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A NOTE ON THE LIFESPAN OF SOLUTIONS TO THE

SEMILINEAR DAMPED WAVE EQUATION

MASAHIRO IKEDA AND YUTA WAKASUGI

(Communicated by Joachim Krieger)

Abstract. This paper concerns estimates of the lifespan of solutions to the
semilinear damped wave equation �u+Φ(t, x)ut = |u|p in (t, x) ∈ [0,∞)×Rn,
where the coefficient of the damping term is Φ(t, x) = 〈x〉−α(1 + t)−β with
α ∈ [0, 1), β ∈ (−1, 1) and αβ = 0. Our novelty is to prove an upper bound
of the lifespan of solutions in subcritical cases 1 < p < 2/(n− α).

1. Introduction

We consider the semilinear damped wave equation

(1.1) utt −Δu+Φ(t, x)ut = |u|p, (t, x) ∈ [0,∞)×Rn,

with the initial condition

(1.2) (u, ut)(0, x) = ε(u0, u1)(x), x ∈ Rn,

where u = u(t, x) is a real-valued unknown function of (t, x), 1 < p, (u0, u1) ∈
H1(Rn) × L2(Rn) and ε is a positive small parameter. The coefficient of the
damping term is given by

Φ(t, x) = 〈x〉−α(1 + t)−β

with α ∈ [0, 1), β ∈ (−1, 1) and αβ = 0. Here 〈x〉 denotes
√

1 + |x|2.
Our aim is to obtain an upper bound of the lifespan of solutions to (1.1).
We recall some previous results for (1.1). There are many results about global

existence of solutions for (1.1) and many authors have tried to determine the critical
exponent (see [3, 4, 6, 8, 10–13, 16, 18, 20, 23, 24] and the references therein). Here
“critical” means that if pc < p, all small data solutions of (1.1) are global; if
1 < p ≤ pc, the local solution cannot be extended globally even for small data.

In the constant coefficient case α = β = 0, Todorova and Yordanov [18] and
Zhang [23] determined the critical exponent of (1.1) with compactly supported
data as

pc = pF = 1 +
2

n
.

This is also the critical exponent of the corresponding heat equation −Δv+vt = |v|p
and called the Fujita exponent (see [2]).
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On the other hand, there are few results about upper estimates of the lifespan
for (1.1). When n = 1, 2, Li and Zhou [10] obtained the sharp upper bound:

(1.3) Tε ≤
{

exp(Cε−2/n), if p = 1 + 2/n,

Cε−1/κ, if 1 < p < 1 + 2/n,

where C = C(n, p, u0, u1) > 0 and κ = 1/(p−1)−n/2 for the data u0, u1 ∈ C∞
0 (Rn)

satisfying
∫
(u0 + u1)dx > 0. Nishihara [14] extended this result to n = 3 by using

the explicit formula of the solution to the linear part of (1.1) with initial data
(0, u1):

u(t, x) = e−t/2W (t)u1 + J0(t)u1.

Here W (t)u1 is the solution of the wave equation �u = 0 with initial data (0, u1)
and J0(t)u1 behaves like a solution of the heat equation −Δv + vt = 0. However,
both the methods of [10] and [14] do not work in higher dimensional cases n ≥ 4,
because they used the positivity of W (t), which is valid only in the case n ≤ 3.
In this paper we shall extend both of the results to n ≥ 4 in subcritical cases
1 < p < 1 + 2/n.

Next, we recall some results of variable coefficient in cases α �= 0 or β �= 0.
There are many results on asymptotic behavior of solutions in connection with the
diffusion phenomenon. Here the diffusion phenomenon means that solution of the
damped wave equation behaves like a solution for the corresponding heat equation
as t → +∞. For more detail about the diffusion phenomenon, see, for example,
[19, 21, 22].

For the case α ∈ [0, 1), β = 0, Ikehata, Todorova and Yordanov [8] determined
the critical exponent for (1.1) as pc = 1 + 2/(n − α), which also agrees with that
of the corresponding heat equation −Δv+ 〈x〉−αvt = |v|p. Here we emphasize that
in this case there are no results about upper estimates for the lifespan. It will be
given in this paper.

