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A MODIFIED RIEMANN ZETA DISTRIBUTION

IN THE CRITICAL STRIP
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(Communicated by Mark M. Meerschaert)

Abstract. Let σ, t ∈ R, s = σ + it and ζ(s) be the Riemann zeta function.
Put fσ(t) := ζ(σ − it)/(σ− it) and Fσ(t) := fσ(t)/fσ(0). We show that Fσ(t)
is a characteristic function of a probability measure for any 0 < σ �= 1 by
giving the probability density function. By using this fact, we show that for
any C ∈ C satisfying |C| > 10 and −19/2 ≤ �C ≤ 17/2, the function ζ(s)+Cs
does not vanish in the half-plane σ > 1/18. Moreover, we prove that Fσ(t) is
an infinitely divisible characteristic function for any σ > 1. Furthermore, we
show that the Riemann hypothesis is true if each Fσ(t) is an infinitely divisible
characteristic function for each 1/2 < σ < 1.

1. Introduction and main results

The Riemann zeta function ζ(s) is a function of a complex variable s = σ + it,
for σ > 1 given by

(1.1) ζ(s) :=
∞∑
n=1

1

ns
=

∏
p

(
1− 1

ps

)−1

,

where the letter p is a prime number, and the product of
∏

p is taken over all
primes. The series is called the Dirichlet series and the product is called the Euler
product. The Dirichlet series and the Euler product of ζ(s) converges absolutely
in the half-plane σ > 1 and uniformly in each compact subset of this half-plane. It
is known that the Riemann zeta function is a meromorphic function on the whole
complex plane, which is holomorphic everywhere except for a simple pole at s = 1
with residue 1 (see for example [2, p. 35]).

Let μ be a probability measure on R, namely,
∫∞
−∞ μ(dy) = 1. For z ∈ R the

characteristic function μ̂(z) of μ is defined by μ̂(z) :=
∫∞
−∞ eizyμ(dy). For instance,

the distribution concentrated at x ∈ R is the δ-distribution at x and denoted by
δx, and its characteristic function is given by eizx (see [17, Section 2]).

Put Zσ(t) := ζ(σ + it)/ζ(σ), t ∈ R, then Zσ(t) is known to be a characteristic
function when σ > 1 (see [10], [5, p. 75] and [14, Corollary 1]).
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Proposition 1.1. For σ > 1, the measure

(1.2) μσ(dy) :=
1

ζ(σ)

∞∑
n=1

1

nσ
δ− log n(dy)

is a probability measure, with characteristic function Zσ(t) =
∫∞
−∞ eityμσ(dy).

Moreover μσ is an infinitely divisible distribution and its Lévy measure (see Sec-
tion 3) can be given as follows:

Zσ(t) = exp

[∫ ∞

0

(
e−itx − 1

)
Nσ(dx)

]
,

Nσ(dx) :=
∑
p

∞∑
r=1

p−rσ

r
δr log p(dx).

(1.3)

The distribution μσ on R is said to be a Riemann zeta distribution with pa-
rameter σ. Recently, Lin and Hu [14], and Gut [6] investigated the Riemann zeta
distribution only in the region of absolute convergence σ > 1. On the other hand,
Aoyama and Nakamura [1, Remark 1.13] showed that Zσ(t) is not a characteristic
function for any 1/2 ≤ σ ≤ 1.

There are some other papers that treat functions related to the Riemann zeta
function in probabilistic view. Biane, Pitman and Yor [4] reviewed known results
about the probabilistic interpretations of s(s − 1)π−s/2Γ(s/2)ζ(s), where Γ(s) is
the Gamma function. Lagarias and Rains [11] considered π−s/2Γ(s/2)ζ(s) and its
generalizations and gave results related to infinite divisibility (see Section 3).

In the present paper, we give a modified Riemann zeta distribution in the critical
strip 0 < σ < 1 (despite [1, Remark 1.13] mentioned above) in Theorem 1.2 and
consider its application to analytic number theory in Theorem 1.3. Put

(1.4) fσ(t) :=
ζ(σ − it)

σ − it
, Fσ(t) :=

fσ(t)

fσ(0)
, 0 < σ �= 1.

By the definitions of Zσ(t) and Fσ(t), we have

Fσ(t) =
ζ(σ − it)

ζ(σ)

σ

σ − it
= Zσ(−t)

σ

σ − it
.

