
PROCEEDINGS OF THE
AMERICAN MATHEMATICAL SOCIETY
Volume 143, Number 3, March 2015, Pages 1199–1210
S 0002-9939(2014)12286-6
Article electronically published on October 15, 2014

DOUBLE EXPONENTIAL GROWTH OF THE VORTICITY

GRADIENT FOR THE TWO-DIMENSIONAL EULER EQUATION

SERGEY A. DENISOV

(Communicated by Joachim Krieger)

Abstract. For the two-dimensional Euler equation on the torus, we prove
that the L∞–norm of the vorticity gradient can grow as double exponential
over arbitrary long but finite time provided that at time zero it is already
sufficiently large. The method is based on the perturbative analysis around
the singular stationary solution studied by Bahouri and Chemin in 1994. Our
result on the growth of the vorticity gradient is equivalent to the statement
that the operator of Euler evolution is not bounded in the linear sense in
Lipschitz norm for any time t > 0.

1. Introduction and some upper bounds

Consider the two-dimensional Euler equation for the vorticity

(1) θ̇ = ∇θ · ∇⊥ψ, ψ = Δ−1θ, θ(x, y, 0) = θ0(x, y)

and θ is 2π–periodic in both x and y (that is, the equation is considered on the torus
T
2). We assume that θ0 has zero average over T2 and then Δ−1 is well defined since

the Euler flow is area-preserving and the average of θ(·, t) is zero as well. Denote
the operator of Euler evolution by Et, i.e.

θ(t) = Etθ0.

The global existence of the smooth solution for smooth initial data is well known
and is due to Wolibner [13] (see also [10]). The estimates on the possible growth of
the Lipschitz [10] or Sobolev ([2, Section 3]) norms, however, are double exponential.
We sketch the proof of this bound for H2–norm first. The estimates for Hs, s > 2
can be obtained similarly. More general results on regularity can be found in [4].
Let

jk(t) = ‖θ(t)‖Hk .

Lemma 1.1. If θ is the smooth solution of (1) and ‖θ0‖∞ ∼ 1, then

(2) j2(t) ≤ exp
( (1 + 2 log+ j2(0)) exp(Ct)− 1

2

)
.

Proof. Acting on (1) with Laplacian we get

Δθ̇ = Δθxψy + 2∇θx · ∇ψy −Δθyψx − 2∇θy · ∇ψx.
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Multiply by Δθ and integrate over T2 to get

(3) ∂t‖θ‖2H2 � ‖H(ψ)‖∞‖θ‖2H2

where H(ψ) denotes the Hessian of ψ. The next inequality is a simple exercise in
Harmonic analysis (see [4], proposition 1.4 for a more general result)

(4) ‖H(ψ)‖∞ < C(σ)(1 + log+ ‖θ‖Hσ )

for any σ > 1 assuming that ‖θ‖∞ ∼ 1. Notice that ‖θ‖∞ is invariant under the
dynamics so combine (3) and (4) to get (2). �

Remark 1. In the same way one can prove bounds for higher Sobolev norms, e.g.,

(5) log j4(t) � (1 + log+ j4(0)) exp(Ct)− 1

as long as ‖θ0‖∞ ∼ 1.

The natural questions one can ask then are the following: first, how fast can
the Sobolev norms grow in time and what is the mechanism that leads to their
growth? Secondly, for fixed t, how does ‖E(t)θ0‖Hs depend on ‖θ0‖Hs when the
last expression grows to infinity? For example, given ‖θ0‖∞ ∼ 1, the right hand
side in (2) grows as a power function in j2(0), the degree grows exponentially in t
and is more than one for any t > 0.

Instead of working with Sobolev norms, we will be studying the uniform norm
of the vorticity gradient (or Lipschitz norm) as this norm is more natural for the
method used in the proof. It allows a similar upper bound. We again give a sketch
of the proof.

