v0(x) for any R > 0 as λ → ∞.

Corollary 1.4 (cf. [H2]). The metric gij = v
4

n+2 dx2, n ≥ 3, of a locally con-
formally flat non-compact gradient shrinking Yamabe soliton where v is radially
symmetric and satisfies (1.1) with m = n−2

n+2 , and β > ρ
2 > 0, α, satisfying (1.3)

has the exact decay rate (1.8).

Since the scalar curvature of the metric gij = v
4

n+2 dx2, n ≥ 3, where v is a
radially symmetric solution of (1.1) with m = n−2

n+2 is given by ([DS2], [H2])

R(r) = (1−m)

(
α+ β

rv′(r)

v(r)

)
,

by Corollary 1.4 and an argument similar to the proof of Lemma 3.4 and Theo-
rem 1.3 of [H2], we obtain the following extensions of Theorem 1.2 and Theorem
1.3 of [H2].

Theorem 1.5. Let m = n−2
n+2 , n ≥ 3, β > ρ

2 > 0, α, satisfy (1.3). Let v be a

radially symmetric solution of (1.1). Then

(1.13) lim
r→∞

rv′(r)

v(r)
= − 2

1−m

and the scalar curvature R(r) of the metric gij = v
4

n+2 dx2 satisfies

lim
r→∞

R(r) = ρ.

If K0 and K1 are the sectional curvatures of the 2-planes perpendicular to and
tangent to the spheres {x} × Sn−1, respectively, then

lim
r→∞

K0(r) = 0

and

lim
r→∞

K1(r) =
ρ

(n− 1)(n− 2)
.
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Corollary 1.6. Let η > 0, ρ > 0, m, n, α, β satisfy (1.2), (1.3), and (1.9).
Suppose v is a solution of (1.6), (1.7). Then (1.13) holds.

The plan of the paper is as follows. We will prove the boundedness of the function

(1.14) w(r) = r2v(r)1−m

where v is the solution of (1.1) in section two. We will also find the lower bound of
w in section two. In section three we will prove Theorem 1.1 and Corollary 1.3. We
will assume that (1.2), (1.3) hold for some constant ρ > 0 and let v be a radially
symmetric solution of (1.1) or equivalently the solution of (1.6), (1.7), for some
η > 0, and

w∞ =
2(n− 1)(n(1−m)− 2)

(1−m)(α(1−m)− 2β)

for the rest of the paper. Note that when α = nβ and α = 2β+1
1−m , the solution of

(1.1) is given explicitly by (cf. [DS2])

vλ(x) =

(
2(n− 1)(n− 2− nm)

(1−m)(λ2 + |x|2)

) 1
1−m

, λ > 0,

which satisfies (1.10).

2. L∞
estimate of w

Lemma 2.1. Let ρ > 0, m, n, α, β satisfy (1.2) and (1.3) and let v be a radially
symmetric solution of (1.1). Let w be given by (1.14). Suppose there exists a
constant C1 > 0 such that

(2.1) w(r) ≤ C1 ∀r ≥ 1.

Then any sequence {w(ri)}∞i=1, ri → ∞ as i → ∞, has a subsequence {w(r′i)}∞i=1

such that

(2.2) lim
r→∞

w(r′i) =

⎧⎪⎨
⎪⎩
0 or w∞ if v 	∈ L1(Rn),

0 or w1 if v ∈ L1(Rn) and β > 0,

0 if v ∈ L1(Rn) and β ≤ 0,

where

(2.3) w1 =
2(n− 1)

(1−m)β
if β > 0.

Proof. Let {ri}∞i=1 be a sequence such that ri → ∞ as i → ∞. By (2.1) the sequence
{w(ri)}∞i=1 has a subsequence that we may assume, without loss of generality, to
be the sequence itself that converges to some constant a ∈ [0, C1] as i → ∞.
Integrating (1.6) over (0, r) and simplifying,

(2.4) −n− 1

m
(vm)′(r) = βrv(r) +

α− nβ

rn−1

ˆ r

0

zn−1v(z) dz ∀r > 0.