Note that σ/(σ − it) is the characteristic function of the exponential distribution
with parameter σ > 0 defined by μ(B) := σ

∫
B∩(0,∞)

e−σydy, where B is a Borel set

on R, namely, σ/(σ − it) = σ
∫∞
0

eitye−σydy (see for instance [17, Example 2.14]).

Theorem 1.2. The function Fσ(t) is a characteristic function of a probability
measure for all σ > 0 except for σ = 1. Moreover the associated probability measure
is absolutely continuous with density function Pσ(y) given as follows:

Pσ(y) :=

⎧⎪⎪⎨
⎪⎪⎩

σ

ζ(σ)

[ey]

eyσ
σ > 1,

σ

ζ(σ)

[ey]− ey

eyσ
0 < σ < 1.

(1.5)

From the point of view of the Fourier transform, one has Fσ(t)=
∫∞
−∞ eityPσ(y)dy.

This formula should be compared with

(1.6)
ζ(σ − it)

ζ(σ)
=

∫ ∞

−∞
eityμ−

σ (dy), μ−
σ (dy) :=

1

ζ(σ)

∞∑
n=1

1

nσ
δlogn(dy)
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proved by (1.2) (see also the beginning of Section 2). Figures 1 and 2 are the graphs
of {P2(y) : 0 ≤ y ≤ 3} and {P1/2(y) : −1 ≤ y ≤ 4}. All figures in this paper are
plotted by Mathematica 8.0.
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Figure 1. {P2(y) : 0 ≤ y ≤ 3}

Figure 2. {P1/2(y) : −1 ≤ y ≤ 4}

Next we consider an application of Theorem 1.2 to analytic number theory.

Theorem 1.3. Let C ∈ C satisfy |C| > 10 and −19/2 ≤ �C ≤ 17/2. Then the
function ζ(s) + Cs does not vanish in the half-plane σ > 1/18.

We have to mention that the function ζ(s) + c, where 0 �= c ∈ C has zeros in
the strip 1/2 < σ < 1 (see for example [18, Theorem 1.5]). Moreover, we have the
following by [16, Main Theorem 1]. Let D(s) :=

∑∞
n=1 ane

−λns, where an ∈ C and
λ1 < λ2 < · · · . Then ζ(s) +D(s) has zeros in 1/2 < σ < 1 for any D(s) satisfies
that an �= 0 for some n ∈ N and the series expression of D(s) converges absolutely
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in �(s) > 1/2. Applying this result, we can see that ζ(s + 1/2) − ζ(s − 1/2) has
zeros in the vertical strip 1 < σ < 3/2.

On the contrary, Taylor [19] showed that

ζ∗(s+ 1/2)− ζ∗(s− 1/2), ζ∗(s) := π−s/2Γ(s/2)ζ(s)

has all its zeros on the critical line σ = 1/2. Hence Theorem 1.3 may be regarded
as an analogy of Taylor’s result. It is due to the novelty of Theorem 1.3 that
we can construct zeta functions that do not have any zero in some strips without
the Gamma function Γ(s) (see also Hejhal [7] or Lagarias and Suzuki [12]; they
construct zeta functions having all their zeros on σ = 1/2 by using the Gamma
function).

2. Proofs

We give a proof of (1.2) to compare with the one of (1.5). Recall that we have
eixz =

∫∞
−∞ eizyδxdy, where δx is the delta measure at x ∈ R. The Riemann zeta

function ζ(s) is written by the Dirichlet series in (1.1) when σ > 1. Hence one has

Zσ(t) =
1

ζ(σ)

∞∑
n=1

e−it logn

nσ
=

1

ζ(σ)

∞∑
n=1

1

nσ

∫ ∞

−∞
eityδ− log ndy =

∫ ∞

−∞
eityμσ(dy),

where μσ(dy) is defined in (1.2). This equality implies (1.2). Note that we have

ζ(σ − it)

ζ(σ)
= Zσ(−t) =

1

ζ(σ)

∞∑
n=1

1

nσ

∫ ∞

−∞
e−itzδ− logndz =

∫ ∞

−∞
eityμ−

σ (dy),

where μ−
σ (dy) is given in (1.6) by the change of variables integration z = −y.

In order to prove Theorem 1.2, we quote the following fact. Let [x] denote the
greatest integer not exceeding x.

