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ON INDECOMPOSABILITY IN CHAOTIC ATTRACTORS

JAN P. BOROŃSKI AND PIOTR OPROCHA

(Communicated by Nimish Shah)

Abstract. We exhibit a Li-Yorke chaotic interval map F such that the in-
verse limit XF = lim←−{F, [0, 1]} does not contain an indecomposable subcon-
tinuum. Our result contrasts with the known property of interval maps: if

ϕ has positive entropy then Xϕ contains an indecomposable subcontinuum.
Each subcontinuum of XF is homeomorphic to one of the following: an arc,
or XF , or a topological ray limiting to XF . Through our research, we found
that it follows that XF is a chaotic attractor of a planar homeomorphism. In
addition, F can be modified to give a cofrontier that is a chaotic attractor
of a planar homeomorphism but contains no indecomposable subcontinuum.
Finally, F can be modified, without removing or introducing new periods, to
give a chaotic zero entropy interval map, such that the corresponding inverse
limit contains the pseudoarc.

1. Introduction

The strong connection between dynamics of an interval map ϕ : [0, 1] → [0, 1]
and topology of the inverse limit Xϕ = lim←−{ϕ, [0, 1]} has been well documented in
the last 30 years. An extensive study of this and related subjects was triggered by a
series of papers by Marcy Barge and his collaborators. Among many results, Barge
and Martin [3] showed that for an interval map with a periodic point of period that
is not a power of 2, the inverse limit space Xϕ must contain an indecomposable
subcontinuum. Barge and Martin [4] also showed that for any interval map ϕ such
inverse limit can be realized as an attractor of a planar homeomorphism h : R2 → R

2

that restricted to Xϕ agrees with the shift homeomorphism σϕ. Since then there
has been a lot of attention given to the problem of relating the dynamics of a map
to the topological structure of the corresponding inverse limit, and the principle
that complicated dynamics induces complicated topology has become well-known
and often referred to. The purpose of this article is to show that one must be
careful applying this principle, as a chaotic interval map can produce a connected
attractor without indecomposable subcontinua. It seems that ours is the first such
example presented explicitly. This is despite the fact that for a positive entropy
map ϕ the inverse limit space Xϕ must contain an indecomposable subcontinuum
[30].

Theorem 1. There is a map F : [0, 1] → [0, 1] such that the inverse limit XF =
lim←−{F, [0, 1]} contains no indecomposable subcontinuum (in particular, XF is de-

composable) and the induced shift homeomorphism σF on XF is Li-Yorke chaotic.
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The map F in the above theorem can be modified to a circle map with the same
properties, which by the result of Barge and Martin leads to the following theorem.

Theorem 2. There are planar homeomorphisms h1 and h2, an arc-like continuum
Λ1 and cofrontier Λ2 such that Λi is a Li-Yorke chaotic attractor of hi, and neither
Λi contains an indecomposable subcontinuum.

Before we progress, let us first briefly present definitions of some notions used
above. The notion of chaos we use here comes from a paper by Li and Yorke [19].
A continuous map ϕ : X → X acting on a compact metric space (X, ρ) is Li-Yorke
chaotic if there is an uncountable set S ⊂ X such that lim infn→∞ ρ(ϕn(x), ϕn(y)) =
0 and lim supn→∞ ρ(ϕn(x), ϕn(y)) > 0 for any distinct points x, y ∈ S. It is known
that there exist maps on the unit interval with zero topological entropy but is Li-
Yorke chaotic. These are some among the maps of type 2∞, i.e. maps with points
of period 2n for every n and no other periods.

A continuum is a nondegenerate connected and compact space. A continuum A
is a Li-Yorke chaotic attractor of a planar homeomorphism h if A is an attractor
and h|A is Li-Yorke chaotic. An arc-like (also snakelike, or chainable) continuum is
a space that can be obtained as the inverse limit of arcs, with continuous bonding
maps. Arc-like continua do not separate the plane. A cofrontier is a continuum that
irreducibly separates the plane into exactly two components and is the boundary of
each. A continuum is decomposable if it can be written as the union of two proper
subcontinua. It is hereditarily decomposable if every subcontinuum is decomposable.