Next, for the case β ∈ (−1, 1), α = 0, Nishihara [15] and Lin, Nishihara and
Zhai [11] proved pc = 1 + 2/n, which is also the same as that of the heat equation
−Δv+ (1+ t)−βvt = |v|p. On the other hand, upper estimates of the lifespan have
not been well studied. Recently, Nishihara [15] obtained a similar result of [10,14]:
let n ≥ 1, β ≥ 0 and (u0, u1) satisfy

∫
Rn ui(x)dx ≥ 0 (i = 0, 1),

∫
Rn(u0+u1)(x)dx >

0. Then there exists a constant C > 0 such that

Tε ≤
{

eCε−(1+β)/n

, if p = 1 + (1 + β)/n,
Cε−1/κ̂, if 1 + 2β/n ≤ p < 1 + (1 + β)/n,

where κ̂ = (1 + β)/(p− 1)− n. We note that the rate κ̂ is not optimal, because it
is not the same as that of the corresponding heat equation. Moreover, there are no
results for 1 + (1 + β)/n < p ≤ 1 + 2/n. We note that the proof by Todorova and
Yordanov [18] also gives the same upper bound in the case β = 0, 1 < p < 1 + 1/n.
In this paper we will improve the above result for all 1 < p < 1 + 2/n and give the
sharp upper estimate.

Finally, we mention that our method is not applicable to αβ �= 0. On the
other hand, the second author [20] proved a small data global existence result for
(1.1) with α, β ≥ 0, α+ β ≤ 1, when p > 1 + 2/(n− α). This also agrees with the
critical exponent of the corresponding heat equation −Δv+〈x〉−α(1+t)−βvt = |v|p.
Therefore, it is expected that when 1 < p ≤ 1+2/(n−α), there is a blow-up solution
for (1.1) in this case.
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2. Main result

First, we define the solution of (1.1). We say that u ∈ X(T ) := C([0, T );H1(Rn))
∩C1([0, T );L2(Rn)) is a solution of (1.1) with initial data (1.2) on the interval [0, T )
if the identity∫

[0,T )×Rn

u(t, x)(∂2
tψ(t, x)−Δψ(t, x)− ∂t(Φ(t, x)ψ(t, x)))dxdt

= ε

∫
Rn

{(Φ(0, x)u0(x) + u1(x))ψ(0, x)− u0(x)∂tψ(0, x)} dx(2.1)

+

∫
[0,T )×Rn

|u(t, x)|pψ(t, x)dxdt

holds for any ψ ∈ C∞
0 ([0, T )×Rn). We also define the lifespan for the local solution

of (1.1)-(1.2) by

Tε := sup{T ∈ (0,∞]; there exists a unique solution u ∈ X(T ) of (1.1)-(1.2) }.

We first describe the local existence result.

Proposition 2.1. Let α ≥ 0, β ∈ R, 1 < p ≤ n/(n− 2) (n ≥ 3), 1 < p < ∞ (n =
1, 2), ε > 0 and (u0, u1) ∈ H1(Rn) × L2(Rn). Then Tε > 0, that is, there exists
a unique solution u ∈ X(Tε) to (1.1)-(1.2). Moreover, if Tε < +∞, then it follows
that

lim
t→Tε−0

‖(u, ut)(t, ·)‖H1×L2 = +∞.

For the proof, see, for example, [7]. Next, we give an almost optimal lower
estimate of Tε.

Proposition 2.2. Let (u0, u1) ∈ H1(Rn)× L2(Rn) be compactly supported and δ
any positive number. We assume that α ∈ [0, 1), β ∈ (−1, 1), αβ ≥ 0 and α+β < 1.
Then there exists a constant C = C(δ, n, p, α, β, u0, u1) > 0 such that for any ε > 0,
we have

Cε−1/κ+δ ≤ Tε,

where

κ =
2(1 + β)

2− α

(
1

p− 1
− n− α

2

)
.