Lemma 2.1 (See [2, p. 246] and [20, (2.1.5)]). It holds that

ζ(s) = s

∫ ∞

1

[x]

xs+1
dx, σ > 1,(2.1)

ζ(s) = s

∫ ∞

0

[x]− x

xs+1
dx, 0 < σ < 1.(2.2)

Proof of Theorem 1.2. First suppose σ > 1. The equation (2.1) is also written
ζ(s)/s =

∫∞
0

[x]x−s−1dx since we have [x] = 0 when 0 ≤ x < 1. By the change of
variables integration x = ey, we have

Fσ(t) =
σ

ζ(σ)

∫ ∞

0

[x]

xσ−it+1
dx =

σ

ζ(σ)

∫ ∞

−∞

[ey]

ey(σ−it+1)
eydy

=
σ

ζ(σ)

∫ ∞

−∞

[ey]

ey(σ−it)
dy =

∫ ∞

−∞
eiytPσ(y) dy,

where Pσ(y) is given for σ > 1 by (1.5). Note that Pσ(y) = 0 for any σ > 1
and y < 0 since we have [ey] = 0 when y < 0. One has [ey] ≥ 0 for any y ∈ R

and ζ(σ) > 0 by the series expression of ζ(s). Thus it holds that Pσ(y) ≥ 0 for
any y ∈ R. Moreover, we have

∫∞
−∞ Pσ(y)dy = 1 by (2.1). Therefore Pσ(y) is a

probability density function.
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Next suppose 0 < σ < 1. By the change of variables integration x = ey, one has

Fσ(t) =
σ

ζ(σ)

∫ ∞

0

[x]− x

xσ−it+1
dx =

σ

ζ(σ)

∫ ∞

−∞

[ey]− ey

ey(σ−it+1)
eydy

=
σ

ζ(σ)

∫ ∞

−∞

[ey]− ey

ey(σ−it)
dy =

∫ ∞

−∞
eiytPσ(y) dy,

where Pσ(y) is given for 0 < σ < 1 by (1.5). We have ζ(σ)/σ < 0 for any 0 < σ < 1
by (2.2) and [x]− x ≤ 0 for any 0 ≤ x. Thus it holds that Pσ(y) ≥ 0 for any y ∈ R

since one has [ey] − ey ≤ 0 and ζ(σ)/σ < 0. Moreover, we have
∫∞
−∞ Pσ(y)dy = 1

by (2.2). Thus Pσ(y) is a probability density function. �
Next we prove Theorem 1.3. It is well known that the absolute value of char-

acteristic function is not greater than 1 (see for example [17, Proposition 2.5]).
Therefore we immediately have the following inequality by Theorem 1.2.

Corollary 2.2. For any t ∈ R and 0 < σ �= 1, we have

(2.3) |ζ(σ + it)| ≤ |ζ(σ)|
σ

|σ + it|.

Let 0 < θ0 < θ1 < θ2 and put M := maxσ∈[θ0,θ1]∪{θ2} |ζ(σ)|/σ.
Lemma 2.3. For any C ∈ C satisfying |C| > M , the function ζ(s) + Cs does not
vanish in the strips θ0 ≤ σ ≤ θ1 and θ2 ≤ σ.

Proof. Suppose σ > 1. Then x−σ−1, x > 1 is monotonically decreasing. Hence
ζ(σ)/σ is monotonically decreasing when σ > 1 by (2.1). Thus we have

M := max
σ∈[θ0,θ1]∪{θ2}

|ζ(σ)|/σ = max
σ∈[θ0,θ1]∪[θ2,∞)

|ζ(σ)|/σ.

By using (2.3) and the equation above, we have

|ζ(s)| ≤ M |s|, σ ∈ [θ0, θ1] ∪ [θ2,∞).

Hence ζ(s) + Cs with |C| > M does not vanish in the strips θ0 ≤ σ ≤ θ1 and
θ2 ≤ σ. �

As mentioned above, ζ(σ)/σ is monotonically decreasing if σ > 1. On the other
hand, for 0 < σ < 1, we have

d2

d2σ

|ζ(σ)|
σ

=
d2

d2σ

∫ ∞

0

x− [x]

xσ+1
dx =

∫ ∞

0

(x− [x]) log2 x

xσ+1
> 0

by (2.2). Moreover, Mathematica 8.0 gives Figure 3 and the following numerical
values:

|(1/18)−1ζ(1/18)| = 9.97794103359879215955145424246...

|(8/9)−1ζ(8/9)| = 9.48480110687167088364420788938...

|(11/10)−1ζ(11/10)| = 9.62222587722800893307854617431....

