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RESCALING PRINCIPLE FOR ISOLATED ESSENTIAL

SINGULARITIES OF QUASIREGULAR MAPPINGS

YÛSUKE OKUYAMA AND PEKKA PANKKA

(Communicated by Jeremy Tyson)

Abstract. We establish a rescaling theorem for isolated essential singularities
of quasiregular mappings. As a consequence we show that the class of closed
manifolds receiving a quasiregular mapping from a punctured unit ball with
an essential singularity at the origin is exactly the class of closed quasireg-
ularly elliptic manifolds, that is, closed manifolds receiving a non-constant
quasiregular mapping from a Euclidean space.

1. Introduction

A continuous mapping f : M → N between oriented Riemannian n-manifolds
is K-quasiregular if f belongs to the Sobolev space W 1,n

loc (M,N) and satisfies the
distortion inequality

‖Df‖n ≤ KJf a.e.,

where ‖Df‖ is the operator norm and Jf is the Jacobian determinant of the differ-
ential Df of f .

The main result of this paper is the following rescaling theorem. We denote the
open unit ball about the origin in Rn by Bn. We say that a quasiregular mapping f
from Bn \ {0} to a closed and oriented Riemannian n-manifold N has an essential
singularity at the origin if the limit limx→0 f(x) does not exist in N .

Theorem 1. Let N be a closed and oriented Riemannian n-manifold, n ≥ 2, and
let f : Bn \ {0} → N be a K-quasiregular mapping with an essential singularity
at the origin, K ≥ 1. Then there exist a non-constant K-quasiregular mapping
g : X → N , where X is either Rn or Rn \ {0}, and sequences (xk) and (ρk) in Bn

and (0,∞), respectively, such that limk→∞ xk = 0, limk→∞ ρk = 0 and

lim
k→∞

f(xk + ρkv) = g(v)

locally uniformly on X.

Theorem 1 bears a close resemblance to Miniowitz’s Zalcman lemma for quasireg-
ular mappings; see Miniowitz [10] and Zalcman [16]. It seems, however, that this
version for isolated essential singularities has gone unnoticed in the quasiregular
literature although the heuristic idea behind this rescaling principle is well known
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in the classical holomorphic case (n = 2 and K = 1); see, e.g., Bergweiler [1] and
Minda [9].

Theorem 1 readily yields the following characterization of closed and oriented
Riemannian manifolds receiving a quasiregular mapping with an isolated essential
singularity.

Theorem 2. Let N be a closed and oriented Riemannian n-manifold, n ≥ 2.
If there exists a K-quasiregular mapping f : Bn \ {0} → N having an essential
singularity at the origin, K ≥ 1, then there exists a non-constant K ′-quasiregular
mapping g : Rn → N satisfying g(Rn) ⊂ f(Bn \ {0}).

Conversely, if there exists a non-constant K-quasiregular mapping g : Rn → N ,
K ≥ 1, then there exists a K ′-quasiregular mapping f : Bn \ {0} → N having an
essential singularity at the origin such that f(Bn \ {0}) ⊂ g(Rn).

Here K ′ = K ′(n,K) ≥ 1 depends only on n and K, and K ′(2,K) = K.

Having Theorem 2 at our disposal, we readily obtain “big” versions of Varopou-
los’s theorem [15, pp. 146-147] and the Bonk–Heinonen theorem [2, Theorem 1.1],
which respectively give a bound of the fundamental group and the de Rham coho-
mology ring of a closed quasiregularly elliptic manifold. Recall that a connected
and oriented Riemannian n-manifold N , n ≥ 2, is called quasiregularly elliptic if
there exists a non-constant quasiregular mapping from Rn to N .

Corollary 1. Let N be a closed, connected, and oriented Riemannian n-manifold,
n ≥ 2, with a K-quasiregular mapping Bn \{0} → N having an essential singularity
at the origin, K ≥ 1. Then the fundamental group π1(N) of N has polynomial
growth of order at most n, and the de Rham cohomology ring H∗(N) of N satisfies

(1.1) dimH∗(N) :=

n∑
k=0

dimHk(N) ≤ C,

where C = C(n,K) > 0 depends only on n and K.