It was a long-standing conjecture of Barge that no hereditarily decomposable arc-
like continuum admits homeomorphisms with positive entropy. The special case of
Barge’s conjecture was proved by Ye in 1995 [30] for homeomorphisms induced by
square commuting diagrams on inverse limits of arcs. Ingram [14] and Ye indepen-
dently also showed that homeomorphisms of hereditarily decomposable continua
admit only 2n-periodic orbits, so their dynamics are relatively simple. Barge’s con-
jecture has been recently proved by Mouron [26], and consequently, hereditarily
decomposable arc-like continua admit only zero entropy homeomorphisms. How-
ever, our result shows that chaotic homeomorphisms on such continua actually do
exist.

The starting point of our construction is a simple, zero entropy interval map f of
type 2∞. In Section 2, using a theorem of Bennett and Ingram [15], we are able to
show that Xf contains a countable family of decomposable continua, each of which
is homeomorphic to Xf . Furthermore, each subcontinuum of Xf is a member of
this family, or a topological ray limiting to such a continuum, or an arc. Next,
in Section 3, we modify f by a Denjoy-like construction to produce a Li-Yorke
chaotic zero entropy map F of type 2∞. We show that this modification results
in a topologically monotone factor map Π: XF → Xf , which guarantees that XF

is hereditarily decomposable. We then modify f to a Li-Yorke-chaotic circle map
G such that XG is hereditarily decomposable. The last section contains additional
comments and questions related to our construction.

2. A map of type 2∞ and its inverse limit

In this section we construct a particular example of a map of type 2∞. While
there are numerous methods of construction of such a map (see e.g. [2,12,24]), even
of type C∞, a map f considered in this section has an additional property, that its
inverse limit can be easily investigated. It is the main feature demanded by us.
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Define a map f : [0, 1] → [0, 1] determined by the following (see Figure 1)

• f(0) = 2
3 , f(1) = 0,

• f(1− 2
3n ) =

1
3n−1 , and f(1− 1

3n ) =
2

3n+1 for all n ≥ 1,
• f is linear between the above points.

This example was developed by Delahaye in [10] who proved that the map is of
type 2∞ (see also [28]).

For the remainder of this section, denote by σf the shift homeomorphism induced
by f to Xf = lim←−{f, [0, 1]}. For convenience, we sometimes denote lim←−{f |Y , Y }
simply by lim←−{f, Y }. The projection of X onto n-th coordinate is denoted by

πn : X � x �→ xi ∈ [0, 1]. Let In0 = [0, 1/3n] for n = 1, 2, . . .. These are intervals

Figure 1. Graph of f and f2

for cycles of length 2n, i.e. f2n(In0 ) = In0 . Denote Inj = f j(In0 ) for j = 0, 1, . . . , 2n

(we keep In2n = In0 for simplicity of the notation). It can be proved that if x ∈ [0, 1]
and n > 0, then either there is k > 0 such that fk(x) ∈ In0 or there is s > 0 such
that x is a periodic point of period 2s. It can also be proved that f is not Li-Yorke
chaotic.

Observe that f2n |In
s
: Ins → Ins is an onto map. Denote by Xn

0 the inverse

limit Xn
0 = lim←−

{
gi, I

n
−i (mod 2n)

}
where gi = f |In

−i (mod 2n)
for i = 1, 2, . . .. Denote

Xn
i = σi

f (X
0
n). Clearly Xn

0 is periodic under σf and Xn
2n = Xn

0 and furthermore,

Xn+1
0 ∪Xn+1

2n ⊂ Xn
0 .

A homeomorphic image of [0,+∞) is a topological ray and homeomorphic image
of (−∞,+∞) is a topological line.

The following useful result is attributed to Ralph Bennett. A proof (with a
historical remark) can be found in [15].