Integrating (2.4) over (r,∞), by (2.1) we get

(2.5)
n− 1

m
v(r)m = β

ˆ ∞

r

sv(s) ds+

ˆ ∞

r

α− nβ

sn−1

(ˆ s

0

zn−1v(z) dz

)
ds ∀r > 0.
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Let b = a
1

1−m = limi→∞ r
2

1−m

i v(ri). Then by (2.1), (2.5), and the l’Hospital rule,

(n− 1)

m
bm =

(n− 1)

m
lim
i→∞

(r
2

1−m

i v(r))m

=β lim
i→∞

´∞
ri

sv(s) ds

r
− 2m

1−m

i

+ lim
i→∞

´∞
ri

α−nβ
sn−1

(´ s

0
zn−1v(z) dz

)
ds

r
− 2m

1−m

i

=
(1−m)

2m

⎛
⎝β lim

i→∞

riv(ri)

r
− 2m

1−m−1

i

+ (α− nβ) lim
i→∞

1
rn−1
i

´ ri
0

zn−1v(z) dz

r
− 2m

1−m−1

i

⎞
⎠

=
(1−m)

2m

⎛
⎝βb+ (α− nβ) lim

i→∞

´ ri
0

zn−1v(z) dz

r
n− 2

1−m

i

⎞
⎠ .(2.6)

We now divide the proof into two cases.

Case 1: v 	∈ L1(Rn). By (2.6) and the l’Hospital rule,

(n− 1)

m
bm =

(1−m)

2m

⎛
⎝βb+

α− nβ

n− 2
1−m

· lim
i→∞

rn−1
i v(ri)

r
n− 2

1−m−1

i

⎞
⎠

=
(1−m)

2m

(
βb+

α− nβ

n− 2
1−m

b

)

=
(1−m)[α(1−m)− 2β]

2m[n(1−m)− 2]
b

⇒ a = b = 0 or a = b1−m = w∞.(2.7)

Case 2: v ∈ L1(Rn). By (2.6),
(2.8)

(n− 1)

m
bm =

(1−m)β

2m
b ⇒

{
a = b = 0 or a = b1−m = w1 if β > 0,

a = b = 0 if β ≤ 0,

By (2.7) and (2.8) the lemma follows. �

Remark 2.2. When β > 0, w1 > w∞ if and only if α > nβ.

Corollary 2.3. Suppose there exist constants C1 > C2 > 0 such that

C2 ≤ w(r) ≤ C1 ∀r ≥ 1.

Then (1.10) holds.

Lemma 2.4. Let η > 0, ρ > 0, β > 0, m, n, α ≤ nβ satisfy (1.2) and (1.3). Then

(2.9) v(r) ≥
(
ηm−1 +

(1−m)β

2(n− 1)
r2
)− 1

1−m

∀r ≥ 0.

Hence, there exists a constant C2 > 0 such that

(2.10) w(r) ≥ C2 ∀r ≥ 1.
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Proof. (2.9) is proved on page 22 of [DS2]. For the sake of completeness, we will
give a simple different proof here. By (2.4),

−n− 1

m
(vm)′(r) ≤βrv(r) ∀r > 0

⇒ −(n− 1)vm−2v′(r) ≤βr ∀r > 0

⇒ n− 1

1−m
(v(r)m−1 − ηm−1) ≤β

2
r2 ∀r > 0

and (2.9) follows. By (2.9), we get (2.10) and the lemma follows. �
We now recall a result of [H2].

Lemma 2.5 (cf. Lemma 2.3 of [H2]). Let η > 0, ρ > 0, m, n, α ≥ nβ > 0 satisfy
(1.2) and (1.3). Then there exists a constant C1 > 0 such that (2.1) holds.

Proof. This result is proved in [H2]. For the sake of completeness, we will repeat
the proof here. By (2.4), v′(r) < 0 for all r > 0. Then by (2.4),

n− 1

m
rn−1(vm)′(r) ≤ −βrnv(r)− (α− nβ)

ˆ r

0

zn−1v(r) dz

= −α

n
rnv(r) ∀r > 0

⇒ vm−2(r)v′(r) ≤ − α

n(n− 1)
r ∀r > 0

⇒ v(r) ≤
(
ηm−1 +

α(1−m)

2n(n− 1)
r2
)− 1

1−m

≤
(
2n(n− 1)

α(1−m)
r−2

) 1
1−m

∀r > 0.