Lemma 1.2. If θ0 is smooth and ‖θ0‖∞ ∼ 1, then

(6) ‖∇Etθ0‖∞ � exp
(
C(1 + log+ ‖∇θ0‖∞)eCt

)
.

Proof. If Ψ(z, t) is area-preserving Euler diffeomorphism, then

(Etθ0)(z) = θ0(Ψ
−1(z, t)).

On the other hand, Ψ(z, t) solves

Ψ̇ = −u(Ψ, t), Ψ(z, 0) = z

where u(z, t) = ∇⊥Δ−1θ(·, t). For the Riesz transform we have a trivial estimate

(7) ‖H(Δ−1θ)‖∞ � 1 + ‖θ‖∞(1 + log+ ‖∇θ‖∞).

(Indeed, without loss of generality we can evaluate the integral at zero and assume
θ(0) = 0. Then, e.g.,∣∣∣∣∣

∫
B1(0)

ξ1ξ2
|ξ|4 θ(ξ)dξ

∣∣∣∣∣ ≤
∫
Bδ(0)

1

|ξ|2 |θ(ξ)|dξ +
∫
δ<|z|<1

1

|ξ|2 |θ(ξ)|dξ

where δ−1 = max{‖∇θ‖∞, 2}. Apply now the mean value theorem to the first term
to get (7).) So

|u(w1, t)− u(w2, t)| � |w1 − w2|b, b = 1 + log+ ‖∇θ(t)‖∞.

Therefore, we have

|ḟ | � fb, f(t) = |Ψ(z2, t)−Ψ(z1, t)|2.
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After integration

|z2− z1| exp
(
−C

∫ t

0

b(τ )dτ

)
≤ |Ψ(z2, t)−Ψ(z1, t)| ≤ |z2 − z1| exp

(
C

∫ t

0

b(τ )dτ

)
.

Since

‖∇θ(z, t)‖∞ = sup
z1,z2

|θ0(Ψ−1(z2, t))− θ0(Ψ
−1(z1, t))|

|z2 − z1|
we get the inequality

‖∇θ(z, t)‖∞ � ‖∇θ0‖∞ exp

(
C

∫ t

0

b(τ )dτ

)
.

Taking log of both parts and applying the Gronwall-Bellman, we get (6). �
In this paper, we will work only with large ‖∇θ0‖∞. For that case, we will show

that, given arbitrarily large λ, the estimate maxt∈[0,T ] ‖∇θ(·, t)‖∞ > λeT−1‖∇θ0‖∞
can hold for some infinitely smooth initial data. This is far from showing that (2)
or (6) are sharp. However, it already is equivalent to the statement that Et is not
bounded in the standard linear sense. The question of whether ‖∇θ0‖∞ can be
taken ∼ 1 is left wide open; see the discussion in the last section.

Remark 2. The simple embedding inequality

‖∇θ‖∞ � ‖θ‖H3(T2)

along with careful estimation of the ‖θ0‖H3(T2) and a minor modification in the
proof of Theorem 6.1 below show that the double-exponential growth for higher
Sobolev norms is also possible.

Our results rigorously confirm the following observation: if the 2D incompressible
inviscid fluid dynamics gets into a certain “instability mode”, then the Sobolev
norms can grow very fast in local time (i.e. counting from the time the “instability
regime” was reached). Can Sobolev or Lipschitz norms grow infinitely as t → ∞?
The answer to this question is positive; see [5] and [8, 9, 11, 12, 14]. The important
questions of linear and nonlinear instabilities were addressed before (see, e.g., [6]
and the references there). In the recent paper [7], it was proved that Euler evolution
of the velocity field is not uniformly continuous on the unit ball in Sobolev spaces.

Remark 3. It must be mentioned here that 2D Euler allows rescaling which provides
the tradeoff between the size of θ0 and the speed of the process, i.e. if θ(x, y, t)
is a solution, then μθ(x, y, μt) is also a solution for any μ > 0. However, in our
construction we will always have ‖θ‖p ∼ 1, ∀p ∈ [1,∞].