The proof of this proposition follows from the a priori estimate for the energy of
solutions. For the proof, see [8,11,20]. We note that the above proposition is valid
even for the case αβ �= 0.

Next, we state our main result, which gives an upper bound of Tε.

Theorem 2.3. Let α ∈ [0, 1), β ∈ (−1, 1), αβ = 0 and let 1 < p < 1 + 2/(n − α).
We assume that the initial data (u0, u1) ∈ H1(Rn)× L2(Rn) satisfy

(2.2) 〈x〉−αBu0 + u1 ∈ L1(Rn) and

∫
Rn

(〈x〉−αBu0(x) + u1(x))dx > 0,

where

B =

(∫ ∞

0

e−
∫ t
0
(1+s)−βdsdt

)−1

.
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Then there exists C > 0 depending only on n, p, α, β and (u0, u1) such that Tε is
estimated as

Tε ≤ C

⎧⎪⎨
⎪⎩
ε−1/κ if 1 + α/(n− α) < p < 1 + 2/(n− α),

ε−(p−1)(log(ε−1))p−1 if α > 0, p = 1 + α/(n− α),

ε−(p−1) if α > 0, 1 < p < 1 + α/(n− α)

for any ε ∈ (0, 1], where

κ =
2(1 + β)

2− α

(
1

p− 1
− n− α

2

)
.

Remark 2.1. The results of Theorem 2.3 and Proposition 2.2 can be expressed by
the following table:

α = 0 β = 0

pc 1 +
2

n
1 +

2

n− α

Tε � ε−1/κ

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ε−1/κ,

(
1 +

α

n− α
< p < 1 +

2

n− α

)

ε−(p−1)(log(ε−1))p−1,

(
p = 1 +

α

n− α

)

ε−(p−1),

(
1 < p < 1 +

α

n− α

)

Tε � ε−1/κ+δ ε−1/κ+δ

κ (1 + β)

(
1

p− 1
− n

2

)
2

2− α

(
1

p− 1
− n− α

2

)

Remark 2.2. It is expected that the rate κ in Theorems 2.3 is sharp except for the
case α > 0, 1 < p ≤ 1 + α/(n− α) from Proposition 2.2.

Remark 2.3. The explicit form of Φ = 〈x〉−α(1 + t)−β is not necessary. Indeed,
we can treat more general coefficients, for example, Φ(t, x) = a(x) satisfying a ∈
C(Rn) and 0 ≤ a(x) � 〈x〉−α, or Φ(t, x) = b(t) satisfying b ∈ C1([0,∞)) and
b(t) ∼ (1 + t)−β.

Remark 2.4. The same conclusion of Theorem 2.3 is valid for the corresponding
heat equation −Δv +Φ(t, x)vt = |v|p in the same manner as our proof.

Our proof is based on a test function method. Zhang [23] also used a similar way
to determine the critical exponent for the case α = β = 0. By using his method,
many blow-up results were obtained for variable coefficient cases (see [1, 8, 11]).
However, the method of [23] was based on a contradiction argument and so upper
estimates of the lifespan cannot be obtained. To avoid the contradiction argument,
we use an idea by Kuiper [9]. He obtained an upper bound of the lifespan for some
parabolic equations (see also [5, 17]). We note that to treat the time-dependent
damping case, we also use a transformation of equation by Lin, Nishihara and Zhai
[11] (see also [1]).
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At the end of this section, we explain some notation and terminology used
throughout this paper. We put

‖f‖Lp(Rn) :=

(∫
Rn

|f(x)|pdx
)1/p

.

We denote the usual Sobolev space by H1(Rn). For an interval I and a Banach
space X, we define Cr(I;X) as the Banach space whose element is an r-times
continuously differentiable mapping from I to X with respect to the topology in
X. The letter C indicates the generic constant, which may change from line to line.
We also use the symbols � and ∼. The relation f � g means f ≤ Cg with some
constant C > 0 and f ∼ g means f � g and g � f .