Hence, (2.1) holds with C1 = 2n(n−1)
α(1−m) and the lemma follows. �

Lemma 2.6. Let η > 0, ρ > 0, m, n, 0 < α ≤ nβ satisfy (1.2) and (1.3). Then
there exists a constant C1 > 0 such that (2.1) holds.

Proof. Let A = {r ∈ [1,∞) : w′(r) ≥ 0}. We now divide the proof into two cases.

Case 1: A ∩ [R0,∞) 	= φ ∀R0 > 1. We will use a modification of the proof of
Lemma 3.2 of [H2] to prove this case. By Lemma 2.4 there exists a constant C2 > 0
such that (2.10) holds. Hence, by (2.10),

rnv(r) = rn−
2

1−mw(r)
1

1−m ≥ C2r
n− 2

1−m ∀r ≥ 1

⇒ rnv(r) → ∞ as r → ∞.(2.11)

We now claim that

(2.12) lim sup
r∈A
r→∞

´ r

0
zn−1v(z) dz

rnv(r)
≤ 1−m

n(1−m)− 2
.

We divide the proof of the above claim into two cases.

Case (1a):
´∞
0

zn−1v(z) dz < ∞. By (2.11) we get (2.12).

Case (1b):
´∞
0

zn−1v(z) dz = ∞. Since

d

dr
(rnv(r)) =

(
n− 2

1−m

)
rn−1v(r) +

1

1−m
rn−

2
1−mw

m
1−m (r)w′(r)

≥
(
n− 2

1−m

)
rn−1v(r) ∀r ∈ A,
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by (2.11) and the l’Hospital rule,

lim sup
r∈A
r→∞

´ r

0
zn−1v(z) dz

rnv(r)

= lim sup
r∈A
r→∞

rn−1v(r)(
n− 2

1−m

)
rn−1v(r) + 1

1−mrn−
2

1−mw
m

1−m (r)w′(r)

≤
(
n− 2

1−m

)−1

and (2.12) follows. Let 0 < δ < ρ
n(1−m)−2 . By (2.12) there exists a constant R1 > 1

such that´ r

0
zn−1v(z) dz

rnv(r)
<

(1−m)

n(1−m)− 2
+

δ

1 + nβ − α
∀r ≥ R1, r ∈ A,

⇒
ˆ r

0

zn−1v(z) dz ≤
(

(1−m)

n(1−m)− 2
+

δ

1 + nβ − α

)
rnv(r) ∀r ≥ R1, r ∈ A.

(2.13)

By (2.4) and (2.13),

n− 1

m
rn−1(vm)′(r) ≤− βrnv(r) +

(
(nβ − α)(1−m)

n(1−m)− 2
+ δ

)
rnv(r)

≤−
(

ρ

n(1−m)− 2
− δ

)
rnv(r) ∀r ≥ R1, r ∈ A,

⇒ (n− 1)vm−2v′(r) ≤−
(

ρ

n(1−m)− 2
− δ

)
r ∀r ≥ R1, r ∈ A.

Hence, there exists a constant C3 > 0 such that

(2.14)

rv′(r)

v(r)
≤ −C3r

2v(r)1−m = −C3w(r) ∀r ≥ R1, r ∈ A,

⇒ 0 ≤ w′(r) =
2w(r)

r

(
1 +

1−m

2
· rv

′(r)

v(r)

)

≤ 2w(r)

r

(
1− (1−m)C3

2
w(r)

)
∀r ≥ R1, r ∈ A,

⇒ w(r) ≤ 2

(1−m)C3
∀r ≥ R1, r ∈ A.