Theorem 3 (Bennett). Suppose that g : [a, b] → [a, b] is continuous and a < d < b
is such that g([d, b]) ⊂ [d, b], g|[a,d] is monotone, and there is n > 0 such that
gn([a, d]) = [a, b]. Then continuum K = lim←−{g, [a, b]} is the union of a topological

ray R and a continuum C = lim←−{g, [d, b]} such that R \R = C.
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Lemma 4. Each continuum Xi
j is homeomorphic to Xf .

Proof. By induction, it is easy to see that the graph of f2n on In0 is the same as

f2n−1

on In−1
0 , that is, these maps are conjugate, or in other words, continua Xn

0

and Xn−1
0 are homeomorphic. The theorem follows for j �= 0 by the fact that for a

fixed i, Xi
j = σj

f (X
i
0) and σf is a homeomorphism. �

Lemma 5. The continuum Xf is the union of two continua K1 and K2 such that

(1) K1 is homeomorphic to K2,
(2) K1 is the union of a topological ray R1 and X1

0 that compactifies R1; i.e.
R1 \R1 = X1

0 ,
(3) K2 is the union of a topological ray R2 and X1

1 that compactifies R2; i.e.
R2 \R2 = X1

1 , and
(4) K1 ∩K2 = R1 ∩R2 = {p̂}, where p̂ is the fixed point of σf .

Proof. Let p be the fixed point of f . Set g = f2 and let K1 = lim←−{g, [p, 1]}. Note

that g([13/21, 1]) ⊆ [13/21, 1], g|[p,13/21] is monotone, and g([p, 13/21]) = [p, 1].
Therefore, by Theorem 3, we obtain that K1 is the union of a topological ray R1

and the continuum C1 = lim←−{g, [13/21, 1]} that compactifies R1. Clearly

C1 = lim←−{g, [13/21, 1]} = lim←−{g, [2/3, 1]} = X1
0 ,

and p̂ = (p, p, p, . . .) is the end point of R1. Setting K2 = lim←−{g, [0, p]} the theorem

follows by the fact that σf (K1) = K2. �

Corollary 6. Each Xi
j is the union of a topological line L and the continua Xi+1

t

and Xi+1
t′ such that L \ L = Xi+1

t ∪Xi+1
t′ , for some t and t′.

Proof. This follows from the previous two lemmas. �

Theorem 7. Continuum Xf is hereditarily decomposable.

Proof. Since by Lemma 5 continuum Xf is decomposable, we need to show that so
is each subcontinuum of Xf . Let K be a subcontinuum of Xf . Recall that Xf is
the union of a topological line L limiting with one end to X1

0 and with the other
to X1

1 . Using the previous lemmas we will keep partitioning Xf (if necessary) to
find where K is located and realize that K must be an arc, or homeomorphic to
K1 from Lemma 5, or homeomorphic to Xf . By Lemma 4 we can view each Xn

i

as Xf , in particular we can apply partitioning provided by Lemma 5 to it. We will
use this fact without any further reference in the proof.

(1) suppose that K ∩ L �= ∅. If L ⊆ K then K = Xf and we are done. Otherwise,
if L \ K �= ∅, then K is an arc (this is when K ⊆ L), or it is the union of a
topological ray limiting to either X1

0 or X1
1 , and we are done as well.

(2) suppose that K ∩ L = ∅. Then either K ⊆ X1
0 or K ⊆ X1

1 . Without loss of
generality assume K ⊆ X1

0 .
(3) let L1 be the topological line whose union with the continua X2

0 and X2
2 , that

compactify L1, is X1
0 . In other words L1 \ L1 = X2

0 ∪ X2
1 and L1 = X1

0 . If
K ∩ L1 �= ∅ then we are done by the same reasoning as in (1).
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(4) if K ∩ L1 = ∅ then, as in (2), we deduce that K ⊆ X2
0 .