3. Proof of Theorem 2.3

We first note that if Tε ≤ C, where C is a positive constant depending only on
n, p, α, β, u0, u1, then it is obvious that Tε ≤ Cε−1/κ for any κ > 0 and ε ∈ (0, 1].
Therefore, once a constant C = C(n, p, α, β, u0, u1) is given, we may assume that
Tε > C.

In the case β �= 0, (1.1) is not divergence form and so we cannot apply the
test function method. Therefore, we need to transform the equation (1.1) into
divergence form. The following idea was introduced by Lin, Nishihara and Zhai
[11]. Let g(t) be the solution of the ordinary differential equation{

−g′(t) + (1 + t)−βg(t) = 1,

g(0) = B−1.

The solution g(t) is explicitly given by

g(t) = e
∫ t
0
(1+s)−βds

(
B−1 −

∫ t

0

e−
∫ τ
0
(1+s)−βdsdτ

)
.

By the de l’Hôpital theorem, we have

lim
t→∞

(1 + t)−βg(t) = 1

and so g(t) ∼ (1+ t)β. We note that B = 1 and g(t) ≡ 1 if β = 0. By the definition
of g(t), we also have |g′(t)| � |(1+ t)−βg(t)−1| � 1. Multiplying the equation (1.1)
by g(t), we obtain the divergence form

(3.1) (gu)tt −Δ(gu)− ((g′ − 1)〈x〉−αu)t = g|u|p;
here we note that αβ = 0. Therefore, we can apply the test function method to
(3.1).

We introduce the following test functions:

φ(x) :=

{
exp(−1/(1− |x|2)) (|x| < 1),

0 (|x| ≥ 1),

η(t) :=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

exp(−1/(1− t2))

exp(−1/(t2 − 1/4)) + exp(−1/(1− t2))
(1/2 < t < 1),

1 (0 ≤ t ≤ 1/2),

0 (t ≥ 1).
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It is obvious that φ ∈ C∞
0 (Rn), η ∈ C∞

0 ([0,∞)) and there exists a constant C > 0
such that for all |x| < 1 we have

|∇φ(x)|2
φ(x)

≤ C.

Using this estimate, we can prove that there exists a constant C > 0 such that the
estimate

(3.2) |Δφ(x)| ≤ Cφ(x)1/p

is true for all |x| < 1. Indeed, putting ϕ := φ1/q with q = p/(p− 1), we have

|Δφ(x)| = |Δ(ϕ(x)q)| � |Δϕ(x)|ϕ(x)q−1 + |∇ϕ(x)|2ϕ(x)q−2 � ϕ(x)q−1 = φ(x)1/p.

In the same way, we can also prove that

(3.3) |η′(t)| ≤ Cη(t)1/p, |η′′(t)| ≤ Cη(t)1/p

for t ∈ [0, 1).
Let u be a solution on [0, Tε) and τ ∈ (τ0, Tε), R ≥ R0 parameters, where τ0 ∈

[1, Tε), R0 > 0 are defined later. We define

ψτ,R(t, x) := ητ (t)φR(x) := η(t/τ )φ(x/R)

and

Iτ,R :=

∫
[0,τ)×BR

g(t)|u(t, x)|pψτ,R(t, x)dxdt,

JR := ε

∫
BR

(〈x〉−αBu0(x) + u1(x))φR(x)dx,

where BR = {|x| < R}. Since ψτ,R ∈ C∞
0 ([0, Tε) × Rn) and u is a solution on

[0, Tε), we have

Iτ,R + JR =

∫
[0,τ)×BR

g(t)u∂2
t ψτ,Rdxdt−

∫
[0,τ)×BR

g(t)uΔψτ,Rdxdt

+

∫
[0,τ)×BR

(g′(t)− 1)〈x〉−αu∂tψτ,Rdxdt

=: K1 +K2 +K3.