Remark 4. If one replaces Δ−1 in (1) by Δ−α with α > 1, then the growth of the
vorticity gradient is at most exponential, e.g.

‖∇E
(α)
t θ0‖∞ � ‖∇θ0‖∞ exp(C‖θ0‖∞t).

Moreover, the lower exponential bound can hold for all times as long as θ0 is
properly chosen (see [5]).

The idea of constructing the smooth initial data for a double exponential scenario
is quite simple and roughly can be summarized as follows. We will first identify a
special stationary singular solution which generates the hyperbolic dynamics with
double-exponential contraction around some stationary points. Then, given any
T > 0, we will smooth out this singular steady state such that the dynamics are still
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double-exponential over [0, T ] in a certain domain away from the separatrices. Then
we will place a small but steep bump in the area of double exponential behavior
and will let it evolve hoping that the vector field generated by this bump itself is
not going to ruin the double-exponential contraction. The rest of the paper verifies
that this indeed is the case.

Below, we will use the following standard notation:

〈f, g〉 =
∫
T2

f(x, y)g(x, y)dxdy.

2. The singular stationary solution and dynamics on the torus

The following singular stationary solution was studied before (see, e.g., [1, 3] in
the context of R2). We consider the following function:

θs0(x, y) = sgn(x) · sgn(y), |x| ≤ π, |y| ≤ π.

This is a steady state. Indeed, the function ψ0 = Δ−1θs0 is odd with respect to
each variable as can be verified on the Fourier side. That, in particular, implies
that ψ0 is zero on the coordinate axes so its gradient is orthogonal to them. This
steady state, of course, is a weak solution, a vortex-patch steady state. Another
consequence of ψ0 being odd is that the origin is a stationary point of the dynamics.

By the Poisson summation formula, we have∑
n∈Z2,n�=(0,0)

|n|−2ein·z = C ln |z|+ φ(z), z ∼ 0

where φ(z) is smooth and even.
Therefore, around the origin we have

∇ψ0(x, y) ∼
∫ ∫

B0.5(0)

(x− ξ1, y − ξ2)

(x− ξ1)2 + (y − ξ2)2
sgn(ξ1)sgn(ξ2)dξ1dξ2 + (O(y), O(x)).

Due to symmetry, it is sufficient to consider the domain D = {0 < x < y < 0.001}.
Then, taking the integrals, we see that

(8) μ(x, y) = (μ1, μ2) =
(
∇⊥ψ0

)
(x, y)

= c1

(
−
∫ x

0

ln(y2 + ξ2)dξ + xr1(x, y),

∫ y

0

ln(x2 + ξ2)dξ + yr2(x, y)

)
= c2(−x log y + xO(1), y log y + yO(1)) if (x, y) ∈ D.

The correction terms r1(2) are smooth. Without loss of generality we will later
assume that c2 = 1 in the last formula (so c1 = 0.5). That can always be achieved
by time-rescaling. Notice also that the flow given by the vector-field μ is area-
preserving.

Thus, the dynamics of the point (α, β) ∈ D,α � β is

(9) (C1β)
et � y(t) � (C2β)

et , α(C1β)
−et+1 � x(t) � α(C2β)

−et+1, t ∈ [0, t0],

where t0 is the time the trajectory leaves the domain D. These estimates therefore
give a bound on t0. The attraction to the origin, the stationary point, is double
exponential along the vertical axis and the repulsion along the horizontal axis is
also double-exponential.
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3. The model equation

Consider the following system of ODE’s:

(10)

{
ẋ = μ1(x, y) + ν1(x, y, t), x(α, β, 0) = α,
ẏ = μ2(x, y) + ν2(x, y, t), y(α, β, 0) = β,

where μ1(2) are defined in (8). Here we assume the following:

(11) |ν1(2)| < 0.0001υr, r =
√
x2 + y2

and

(12) |∇ν1(2)| < 0.0001υ

with small υ (to be specified later) and these estimates are valid in the area of
interest

ℵ = {y >
√
x} ∩ {y < ε2} ∩ {x > ε1}

where

υ � ε1 � ε2.