Hence Figure 3 indicates that we can take M = 10 when 1/18 ≤ θ0 < θ1 ≤ 8/9
and 11/10 ≤ θ2 in Lemma 2.3. Therefore ζ(s) + Cs with |C| > 10 does not vanish
in the strips 1/18 ≤ σ ≤ 8/9 and 11/10 ≤ σ. Thus we only have to show the
following lemma.

Lemma 2.4. Let C ∈ C satisfy |C| > 10 and −19/2 ≤ �C ≤ 17/2. Then the
function ζ(s) + Cs does not vanish in the strip 8/9 < σ < 11/10.
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Figure 3. {|ζ(σ)|/σ : 0 < σ < 2}

Proof. For σ > 0, it is known (see [8, (1.7)]) that

ζ(s) =
s

s− 1
+ sh(s), h(s) :=

∫ ∞

1

[x]− x

xs+1
dx.

By [x]− x ≤ 0 for any x ≥ 1 and the integral representation of h(s), we have

|h(s)| ≤
∫ ∞

1

|[x]− x|
|xs+1| dx =

∫ ∞

1

x− [x]

xσ+1
dx = −h(σ).

Therefore it holds that

sup
8/9<σ<11/10

|h(s)| = sup
8/9<σ<11/10

{∫ ∞

1

x− [x]

xσ+1
dx

}
= −h(8/9) =

1

8/9− 1
− ζ(8/9)

8/9

= 0.484801106871670883644207889377... < 1/2.

(2.4)

First suppose |s− 1| ≥ 1. In this case, one has |s(s− 1)−1| ≤ |s|. On the other
hand, we have 1 < |h(s) + C| by (2.4) and the assumption |C| > 10. Therefore

(2.5) ζ(s) + Cs =
s

s− 1
+ (h(s) + C)s

does not vanish when 8/9 < σ < 11/10 and |(s− 1)−1| ≤ 1.
Next suppose |s− 1| < 1. Obviously, ζ(s) + Cs = 0 is equivalent to

s = 1− 1

h(s) + C

by (2.5). Thus ζ(s) + Cs does not vanish in the vertical strip 8/9 < σ < 11/10 if

(2.6) 1−� 1

h(s) + C
≤ 8

9
or

11

10
≤ 1−� 1

h(s) + C
.

By an easy computation, we can see that the condition −10 ≤ �h(s) + C ≤ 9
satisfies (2.6). On the other hand, it holds that |�h(s)| < 1/2 by (2.4). Hence
−19/2 ≤ �C ≤ 17/2 fulfills the condition (2.6). �
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Remark 2.5. From [8, p. 9], we have ζ(s) = χ(s)ζ(1− s) and

χ(s) :=
(2π)s

2Γ(s) cos(πs/2)
= (2π/t)σ+it−1/2ei(t+π/4)

(
1 + O(t−1)

)
, t ≥ t0 > 0.

Therefore for any C+ > 0, there exists t > 0 such that |ζ(σ+it)| > C+|σ+it| when
σ < −1/2. Hence ζ(s) + Cs has zeros for some suitable C when σ < −1/2. For
example, we have

C ′
1 :=

ζ(−1 + i1010)

−1 + i1010
= 5322.98794190618...− i 519.09996008851...,

C ′
2 :=

ζ(−2 + i1010)

−2 + i1010
= 9.51272107949384...× 1012 − i 3.79619848933398...× 1012.

Thus one has ζ(s) − C ′
1s = 0 when s = −1 + i1010 and ζ(s) − C ′

2s = 0 when
s = −2 + i1010 by the definitions of C ′

1 and C ′
2. These should be compared with

the fact that ζ(s) +Cs with |C| > 10 does not vanish in the strips 1/18 ≤ σ ≤ 8/9
and 11/10 ≤ σ (see the sentences above Lemma 2.4).

3. Some remarks from the view of infinite divisibility

A probability measure μ on R is infinitely divisible if, for any positive integer
n, there is a probability measure μn on R such that μ = μn∗

n , where μn∗
n is the

n-fold convolution of μn. For example, normal, degenerate, Poisson and compound
Poisson distributions are infinitely divisible. Infinitely divisible distributions are
the marginal distributions of stochastic processes having independent and station-
ary increments such as Brownian motion and Poisson processes. Such stochastic
processes were well studied by P. Lévy and now we usually call them Lévy processes
(see for example [17]).