(5) from the fact that limi→∞ diam(Xi
0) = 0 it follows that after finitely many steps

we will be able to deduce that K is an arc, or the union of a topological ray
limiting to some Xn

j or K = Xn
j for some integers n, j. Namely, for Xn

0 such
that diam(Xn

0 ) < diam(K) we cannot have K ⊆ Xn
0 so the above procedure

terminates.

The proof is complete. �

A continuum that contains exactly n topologically distinct subcontinua is called
n-equivalent. As we exhibited in the above proof, Xf is 3-equivalent. It is worth
emphasizing, that an interesting example of 2-equivalent continuum was recently
constructed by Islas [16], who proved that his example was hereditarily decompos-
able but without investigating the dynamical properties of it. In fact, Islas is using
a sequence of bonding maps, so there is no easy way to induce a homeomorphism
on the resulting continuum.

3. Chaos in the sense of Li and Yorke

The aim of this section is to prove Theorems 1 and 2. A starting point is the map
constructed in Section 2 (recall that its graph is on Figure 1) which we consequently
denote f .

We will perform a construction similar to that of a Denjoy map [11, Exam-
ple 14.9]. First note that for all but countably many points c ∈ (0, 1) there is an
open set U � c such that f is injective on U .

Denote by Q the ω-limit set of 0 under f (i.e. Q = ω(0, f)) and observe that for
every c ∈ Q and every n there is j such that c ∈ Inj and hence orbit of c visits each

interval Ini with period 2n. But diam Inj = 3−n hence the family of iterates of f |Q
is equicontinuous. Note that f |Q is a homeomorphism, since every transitive map
that has equicontinuous iterates is a homeomorphism (see [1]). It is also not hard
to see that if c ∈ [0, 1] then ω(c, f) is periodic orbit (i.e. c is eventually periodic)
or Q = ω(c, f). Namely, if ω(c, f) in not periodic orbit then for every n the orbit
of c has to eventually intersect the interval In0 .

Choose a point z ∈ Q, denote D0 = {z, f(z)}∪f−1({z}) and inductively Dn+1 =
f(Dn) ∪ f−1(Dn). Finally put

(1) Dz =

∞⋃
n=1

Dn.

Since f is a homeomorphism on Q, for points z from different orbits, sets Dz are
disjoint. But Q is uncountable and each point has finite preimage under f , hence
we can find z such that for every c ∈ Dz there is an open set U � c such that f
is an injection on U . Note that there at most countably many points q ∈ Q such
that (q, q + ε) ∩ Q = ∅ or (q − ε, 1) ∩ Q = ∅ for some ε > 0. Hence we may also
assume that for every ε > 0 and for every c ∈ Dz we have (c − ε, c) ∩ Q �= ∅ and
(c, c+ ε) ∩Q �= ∅.

In particular, Dz is countable and so we can enumerate its elements: assume that
D = {yi : i ∈ Z} where yi �= yj for i �= j. Furthermore observe that if fn(yi) = yj
for some n > 0 then i �= j and yi /∈ Orb+(yj , f), as otherwise z would be an
eventually periodic point. Just by the definition, both sets Dz and [0, 1] \Dz are
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invariant, i.e. f(Dz) = Dz and f([0, 1] \Dz) = [0, 1] \Dz. There is also a function
φ : Z → Z so that f(yi) = yφ(i).

As the final step of our construction we remove all the points yi from [0, 1] and
fill each obtained hole with an interval Ii of length 2−|i|. This way a new continuous
map F is defined on the extended space in such a manner that:

(1) each interval Ii is mapped homeomorphicaly onto Iφ(i),
(2) if all intervals Ii are collapsed back to single points then F reverts back to

the map f .

Condition (1) can be satisfied because the preimage f−1(yi) of every yi is finite
and, by the choice of z, the map f is injective on some small neighborhood of every
y ∈ f−1(yi).