The functions ν1(2) are infinitely smooth in all variables in ℵ but we have no con-
trol over higher derivatives. We also assume that the flow given by (10) is area-
preserving. Our goal is to study the behavior of trajectories within a time interval
[0, T ]. In this section, the parameters will eventually be chosen in the following
order:

T −→ ε2 −→ ε1 −→ υ.

Here are some obvious observations:
1. We have estimates

x(− log y − C)− υy < ẋ < x(− log y + C) + υy

−y(| log y|+ C) < ẏ < −y(| log y| − C).(13)

2. Assuming ε1(2) to be fixed, let

(14) υ < 0.1
ε1| log ε2|

ε2

and the initial data (α, β) ∈ ℵ. Then, for ε1(2) sufficiently small, equations (13)
show that x(t) increases and y(t) decreases. This monotonicity persists as long as
the trajectory stays within ℵ.

The second estimate in (13) yields

(15) ee
t(log β+C) > y(t) > ee

t(log β−C).

Let us introduce

κ(T, β) = ee
T (log β−C).

For x(t), we have

x(t) ≤ α exp

(
Ct−

∫ t

0

log y(τ )dτ

)
+ υ

∫ t

0

y(τ ) exp

(
C(t− τ )−

∫ t

τ

log y(s)ds

)
dτ

x(T ) < (α+ υβT ) exp
(
T (C + | log κ(T, β)|)

)
.
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Thus, the trajectory will stay inside ℵ for any t ∈ [0, T ] as long as

α < e2e
T (log β−C)−T (C−log κ) − υβT

or

(16) α < κ2+T e−TC − υβT.

Since
ee

T (log β−C) = κ < e−TC

for large T and β < ε2, we see that (16) is satisfied if we require

α < κ3+T − υε2T

and if we have

(17) υ < κ4+T (T, β).

Then the condition

(18) α < β8e2T

is sufficient for the trajectory to stay inside ℵ for t ∈ [0, T ]. Thus, we are taking

ε1 < ε8e
2T

2

and focusing on the nonempty domain

Ω0 = {(α, β) : ε1 < α < β8e2T , β < ε2}.
The condition on υ is (17), so taking the smallest possible κ(T, β) within Ω0 we
get, e.g.,

(19) υ < ε101 .

Then, any point from Ω0 stays inside ℵ over [0, T ], x(t) grows monotonically and
y(t) monotonically decays with the double-exponential rate given in (15).

Now, we will prove that the derivative in α of x(α, β, t) grows with the double-
exponential rate and this will be the key calculation. For any t ∈ [0, T ], (8) yields
(20)⎧⎪⎪⎨

⎪⎪⎩
ẋα = 0.5

(
−xα log(x2 + y2) + xαr1

+xxαr1x + xyαr1y ) + ν1xxα + ν1yyα − yα arctan(xy−1),
ẏα = 0.5 ( yα log(x2 + y2) + yαr2 + yxαr2x

+yyαr2y ) + ν2xxα + ν2yyα + xα arctan(yx−1)

and xα(α, β, 0) = 1, yα(α, β, 0) = 0. Let

f11(t) = ν1x − 0.5 log(x2 + y2) + 0.5r1 + 0.5xr1x

f12(t) = 0.5xr1y + ν1y − arctan(xy−1)

f21(t) = 0.5yr2x + ν2x + arctan(yx−1)

f22(t) = 0.5 log(x2 + y2) + 0.5r2 + 0.5yr2y + ν2y

xα = exp

(∫ t

0

f11(τ )dτ

)
x̂, yα = exp

(∫ t

0

f22(τ )dτ

)
ŷ.