Although the former half of Corollary 1, the big Varopoulos theorem, is well
known to the experts, we have been unable to find it in the literature. For a direct
proof of the big Bonk–Heinonen theorem, i.e., the bound (1.1), see [12].

We would also like to note that together with the Holopainen–Rickman Picard
theorem for quasiregularly elliptic manifolds [6], we obtain a big Picard type theo-
rem for quasiregular mappings into closed manifolds; see also [5].

Corollary 2. Let N be a closed, oriented, and connected Riemannian n-manifold,
n ≥ 2, and f : Bn \ {0} → N be a K-quasiregular mapping with an essential singu-
larity at the origin, K ≥ 1. Then for every x ∈ N , except for at most q − 1 points,
it holds that #f−1(x) = ∞, where q = q(n,K) ∈ N depends only on n and K.

We conclude this introduction with an application of Theorem 1 to the Ahlfors
five islands theorem; see, e.g., Bergweiler [1] or Nevanlinna [11, XII §7, §8] for a
detailed discussion.

Let f be a quasimeromorphic function on a domain U in the 2-sphere S2, i.e.,
a quasiregular mapping from U to S2. We say that f has a simple island Ω over
a Jordan domain D′ in S

2 if Ω is a relatively compact subdomain in U and is
mapped univalently onto D′ by f . The Ahlfors five islands theorem states that
given five Jordan domains in S2 with pair-wise disjoint closures, any non-constant
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quasimeromorphic function on R2 has a simple island over one of these Jordan
domains.

Corollary 3. Let f be a quasimeromorphic function on B2\{0} having an essential
singularity at the origin. Then given five Jordan domains D1, . . . , D5 in S

2 with
pairwise disjoint closures, f has a simple island over one of D1, . . . , D5.

Proof. Applying Theorem 1 to f , we obtain sequences (xk) and (ρk), and a non-
constant quasimeromorphic function g on R2 \ {0}, where fk is the mapping v 	→
f(xk + ρkv) and g is the locally uniform limit of (fk), as in Theorem 1. We may
fix Jordan domains D′

1, . . . , D
′
5 in S2 satisfying Dj � D′

j for every j ∈ {1, 2, 3, 4, 5}
and having pair-wise disjoint closures. By the Ahlfors five islands theorem, the
quasimeromorphic function g ◦ exp on R2 has a simple island Ω̃′ over one of these
Jordan domains, say D′

j . Hence g has a simple island Ω′ over D′
j . By Rouché’s

theorem, for every k ∈ N large enough, fk has a simple island Ωk � Ω′ over
Dj � D′

j . �

2. Preliminaries

Let Bn(x, r) be the open ball in Rn about x ∈ Rn of radius r > 0. Set Bn(r) :=
Bn(0, r) for each r > 0 and set Bn := Bn(1). The corresponding closed balls are
denoted by B̄

n(x, r), B̄n(r), and B̄
n, respectively.

Let M be an oriented Riemannian n-manifold, n ≥ 2. We denote by |x − y|
the distance between x and y in M , and by B(x, r) the Riemannian ball {y ∈
M : |x−y| < r} about x ∈ M of radius r > 0 in M . Similarly, we denote by B̄(x, r)
the corresponding closed ball about x ∈ M of radius r > 0.

By [14, III.1.11], every K-quasiregular mapping from an open set U ⊂ Rn to Rn

is locally α-Hölder continuous with α = (1/K)1/(n−1). We refer to [14] and [7] for
the Euclidean theory of quasiregular mappings.

For every x ∈ M , there exist r > 0 and a 2-bilipschitz chart B(x, r) → Rn. Thus
every K-quasiregular mapping from an open set U ⊂ Rn to M is locally β-Hölder
continuous with β = β(n,K) depending only on n and K.

The local Hölder continuity plays a key role in the proof of the following manifold
version ([7, Theorem 19.9.3]) of Miniowitz’s Zalcman lemma [10, §4]. Recall that a
family F of K-quasiregular mappings from a domain Ω in Rn to M is normal on
an open subset U in Ω if every infinite sequence (fk) in F contains a subsequence
which converges locally uniformly on U , and is normal at a point a ∈ Ω if F is
normal on some open neighborhood of a.