Let r1 ∈ A ∩ [R1,∞). Then for any r′ ∈ (r1,∞) \ A, there exists r2 ∈ A ∩ [r1,∞)
such that

w′(r) < 0 ∀r2 < r ≤ r′ and w′(r2) = 0

⇒ w(r′) ≤ w(r2) ≤
2

(1−m)C3
∀r′ > r1, r

′ 	∈ A (by (2.14)).(2.15)

By (2.14) and (2.15),

w(r) ≤ 2

(1−m)C3
∀r ≥ r1

and (2.1) holds with C1 = max
(

2
(1−m)C3

,max1≤r≤r1 w(r)
)
.
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Case 2: There exists a constant R0 > 1 such that A∩ [R0,∞) = φ. Then w′(r) < 0
for all r ≥ R0. Hence, (2.1) holds with C1 = max1≤r≤R0

w(r) and the lemma
follows. �

3. Proof of Theorem 1.1

We first recall a result of [H1]:

Lemma 3.1 (cf. Lemma 2.1 of [H1]). Let η > 0, m, n, α > 0, β 	= 0 satisfy (1.2)
and

mα

β
≤ n− 2.

Let v be the solution of (1.6), (1.7). Then

(3.1) v(r) +
β

α
rv′(r) > 0 ∀r ≥ 0

and

(3.2) v′(r) < 0 ∀r > 0.

Lemma 3.2. Let ρ > 0, m, n, α > nβ satisfy (1.2), (1.3) and (1.9). Then

(3.3) lim
r→∞

rn−2vm(r) = ∞.

Proof. Suppose (3.3) does not hold. Then there exists a sequence {ri}∞i=1, ri → ∞
as i → ∞, such that rn−2

i vm(ri) → a1 as i → ∞ for some constant a1 ≥ 0. By
Lemma 2.1, the sequence {ri}∞i=1 has a subsequence which we may assume without
loss of generality to be the sequence itself such that w(ri) → a2 as i → ∞ where
a2 = 0, w∞, or w1 with w1 being given by (2.3). By (2.5), Lemma 2.5, Lemma 2.6,
and the l’Hospital rule,

(n− 1)

m
a1 =

(n− 1)

m
lim
i→∞

rn−2
i v(ri)

m

=β lim
i→∞

´∞
ri

sv(s) ds

r2−n
i

+ lim
i→∞

´∞
ri

α−nβ
sn−1

(´ s

0
zn−1v(z) dz

)
ds

r2−n
i

=
β

n− 2
lim
i→∞

rni v(ri) +
α− nβ

n− 2
lim
i→∞

ˆ ri

0

zn−1v(z) dz

=
β

n− 2
lim
i→∞

rn−2
i v(ri)

m · lim
i→∞

r2i v(ri)
1−m +

α− nβ

n− 2

ˆ ∞

0

zn−1v(z) dz

=
β

n− 2
a1a2 +

α− nβ

n− 2

ˆ ∞

0

zn−1v(z) dz.

Hence,

(3.4)
α− nβ

a1

ˆ ∞

0

zn−1v(z) dz =
(n− 1)(n− 2)

m
− βa2.

By (2.4) and (3.4),

−(n− 1) lim
i→∞

riv
′(ri)

v(ri)
=β lim

i→∞
r2i v(ri)

1−m + lim
i→∞

(α− nβ)

rn−2
i v(ri)m

ˆ ri

0

zn−1v(z) dz

(3.5)

=
(n− 1)(n− 2)

m
.
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Hence,

(3.6) lim
i→∞

riv
′(ri)

v(ri)
= − (n− 2)

m
.

By (1.2), (1.3) and (1.9),
mα

β
< n− 2

holds. Hence, there exists a constant ε > 0 such that

(3.7)
mα

β
< n− 2− ε.

By (3.7) and Lemma 3.1, (3.1) and (3.2) hold. Then by (3.1), (3.2) and (3.7),

0 >
rv′(r)

v(r)
> −α

β
> −n− 2

m
+

ε

m
∀r > 0(3.8)

⇒ lim
i→∞

riv
′(ri)

v(ri)
≥ −n− 2

m
+

ε

m
,

which contradicts (3.6). Hence, no such sequence {ri}∞i=1 exists, and the lemma
follows. �
Lemma 3.3. Let ρ > 0, m, n, α > nβ satisfy (1.2), (1.3) and (1.9). Then
there exists a constant ε ∈ (0,min(1, w∞/2)) such that for any R0 > 1 there exists
r′ > R0 such that

w(r′) ≥ ε.