If
g = f11 − f22,

then

x̂(t) = 1 +

∫ t

0

x̂(s)f21(s)

∫ t

s

f12(τ ) exp

(
−
∫ τ

s

g(ξ)dξ

)
dτds.
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Since the trajectory is inside ℵ, we have y >
√
x and so

|f12| � y + υ, |f21| � 1, f11 > et(− log β + C), g(t) > 1.

From (15), we get

|x̂(t)− 1| � υ

∫ t

0

|x̂(τ )|dτ +

∫ t

0

|x̂(s)|
(∫ t

s

ee
τ (log β+C)e−(τ−s)dτ

)
ds.

The following estimate is obvious:∫ t

s

ee
τ (log β+C)e−(τ−s)dτ � e−s

as β is small. Assuming that

(21) υ � (T + 1)−1

and ε2 is small, we have

x̂(t) ∼ 1

and

(22) xα(α, β, T ) >

(
1

β

)(eT−1)/2

.

The estimate (22) is the key estimate that will guarantee the necessary growth.
Now, let us place a circle Sγ(x̃, ỹ) with radius γ and center at (x̃, ỹ) into the zone

Ω0. Consider also the line segment l = [A1, A2], A1 = (x̃−γ/2, ỹ), A2 = (x̃+γ/2, ỹ)
in the center, parallel to OX. We will track the evolution of this disc and this line
segment under the flow. We have by the mean value theorem

x(A2, T )− x(A1, T ) > β−(eT−1)/2γ.

From the positivity of xα(α, β, T ) it follows that the image of l under the flow at
time T is a curve given by the graph of a smooth function Γ(x). Thus, the image of

l (call it l′) has length at least β−(eT−1)/2γ. Denote the distance from l′ to S′
γ(x̃, ỹ),

the image of the circle, by d. Then, the domain {Γ(x)− d < y(x) < Γ(x) + d, x ∈
(x(A1, T ), x(A2, T ))} is inside S′

γ(x̃, ỹ). The area of this domain is at least

dβ−(eT−1)/2γ.

Thus, assuming that the flow preserves the area, we have

d � β(eT−1)/2γ.

Consequently, if we place a bump in Ω0 such that the l and Sγ(x̃, ỹ) correspond to
level sets, say, h2 and h1 (and, what is crucial, h1(2) are essentially arbitrary
0 < h1 < h2 < 0.0001), then the original slope of at least ∼ |h2−h1|/γ will become
not less than

(23) β−(eT−1)/2 · (|h2 − h1|/γ) ,

thus leading to double-exponential growth of arbitrarily large gradients.

Remark 1. If β is a fixed small number, we have growth in T . If T is any positive
fixed moment of time, we have the growth if β → 0.
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Remark 2. Let us reiterate the order in which the parameters are chosen: we first

fix any T , then small ε2, then ε1 < ε8e
2T

2 . How small ε2 must be taken will be
determined by how large the parameter λ is chosen in Theorem 6.1 below. This
defines the set Ω0. For the whole argument to work we need to collect all conditions
on υ: (14), (19), (21) which leads to

(24) υ < ε101 .

4. Small perturbations of a singular cross can also generate

double exponential contraction in ℵ
Assume that the function θ1 at any given time t ∈ [0, T ] is such that

θ1(x, y, t) = θs0(x, y)

outside the “cross”-domain

(25) A = {|x− πk| < τ} ∪ {|y − πl| < τ}

where τ is small and k, l ∈ Z. Inside the domain A we only assume that θ1 is
bounded by one in absolute value, is even, and has zero average. Notice here that
the Euler flow preserves property of the function to be even. Given fixed ε1(2)
and the domain ℵ defined by these constants, we are going to show that the flow
generated by θ1 can be represented in ℵ in the form (10) with υ(τ ) → 0 as τ → 0.
We assume of course that τ � ε1.

For that, we only need to study

F1 = ∇Δ−1p, p = θ1 − θs0.

Here are some obvious properties of F1:
1. F1(0) = 0 as θ1 and θs0 are both even.
2. We have

F1(z) ∼
∫
A

(
ξ − z

|ξ − z|2 − ξ

|ξ|2

)
p(ξ)dξ.

