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ON THE CONCEPT OF ANALYTIC HARDNESS

JANUSZ PAWLIKOWSKI

(Communicated by Mirna Dzamonja)

Abstract. Let H ⊆ Z ⊆ 2ω. Using only classical descriptive set theory we
prove that if Borel functions from 2ω to Z give as preimages of H all analytic
subsets of 2ω, then so do continuous injections. This strengthens a theorem
Kechris proved by means of effective descriptive set theory.

Let H ⊆ Z be subsets of the Cantor space C = 2ω. The pair (H,Z) is called
Σ1

1-hard, resp. Borel Σ1
1-hard, if for any Σ1

1 set Q ⊆ C there is a continuous,
resp. Borel, function f : C → Z with Q = f−1[H]. Using effective descriptive set
theory Kechris [1] showed that (H,Z) is Σ1

1-hard iff it is Borel Σ1
1-hard. Since the

statement of Kechris’s theorem is purely classical, one would like to have a classical
proof, and, in fact, Kechris asked about a possibility of such a proof.

Using only classical methods we prove the following:

Theorem. Let n ≥ 1 and H ⊆ Z ⊆ C. If Borel functions from 2ω to Z give as
preimages of H all Σ1

n(C) sets, then so do continuous injections.

Note that for any separable metrizable space S there exists a Borel injection
e : S → C whose inverse is continuous (e.g., e(s)(i) = 1 ⇔ s ∈ Oi, where {Oi}i∈ω is
a basis of S). Moreover, e can be chosen to be continuous if S is zero-dimensional.
It follows that we can change in the Theorem the range space Z to any separable
metrizable space, and the domain space C to any zero-dimensional uncountable
Polish space.

Let X be an arbitrary separable metrizable space. The projective classes Σ1
n(X),

Π1
n(X), andΔ1

n(X), n ≥ 1, are defined in the same way they are defined for a Polish
space (see [2, 25.A]). In particular, Q ∈ Δ1

1(X) iff Q ∈ Σ1
1(X) ∩Π1

1(X), and if X
is a subspace of a Polish space X̄, then Q ∈ Σ1

n(X) iff there is Q̄ ∈ Σ1
n(X̄) with

Q = X ∩ Q̄.
The Σ1

1(X), Π1
1(X), and Δ1

1(X) sets are also called, respectively, analytic, co-
analytic, and bianalytic in X. Recall that Borel subsets of X are always bianalytic
in X, and if X is analytic in a Polish space, then the converse is true; there are,
however, X ∈ Π1

1(C) for which the converse fails.
A function from one separable metrizable space to another is called bianalytic

if preimages of open sets are bianalytic (then preimages of bianalytic sets are also
bianalytic).
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Let P be the set of all nonempty perfect subsets of C endowed with the Vietoris
topology; this is a Polish space, a homeomorph of the Baire space ωω. For G ⊆ C,
let P(G) = P ∩PowG. Recall that if G is Gδ in C, then P(G) is Gδ in P, and if G
is comeager in C, then P(G) is comeager in P.

For any Q ⊆ X× Y , f : X× Y → Z, and x ∈ X, define the sections Qx ⊆ Y
and fx : Y → Z by y ∈ Qx ⇔ (x, y) ∈ Q and fx(y) = f(x, y).

Fix also a continuous function π : P× C → C such that each section πp, p ∈ P,
is a homeomorphism from C onto p (e.g., let πp be induced by the unique bijection
from 2<ω onto the split nodes of the tree {s|l : s ∈ p, l ∈ ω} which preserves
the lexicographic ordering).

Proposition. Let X ⊆ C. Given a bianalytic function b : X× C → C, there exists
a bianalytic function p : X → P such that for each x ∈ X, bx|p(x) is continuous
injective or constant.

Proof. Let B consist of all pairs (x, p) ∈ X×P such that bx|p is continuous injective
or constant.

We claim that (1) B ∈ Π1
1(X× P), and (2) ∀x ∈ X Bx is nonmeager in P; so

we can use the “large sections” uniformization for coanalytic sets ([2, 36.F]) to get
a bianalytic p : X → P uniformizing B.

(1) First, letting {In}n∈ω be an enumeration of all clopen subsets of C, note that
bx|p is continuous iff

∀n ∃m ∀ y ∈ p y ∈ Im ⇔ b(x, y) ∈ In .