Proof. Suppose the lemma is false. Then

(3.9) lim
r→∞

w(r) = 0.

We claim that

(3.10) lim
r→∞

rv′(r)

v(r)
= 0.

By the proof of Lemma 3.2 there exists a constant ε > 0 such that (3.8) holds.
Suppose (3.10) does not hold. Then by (3.8) and (3.9) there exists a sequence
{ri}∞i=1, ri → ∞ as i → ∞, such that riv

′(ri)/v(ri) → a3 as i → ∞ for some
constant a3 satisfying

(3.11) −n− 2

m
+

ε

m
≤ a3 < 0

and (3.5) holds. By Lemma 3.2, (3.5), (3.9) and (3.11), we get

−(n− 1) lim
i→∞

riv
′(ri)

v(ri)
= 0 if v ∈ L1(Rn),

and if v 	∈ L1(Rn), then by the l’Hospital rule,

−(n− 1) lim
i→∞

riv
′(ri)

v(ri)
= (α− nβ) lim

i→∞

rn−1
i v(ri)

(n− 2)rn−3
i v(ri)m +mrn−2

i v(ri)m−1v′(ri)

= (α− nβ) lim
i→∞

r2i v(ri)
1−m

n− 2 +m(riv′(ri)/v(ri))

=
α− nβ

n− 2 +ma3
· lim
i→∞

r2i v(ri)
1−m

= 0.
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Hence,

a3 = lim
i→∞

riv
′(ri)

v(ri)
= 0,

which contradicts (3.11). Thus, no such sequence {ri}∞i=1 exists and (3.10) follows.
Since

w′(r) =
2w(r)

r

(
1 +

1−m

2
· rv

′(r)

v(r)

)
,

by (3.10) there exists a constant R0 > 0 such that

w′(r) > 0 ∀r ≥ R0,

which contradicts (3.9) and the lemma follows. �

We are now ready for the proof of Theorem 1.1.

Proof of Theorem 1.1. We divide the proof into two cases.

Case 1: α ≤ nβ. By Corollary 2.3 , Lemma 2.4 and Lemma 2.6, we get (1.10).

Case 2: α > nβ. By Lemma 2.5 there exists a constant C1 > 0 such that (2.1)
holds. Let 0 < ε < min(1, w∞/2) be as in Lemma 3.3. Suppose there exists
a sequence {ri}∞i=1, ri → ∞ as i → ∞, such that w(ri) < ε for all i ∈ Z

+.
Then by Lemma 3.3 there exists a subsequence of {ri}∞i=1 which we may assume
without loss of generality to be the sequence itself and a sequence {r′i}∞i=1 such that
ri < r′i < ri+1 for all i = 1, 2, . . . and

(3.12) w(ri) < ε < w(r′i) ∀i = 1, 2, . . . .

By (3.12) and the intermediate value theorem, for any i = 1, 2, . . . , there exists
ai ∈ (ri, r

′
i) such that

w(ai) = ε ∀i = 1, 2, . . . .

Hence, ai → ∞ as i → ∞ and

lim
i→∞

w(ai) = ε.

This contradicts Lemma 2.1 and Remark 2.2. Hence no such sequence {ri}∞i=1

exists. Thus there exists a constant R1 > 1 such that w(r) ≥ ε for all r ≥ R1.
Hence (2.10) holds with C2 = min(ε,min1≤r≤R1

w(r)) > 0. By Corollary 2.3 we
get (1.10) and the theorem follows. �

Proof of Corollary 1.3. By Theorem 1.1,

|x|2vλ(x)1−m = (λ|x|)2v(λx)1−m

→ 2(n− 1)(n(1−m)− 2)

(1−m)(α(1−m)− 2β)
uniformly on R

n \BR(0)

as λ → ∞ for any R > 0 and the corollary follows. �
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