Using the formula ∣∣∣∣ x

|x|2 − y

|y|2

∣∣∣∣ = |x− y|
|x| · |y|

we get

|F1(z)| � |z|τ | log τ |
ε1

if z ∈ ℵ.
Thus, by taking τ small, we can satisfy (11). How about (12)? For the Hessian,

we have

|HΔ−1p| � ε−2
1 τ

and after combining we must have

(26) ε−2
1 τ | log τ | � ε101

by (24). Thus, this condition on the size of the cross guarantees that the arguments
in the previous section work.
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5. The flow generated by a small steep bump in ℵ
In this section, we assume that at a given moment t ∈ [0, T ], we have a smooth

even function b(x, y, t) with support in ℵ ∪ −ℵ, with zero average, and

‖b‖2 < ω, ‖∇b‖∞ < M

(here one should think about small ω and large M). We will study the flow gener-
ated by this function. Let

F2 = ∇Δ−1b.

Here are some properties of F2:
1. F2(0) = 0.
2. To estimate the Hessian of Δ−1b, consider the second order derivatives. For

example,

(Δ−1b)xy(x, y) ∼
∫

(x−ξ)2+(y−η)2<1

(x− ξ)(y − η)

((x− ξ)2 + (y − η)2)2
b(ξ, η, t)dξdη

=

∫
1>(x−ξ)2+(y−η)2>ρ2

(x− ξ)(y − η)

((x− ξ)2 + (y − η)2)2
b(ξ, η, t)dξdη

+

∫
(x−ξ)2+(y−η)2<ρ2

(x− ξ)(y − η)

((x− ξ)2 + (y − η)2)2
[b(x, y, t)

+∇b(ξ′, η′, t) · (ξ − x, η − y)] dξdη.

The first term is controlled by ωρ−1. By our assumption, the second term is dom-
inated by Mρ. Optimizing in ρ we have

‖HΔ−1b‖∞ �
√
Mω.

To guarantee the conditions that lead to double-exponential growth with arbitrary
a priori given M , we want to make ω so small that conditions (11) and (12) are
satisfied with υ as small as we need (i.e., (24)). The condition (12) is immediate
and (11) follows from F2(0) = 0, the mean value theorem and the estimate on the
Hessian.

6. One stability result and the proof of the main theorem

It is well known that given θ0 ∈ L∞(T2), the weak solution exists and the flow
can be defined by the homeomorphic maps Ψθ0(x, y, t) for all t so that θ(x, y, t) =
θ0(Ψ

−1
θ0

(x, y, t)) where Ψθ0 itself depends on θ0. The regularity of this map though

is rather poor ([3, Theorem 2.3], p. 99). In this section, we will need to take smooth
θ0 such that

max
t∈[0,T ]

max
z∈T2

|Ψθ0(z, t)−Ψθs
0
(z, t)|

is sufficiently small.
To this end, we will consider θ0 = θs0 outside the domain D of small area. Inside

this domain we assume θ0 to be bounded by some universal constant. The proof
of Yudovich theorem (see, e.g., the argument on pp. 313–318, proof of Proposition
8.2, [2]) implies

(27) max
t∈[0,T ]

max
z∈T2

|Ψθs
0
(z, t)−Ψθ0(z, t)| → 0

as |D| → 0.
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This is the only stability result with respect to initial data that we are going to
need in the argument below.

Theorem 6.1. For any large λ and any T > 0, we can find smooth initial data θ0
so that ‖θ0‖∞ < 2 and

max
t∈[0,T ]

‖∇θ(·, t)‖∞ > λeT−1‖∇θ0‖∞.

Proof. Fix any T > 0 and find ε1(2). For larger λ, we have to take smaller ε2 (see
Remark 1 in the third section). Identify the domain Ω0 and place a bump (call it
b(z)) in Ω0 ∪−Ω0 so that the resulting function is even. Make sure that this bump
has zero average, height h2 and diameter of support h1 so that the gradient initially
is of the size ∼ h2/h1. Here h1 � h2 � 1 will be adjusted later.