This defines a Π1
1(X× P) set since “b(x, y) ∈ In” defines a Δ1

1(X× C× ω) set.
Next, note that bx|p is injective iff

∀ y, y′ ∈ p b(x, y) = b(x, y′) ⇒ y = y′,

and constant iff

∀ y, y′ ∈ p b(x, y) = b(x, y′).

Clearly, both these formulas define Π1
1(X× P) sets.

(2) Fix x ∈ X. Since the section bx is Borel, it is continuous on a dense Gδ set
G ⊆ C. In G2 consider the open set

∇ = {(y, y′) ∈ G2 : bx(y) �= bx(y
′)}.

If the section bx is constant on a nonempty open in G set U , then the set
Pconst = P(U) is nonempty and open in P(G), hence nonmeager in P; clearly bx
is constant on each p ∈ Pconst.

Otherwise the set G2 ∩ ∇ is dense open in G2, and then, by the Kuratowski-
Mycielski theorem ([2, 19.1]), the set

Pinjct = {p ∈ P : p2 ⊆ ∇ ∪ {(y, y) : y ∈ G}}
is comeager in P(G), hence also in P; clearly bx is injective on each p ∈ Pinjct. �

Corollary. Let X ⊆ C. Given bianalytic functions b : X× C → C and b : X → P,
there exists a bianalytic function p : X → P such that for each x ∈ X, p(x) ⊆ b(x)
and bx|p(x) is continuous injective or constant.

Proof. Get p′ : X → P by the Proposition applied to the function

b′(x, y) = b(x, π(b(x), y)).
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Then the function x �→ πb(x)[p
′(x)] is our required p. Just note that the function

(p, p′) �→ πp[p
′] is continuous. �

Fix now a bianalytic function that is universal for Borel functions. For this,
choose E ∈ Π1

1(C) and U ∈ Δ1
1(E × (ω× C)) such that {Uε}ε∈E is the family of all

Borel subsets of ω× C (see [2, 35.B]), and define the function u : E × C → C by

u(ε, y)(n) = 1 ⇔ (ε, n, y) ∈ U.

Then u is bianalytic and {uε}ε∈E is the family of all Borel functions from C to C.
Proof of the Theorem. Let (H,Z) be as postulated. For z ∈ C, define z0 ∈ C by
z0(i) = z(2i). Let p : X → P be obtained by the Corollary applied to X = E , b = u,
and b given by ε → {z ∈ C : z0 = ε}.

Consider the following bianalytic injection of E × C into C:
h(ε, y) = π(p(ε), y).

If Q ∈ Σ1
n(C), then

h[E ×Q] = {z ∈ C : ∃ y ∈ Q h(z0, y) = z} ∈ Σ1
n(h[E × C]).

Indeed, we have here the projection along Q ∈ Σ1
n(C) of the Δ1

1(h(E × C)× C) set
given by the preimage of {(z, z) : z ∈ C} by the bianalytic function

h[E × C]× C � (z, y) �→ (h(z0, y), z).

It follows that h[E×Q] = Q̃∩h[E×C] for some Q̃ ∈ Σ1
1(C). So, by our assumptions

about (H,Z), there exists a Borel function f : C → Z such that

h[E ×Q] = f−1[H] ∩ h[E × C],
hence, since h is injective,

E ×Q = h−1[f−1[H]].

Find ε with f = uε. Then

Q = h−1

ε [u−1

ε [H]] = (uεhε)
−1[H].

The function uεhε is continuous injective or constant, as hε is continuous bijective
onto p(ε), and uε|p(ε) is continuous injective or constant.

If the function uεhε is injective, we are done. Otherwise it is constant, and it
follows that Q ∈ {C,∅}. But then there is a continuous injective e : C → Z with
Q = e−1[H], since both sets H and Z �H contain copies of C.1 �
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1 Fix G ∈ Gδ(C) � Fσ(C). Let g : C → Z be continuous with G = g−1[H]. Then g[G]
is uncountable, as otherwise G = g−1[g[G]] would be Fσ . Being an uncountable Σ1

1 set, g[G]

contains a copy of C. The same argument works for Z �H.
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