Theorem 2.1. Let Ω be a domain in Rn, and N be a closed, connected, and
oriented Riemannian n-manifold, n ≥ 2. Let F be a family of K-quasiregular
mappings from Ω to N , K ≥ 1. If F is not normal at a ∈ Ω, then there exist
sequences (xj), (ρj), and (fj) in Ω, (0,∞), and F , respectively, and a non-constant
K-quasiregular mapping g : Rn → N such that limj→∞ xj = a, limj→∞ ρj = 0 and

lim
j→∞

fj(xj + ρjv) = g(v)

locally uniformly on Rn.
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3. Proof of Theorem 1

We begin the proof of Theorem 1 by showing a manifold version of a classical
lemma on isolated essential singularities due to Lehto and Virtanen [8]; see also
Heinonen and Rossi [4, Theorem 2.3] and Gauld and Martin [3].

Lemma 3.1. Let M be a closed and oriented Riemannian n-manifold, n ≥ 2, and
f : Bn \ {0} → M be a quasiregular mapping with an essential singularity at the
origin. Then

lim sup
r→0

diam f(∂Bn(r)) > 0.(3.1)

Proof. The proof follows the argument of Heinonen and Rossi in [4]. Set A(r′, r) :=
Bn(r) \ B̄n(r′) for each r, r′ > 0, r > r′.

Since the origin is an isolated essential singularity of f and M is compact, there
exist sequences (zk) and (wj) in B

n \ {0} such that limk→∞ zk = limj→∞ wj = 0
and that both limits

a := lim
k→∞

f(zk) and b := lim
j→∞

f(wj)

exist in M and are distinct.
Using the exponential map expa : TaM → M , we find R ∈ (0, |b− a|/4) and a 2-

bilipschitz map ϕ : B(a, 4R) → Bn(4R) satisfying ϕ(a) = 0. Note that b �∈ B̄(a, 4R)
by our choice of R.

Suppose that (3.1) does not hold. Then there is r0 > 0 such that, for every
r ∈ (0, r0), diam(f(∂Bn(r))) < R/8.

We fix k1 ∈ N so large that |zk1
| < r0 and that |f(zk1

)−a| ≤ R/8. Let r1 := |zk1
|.

Since diam(f(∂Bn(r1))) < R/8, we have

f(∂Bn(r1)) ⊂ ϕ−1(Bn(R/4)) ⊂ B(a,R).(3.2)

Since f(wj) → b �∈ B̄(a, 4R) as j → ∞, the continuity of f implies the existence of
the maximal element, say r2 ∈ (0, r1), of the subset

{r ∈ (0, r1] : f(∂B
n(r)) �⊂ B(a, 2R)}.

By maximality of r2, f(∂Bn(r2)) ∩ ∂B(a, 2R) �= ∅. Note that f(A(r2, r1)) ⊂
B(a, 2R) and b �∈ f(A(r2, r1)).

Let c ∈ f(∂Bn(r2)) ∩ ∂B(a, 2R). Then diam(f(∂Bn(r2))) < R/8 and

f(∂Bn(r2)) ⊂ ϕ−1(Bn(ϕ(c), R/4)) ⊂ B(c, R/2).(3.3)

We join ∂Bn(r1) and ∂Bn(r2) by a line segment �, which is contained, except
for the end points, in the ring domain A(r2, r1). Then the path f(�) in M joins
f(∂Bn(r1)) and f(∂Bn(r2)), and by (3.2), (3.3) and the choice of r1 and r2, we may
fix y0 ∈ � such that

f(y0) ∈ B(a, 2R) \ (B̄(a,R) ∪ B̄(c, R/2)).

Since both B
n(4R) \ (Bn(R/4) ∪ B

n(ϕ(c), R/4)) and ϕ−1(∂Bn(3R)) are connected,
also M \ (ϕ−1(Bn(R/4)) ∪ ϕ−1(Bn(ϕ(c), R/4))) is connected.

Thus f(y0) can be joined with b �∈ B̄(a, 4R) by a path β : [0, 1] → M such that
β([0, 1]) ∩ f(∂(A(r2, r1))) = ∅.