Take a smooth even function ω(x, y) supported on B1(0) such that∫
T2

ω(x, y)dxdy = 1.

For positive small σ, consider

θ̃σ(x, y) = θs0 ∗ ωσ ∈ C∞, ωσ = σ−2ω(x/σ, y/σ).

We take σ � ε1 so θ̃σ(x, y) and θs0(x, y) coincide in ℵ.
As the initial data for Euler dynamics we take a sum

θ̃σ(z) + b(z).

Then, since θs0 is stationary under the flow, the stability result (27) guarantees that
given any τ and keeping the same value of h2/h1, we can find σ and h1 so small
that over the time interval [0, T ] we satisfy:

1. The “evolved bump” b(z, t) stays in the domain ℵ (e.g., Ψθ0(t)
(
supp b(z)

)
⊂

ℵ).
2. Outside the cross of size τ (the one considered in Section 5) and the support

of the evolved bump b, the solution is identical to θs0.
Fix σ and h′

1 so small that for any h1 < h′
1 we have τ , e.g. the size of A from

(25), being as small as we wish. The value of τ must be small enough to ensure the
double-exponential scenario, the conditions (11) and (12). For that, we need (26).

Next, we proceed by contradiction. Assume that for all t ∈ [0, T ] we have

‖∇θ(z, t)‖∞ < M = (h2/h1)λ
eT−1. Then, because ‖b(z, t)‖2 is constant in time as

the flow is area-preserving and ‖b(z, t)‖2 � h1h2, we only need to take h2 so small
that

√
Mh1h2 is small enough to guarantee the double-exponential scenario and

the estimate (23). This gives us a contradiction as the double-exponential scenario
makes the gradient’s norm more than M (provided that ε2 � λ−2). For the initial
value,

‖∇θ0‖∞ ∼ σ−1 + h2/h1 ∼ h2/h1

by arranging h1(2) (and keeping h1 < h′
1).

Here is an order in which parameters are chosen in this construction:

{T, λ} −→ ε2 −→ ε1 −→ {σ, h1(2)}.

�
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7. The operator Et does not allow a linear bound

Theorem 6.1 is equivalent to the following:

Proposition 1. The operator Et is not bounded in the linear sense in the Lipschitz
norm for any t > 0, i.e.

sup
θ0∈C∞(T2),0<‖θ0‖∞≤1,〈θ0,1〉=0

‖∇Etθ0‖∞
‖∇θ0‖∞

= +∞.

Proof. The proof is immediate. Indeed, given any fixed t, we have

sup
τ∈[0,t]

(
sup

θ0∈C∞(T2),‖θ0‖∞=1,〈θ0,1〉=0

‖∇Eτθ0‖∞
‖∇θ0‖∞

)
= +∞

by taking λ → ∞ in Theorem 6.1. Then, to have the statement at time t, we only
need to multiply θ0 by a suitable number and use Remark 2 from the first section.

Vice versa, in Theorem 6.1 the combination λeT−1 can be replaced by an arbitrar-
ily large number. In this formulation, the statement follows from the proposition.

�

As the statement of Theorem 6.1 holds with any λ, the double-exponential func-
tion is not relevant at all in the formulation itself. However, it is this very special
hyperbolic scenario with double-exponential rate of contraction that ultimately pro-
vided the superlinear dependence on the initial data.

The interesting and important question is whether the vorticity gradient can
grow in the same double exponential rate starting with initial value ∼ 1. We do
not know the answer to this question yet and the best known bound is (see, e.g.,
[5])

max
t∈[0,T ]

‖∇θ(·, t)‖∞ > e0.001T

for arbitrary T and for T–dependent θ0 with ‖θ0‖∞ ∼ ‖∇θ0‖∞ ∼ 1.
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