Let μ̂(t) be the characteristic function of a probability measure μ on R and
ID(R) be the class of all infinitely divisible distributions on R. The following
Lévy–Khintchine representation is well known (see [17, Section 2]). If μ ∈ ID(R),
then we have

(3.1) μ̂(t) = exp

[
−a

2
t2 + iγt+

∫
R

(
eitx − 1− itx

1 + |x|2

)
ν(dx)

]
, t ∈ R,

where a ≥ 0, γ ∈ R and ν is a measure on R that satisfies ν({0}) = 0 and∫
R
(|x|2 ∧ 1)ν(dx) < ∞. Moreover, the representation of μ̂ in (3.1) by a, ν, and γ is

unique. Note that if the Lévy measure ν in (3.1) satisfies
∫
|x|<1

|x|ν(dx) < ∞, then

(3.1) can be written by

(3.2) μ̂(t) = exp

[
−a

2
t2 + iγ0t+

∫
R

(
eitx − 1

)
ν(dx)

]
, t ∈ R,

where γ0 = γ −
∫
R
x
(
1 + |x|2

)−1
ν(dx).

Let ÎD(R) be the set of all infinitely divisible characteristic functions on R. We

can see that Zσ(t) := ζ(σ + it)/ζ(σ) ∈ ÎD(R) from (1.3) and (3.2). As an analogy
of this fact, we have the following theorem by Proposition 1.1.
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Theorem 3.1. When σ > 1, we have

Fσ(t) = exp

[∫ ∞

0

(
eitx − 1

)
N∗

σ(dx)

]
,

N∗
σ(dx) := x−1e−σx(dx) +

∑
p

∞∑
r=1

p−rσ

r
δr log p(dx).

Especially, the function Fσ(t) ∈ ÎD(R) is a compound Poisson characteristic func-
tion when σ > 1.

Proof. We can find the Lévy measure of σ/(σ − it) by

(3.3)
σ

σ − it
= exp

[∫ ∞

0

(
eitx − 1

)
x−1e−σxdx

]

(see for instance [17, p. 45]). Hence one has σ/(σ − it) ∈ ÎD(R) by (3.2). On the
other hand, it holds that

Fσ(t) =
ζ(σ − it)

ζ(σ)

σ

σ − it

by the definition of Fσ(t). Therefore we obtain Theorem 3.1 by (1.3). �

The infinite divisibility of Fσ(t) for 1/2 < σ < 1 is very interesting since we have
the following theorem related to the Riemann hypothesis which states that ζ(s) �= 0
when σ > 1/2.

Theorem 3.2. The Riemann hypothesis is true if Fσ(t) ∈ ÎD(R) for any 1/2 <
σ < 1.

Proof. Note that ζ(1 + it) �= 0 for any t �= 0 (see for example [2, Theorem 13.6]).

On the other hand, it is known that μ̂(t) �= 0 for any t ∈ R if μ̂(t) ∈ ÎD(R) (see

[17, Lemma 7.5]). Hence ζ(σ + it) �= 0 if Fσ(t) ∈ ÎD(R). �

Remark 3.3. We cannot expect that the converse of Theorem 3.2 is true by the
value-distribution theory of ζ(s) (see the sentences below Theorem 1.3). Note that
there are many papers and books on value-distribution theory of zeta-functions in
probabilistic view; for example, [3], [9], [13], [15] and [18].

However, if we consider

Fσ(t, n) :=
σn

(σ − it)n
ζ(σ − it)

ζ(σ)
=

σn−1

(σ − it)n−1
Fσ(t),

for sufficiently large n ∈ N, then Fσ(t, n) might be an infinitely divisible char-
acteristic function under the Riemann hypothesis. This is explained as follows.
For 0 < σ < 1, Fσ(t, n) is a characteristic function since σ/(σ − it) and Fσ(t)
are characteristic functions, and it is known that the product of a finite num-
ber of characteristic functions is also a characteristic function. By (3.3), we have

σn(σ− it)−n ∈ ÎD(R) for any n ∈ N. Then we can guess that the effect of Fσ(t) in
the function Fσ(t, n) might be small when n ∈ N is sufficiently large (recall Corol-
lary 2.2). In other words, if we could consider a function Gσ(t)Fσ(t), where Gσ(t)
is a ‘suitable’ infinitely divisible characteristic function, then Gσ(t)Fσ(t) would be
an infinitely divisible characteristic function under the Riemann hypothesis.
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Sūgaku 53 (2001), no. 3, 279–296; MR1850006], Sugaku Expositions 17 (2004), no. 1, 51–71.
Sugaku Expositions. MR2073363
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