Let α : I0 → B
n\{0}, where I0 = [0, 1] or [0, t0) for some t0 ∈ (0, 1], be a maximal

lift of β under f starting at y0 = α(0) ∈ A(r2, r1). If I0 = [0, 1], then f(α(1)) =
b �∈ f(A(r2, r1)), so α(1) �∈ A(r2, r1). If I0 �= [0, 1], then dist (α(t), ∂Bn ∪ {0}) → 0
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as t → t0. In both cases, β(I0)∩ f(∂A(r2, r1)) = f(α(I0)∩ ∂A(r2, r1)) �= ∅. This is
a contradiction and (3.1) holds. �

Proof of Theorem 1. Define a function Qf : B
n(2/3) \ {0} → [0,∞) by

Qf (x) := sup
y,y′∈Bn(x,|x|/2),y �=y′

|f(y)− f(y′)|
|y − y′|β ,

where β = β(n,K) is as in Section 2. Put

Mf := lim sup
x→0

Qf (x)|x|β.

Suppose first that

Mf = ∞,(3.4)

or, equivalently, that there exists a sequence (yk) in Bn \ {0} satisfying yk → 0 and
Qf (yk)|yk|β → ∞ as k → ∞.

Fix δ∈(0, 1) small enough, and, for each k ∈ N, define a mapping gk : B
n(1 + δ)

→ N by

gk(z) := f(yk +
|yk|
2

z).

By (3.4), there exist sequences (zk) and (wk) in Bn satisfying

lim sup
k→∞

|gk(zk)− gk(wk)|
|zk − wk|β

≥ lim sup
k→∞

1

2
Qf (yk)

(
|yk|
2

)β

= ∞.

Hence the family {gk : k ∈ N} is not normal on Bn(1 + δ). Indeed, otherwise, there
exists a locally uniform limit point of {gk : k ∈ N}, which is K-quasiregular on
Bn(1 + δ) but not β-Hölder continuous on B̄n. This is impossible.

The non-normality of {gk : k ∈ N} on B
n(1+δ) is equivalent to the non-normality

of {gk : k ∈ N} at some a ∈ Bn(1 + δ). By Theorem 2.1, there exist sequences
(zj), (ρj) and (kj) in Bn(1 + δ), (0,∞), and N, respectively, and a non-constant
K-quasiregular mapping g : Rn → N such that limj→∞ zj = a, limj→∞ ρj = 0,
limj→∞ kj = ∞, and

lim
j→∞

gkj
(zj + ρjv) = g(v)

locally uniformly on Rn. Observing that

f
(
(ykj

+ (|ykj
|/2)zj) + ((|ykj

|/2)ρj)v
)
= gkj

(zj + ρjv),

limj→∞(ykj
+ (|ykj

|/2)zj) = 0, and limj→∞(|ykj
|/2)ρj = 0 completes the proof in

this case.
Suppose next that

Mf < ∞.(3.5)

Let {gk : Bn(ek) \ {0} → N ; k ∈ N} be the family of K-quasiregular mappings
defined as

gk(v) := f(e−kv).

By (3.5), we have for every v ∈ R
n \ {0},

lim sup
k→∞

sup
w∈Bn(v,|v|/2),w �=v

|gk(w)− gk(v)|
|w − v|β ≤ Mf |v|−β < ∞,
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so the family {gk : k ∈ N} is locally equicontinuous on Rn \ {0}.
By Lemma 3.1, there exists a sequence (rj) in (0,∞) tending to 0 as j → ∞

such that limj→∞ diam f(∂B(rj)) > 0. Fix a sequence (kj) in N such that for
every j ∈ N, e−kj−1 < rj ≤ e−kj . Then for every j ∈ N, gkj

(B̄n \ Bn(e−1)) =

f(B̄n(e−kj ) \ Bn(e−kj−1)) ⊃ f(∂B(rj)). In particular,

lim inf
j→∞

diam(gkj
(B̄n \ Bn(e−1))) > 0.(3.6)

By passing to a further subsequence of (gkj
) if necessary, we may assume, by the

Arzelà–Ascoli theorem, that (gkj
) converges locally uniformly on Rn \ {0} to a

mapping g : Rn \ {0} → N . Since (gkj
) is a sequence of K-quasiregular mappings,

g is K-quasiregular and, by (3.6), non-constant. This completes the proof. �

Example 3.2. To see that both cases in the proof of Theorem 1 actually occur,
we give two examples which are similar to Examples 23 and 24 in [13].