Here we have used the property ∂tψ(0, x) = 0 and substituted the test function
g(t)ψ(t, x) into the definition of solution (2.1). We note that for the corresponding
heat equation, we have the same decomposition without the term K1 and so we
can obtain the same conclusion (see Remark 2.4). We first estimate K1. By the
Hölder inequality and (3.3), we have

K1 ≤ τ−2

∫
[0,τ)×BR

g(t)|u||η′′(t/τ )|φR(x)dxdt(3.4)

≤ Cτ−2

∫
[τ/2,τ)×BR

g(t)|u|η(t)1/pφR(x)dxdt

≤ τ−2I
1/p
τ,R

(∫ τ

τ/2

g(t)dt ·
∫
BR

φR(x)dx

)1/q

≤ Cτ−2+1/q(1 + τ )β/qRn/qI
1/p
τ,R .
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Using (3.2) and a similar calculation, we obtain

K2 ≤ R−2

∫
[0,τ)×BR

g(t)|u||Δφ(x/R)|η(t/τ )dxdt(3.5)

≤ CR−2

∫
[0,τ)×BR

g(t)|u||φ(x/R)|1/pη(t/τ )dxdt

≤ CR−2I
1/p
τ,R

(∫ τ

0

g(t)η(t/τ )dt ·
∫
BR

1dx

)1/q

≤ C(1 + τ )(1+β)/qR−2+n/qI
1/p
τ,R .

For K3, using (3.3) and |g′(t)− 1| � C, we have

K3 ≤ τ−1

∫
[0,τ)×BR

〈x〉−α|u||η′(t/τ )|φR(x)dxdt(3.6)

≤ τ−1I
1/p
τ,R

(∫ τ

τ/2

g(t)−q/pdt ·
∫
BR

〈x〉−αqφR(x)dx

)1/q

≤ Cτ−1+1/q(1 + τ )−β/pFp,α(R)I
1/p
τ,R ,

where

Fp,α(R) =

⎧⎪⎨
⎪⎩
R−α+n/q (αq < n),

(log(1 +R))1/q (αq = n),

1 (αq > n).

Thus, putting

D(τ, R) := τ−(1+β)/p(τ−1+βRq/n + τ1+βR−2+q/n + Fp,α(R))

and combining this with the estimates (3.4)-(3.6), we have

(3.7) JR ≤ CD(τ, R)I
1/p
τ,R − Iτ,R.

Now we use a fact that the inequality

acb − c ≤ (1− b)bb/(1−b)a1/(1−b)

holds for all a > 0, 0 < b < 1, c ≥ 0. We can immediately prove it by considering
the maximal value of the function f(c) = acb − c. From this and (3.7), we obtain

(3.8) JR ≤ CD(τ, R)q.

On the other hand, by the assumption on the data and the Lebesgue dominated
convergence theorem, there exist C > 0 and R0 such that JR ≥ Cε holds for all
R > R0. Combining this with (3.8), we have

(3.9) ε ≤ CD(τ, R)q

for all τ ∈ (τ0, Tε) and R > R0. Now we define

τ0 := max{1, R(2−α)/(1+β)
0 },

and we substitute

(3.10) R =

{
τ (1+β)/(2−α) (αq < n),

τ (αq ≥ n)
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into (3.9). Here we note that R > R0 if R is given by (3.10). As was mentioned at
the beginning of this section, we may assume that τ0 < Tε. Finally, we have

ε ≤ C

⎧⎪⎨
⎪⎩
τ−κ (αq < n),

τ−1/(p−1) log(1 + τ ) (αq = n),

τ−1/(p−1) (αq > n),

with

κ =
2(1 + β)

2− α

(
1

p− 1
− n− α

2

)
.

We can rewrite this relation as

τ ≤ C

⎧⎪⎨
⎪⎩
ε−1/κ if 1 + α/(n− α) < p < 1 + 2/(n− α),

ε−(p−1)(log(ε−1))p−1 if α > 0, p = 1 + α/(n− α),

ε−(p−1) if α > 0, 1 < p < 1 + α/(n− α).

Here we note that κ > 0 if and only if 1 < p < 1 + 2/(n − α) and that αq = n is
equivalent to p = 1 + α/(n− α). Since τ is arbitrary in (τ0, Tε), we can obtain the
conclusion of the theorem.
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