For Mf < ∞, we may take the conformal mapping f : Bn\{0} → S
n−1×S

1, x 	→
(x/|x|, e−i log |x|). Then f is the composition ψ ◦ h of a conformal homeomorphism
h : Bn \ {0} → Sn−1 × R, x 	→ (x/|x|,− log |x|), and a locally isometric covering
map ψ : Sn−1 × R → S

n−1 × S
1. Since |h(sx)− h(ty)| ≤ | log s− log t|+ |x− y| for

all s, t ∈ (0, 1) and all x, y ∈ Sn−1, we easily observe that Mf < ∞.
For Mf = ∞, we construct f : Bn\{0} → Sn using the winding map h : Sn → Sn,

(x1, . . . , xn−2, re
iθ) 	→ (x1, . . . , xn−2, re

i3θ),

which is a quasiregular endomorphism on Sn; we identify Rn+1 with Rn−1 × C.
Let σ : Sn \ {en+1} → Rn be the stereographic projection, and S the lower

hemisphere {(x1, . . . , xn+1) ∈ Sn : xn+1 ≤ 0} of Sn. We note that h|∂S is the
identity.

Let (rk) be a sequence tending to 0 in (0, 1/2) and put xk := rke1 and Bk :=
Bn(xk, rk/2) for each k ∈ N. We may assume that balls Bk, k ∈ N, are mutually
disjoint. For each k ∈ N, put x′

k := σ−1(xk) and B′
k := σ−1(Bk) and let ρk be the

the Möbius transformation on S
n defined as

ρk(y) =

{
σ−1 ◦ αk ◦ σ(y), y �= en+1,

en+1, y = en+1,

where αk is the affine transformation x 	→ r−1
k (x − xk) on Rn. Then ρk(B

′
k) = S

and ρk(x
′
k) = −en+1, so the mapping f : Bn \ {0} → S

n defined by

f(x) =

{
σ−1(x), x ∈ (Bn \ {0}) \

⋃∞
k=1Bk,

(ρ−1
k ◦ h ◦ ρk) ◦ σ−1(x), x ∈ Bk,

is quasiregular with the same distortion constant K as h. Recall the definition of
β = β(n,K) in Section 2. We observe that, for every k ∈ N, there exists a unique
yk ∈ Bk satisfying f(yk) = e1 and |xk − yk| ≤ Cr2k, where C > 0 is independent of
k. Since f(xk) = en+1 for every k ∈ N, by a direct computation, there is C ′ > 0

such that for every k ∈ N, Qf (xk)|xk|β ≥ C ′r−β
k , so f satisfies Mf = ∞.

4. Proof of Theorem 2

Let Zn : Rn → Rn \ {0}, n > 2, be the Zorich mapping (see [17] or [14, I.3.3] for
the construction of Zn) which is Kn-quasiregular for some Kn ≥ 1 and an analog
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of the exponential function Z2 : C → C \ {0}. The mapping Z2 is K2-quasiregular
for K2 = 1. Set K ′ = K ·Kn ≥ 1 for each n ≥ 2 and each K ≥ 1.

Let N be a closed, connected, and oriented Riemannian n-manifold.
Suppose there exists aK-quasiregular mapping f : Bn\{0} → N with an essential

singularity at the origin. By Theorem 1 and a manifold version of Hurwitz’s theorem
(cf. the proof of [10, Lemma 2]), there exists a non-constantK-quasiregular mapping
g : X → N , where X is either R

n or R
n \ {0}, satisfying g(X) ⊂ f(Bn \ {0}). If

X = Rn, then the mapping g has the desired properties. If X = Rn \ {0}, then the
mapping g ◦ Zn : R

n → N has the desired properties.
Suppose now that g : Rn → N is a non-constant K-quasiregular mapping. Let ι

be an orientation preserving conformal involution of Rn \ {0} satisfying

ι(Bn \ {0}) = R
n \ Bn.

If g has an essential singularity at the infinity, f : Bn\{0} → N , x 	→ g◦ι(x), has an
essential singularity at the origin. If g has a removable singularity at the infinity, g
extends to a quasiregular mapping Sn → N . Then the mapping f : Bn \ {0} → N ,
x 	→ g ◦ Zn(ι(x)), has the desired properties.
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