As the domain of F is isometric to [0, 4] we can assume that F : [0, 4] → [0, 4].
In this way every interval Ii becomes some interval [ai, bi] ⊂ (0, 4) and there is
a quotient map π : [0, 4] → [0, 1] that does not increase distance, collapses every
interval [ai, bi] into a single point (i.e. π([ai, bi]) = {yi}), and has the property
that f ◦ π = π ◦ F . If we fix indices i, j ∈ Z, such that yi �∈ Orb+(yj) then
Fn((aj , bj)) ∩ (ai, bi) = ∅ for all n > 0. This implies that there is one-to-one
correspondence between periodic points of f and F , which implies that F is also
of type 2∞, in particular has zero topological entropy. Simply, by Misiurewicz
theorem, on the interval positive entropy is equivalent to the existence of a horseshoe
for some power of the map [23], which easily implies existence of a periodic point
with period which is not a power of 2.

In [29] Smı́tal characterized Li-Yorke chaos in terms of separable orbits in ω-
limit sets. We will use this result here. Let ϕ : [0, 1] → [0, 1] be continuous and fix
two points x0, x1 ∈ [0, 1]. If there are two disjoint intervals J0, J1 and two integers
k0, k1 > 0 such that for i = 0, 1 we have xi ∈ Ji, ϕ

ki(Ji) = Ji and ϕj(Ji) are
pairwise disjoint for j = 0, 1, . . . , ki − 1 then we say that x0, x1 are ϕ-separable.

It was proved in [29, Theorem 2.2] that a map ϕ : [0, 1] → [0, 1] is Li-Yorke
chaotic if and only if there is an infinite ω-limit set containing two points which are
not ϕ-separable. Note that if we fix q ∈ Q \ Dz then for every c ∈ Dz and every
ε > 0 we have k, s > 0 such that fk(q) ∈ Q∩ (c− ε, c) and fs(q) ∈ Q∩ (c, c+ ε). If
we denote the unique point v ∈ π−1(q) then it is clear that π−1(Q\Dz) is contained
in the ω-limit set of v under F , i.e.

v ∈ ω(v, F ) ⊃ π−1(Q \Dz) ⊃
⋃
i∈Z

{ai, bi} .

Since diameters of intervals limi→∞ diam Ii = 0, there is an asymptotic (hence not
F -separable) pair for F in ω(v, F ), e.g. pair a0, b0. This shows that F is Li-Yorke
chaotic.

Denote XF = lim←−{F, [0, 4]}. Let Π: XF → Xf be given by

Π(x) = (π(x1), π(x2), π(x3), . . .).

Recall that a map T : X1 → X2 between two continua X1 and X2 is (topologically)
monotone if T−1(x) is a subcontinuum of X2 for every x ∈ X1. Equivalently, T is
monotone if T−1(K) is a subcontinuum of X2 for every subcontinuum K of X1.

Proposition 8. Π: XF → Xf is an onto and monotone map.

Proof. First note that, by definition, π : [0, 4] → [0, 1] is a monotone map. Now let
x ∈ XF . If π1(x) = yj for some j then Π−1(x) is an arc, as it is the inverse limit
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of Ii’s with the homeomorphism F , when restricted to either Ii. If π1(x) �= yj for
every j then Π−1(x) is a point. �

Lemma 9. Continuum XF is hereditarily decomposable.

Proof. Let Z be a nondegenerate subcontinuum of XF . It is enough to show that
Z is decomposable. Note that if Π(Z) is a point, then the projection of Z from XF

onto either factor space is contained in Ij , for some j. Consequently Z is homeo-
morphic to an arc, by definition of F . If Π(Z) is a nondegenerate subcontinuum of
Xf , then Π(Z) = W1 ∪W2 for two proper subcontinua W1 and W2 of Xf . Since
Π is monotone we deduce that Π−1(W1) and Π−1(W2) are subcontinua of XF such
that Z = Π−1(W1) ∪ Π−1(W2). This completes the proof. �

Now we are ready to prove Theorem 1.

Proof of Theorem 1. By Lemma 9, XF is hereditarily decomposable and by previ-
ous discussion F is a continuous onto map of type 2∞ which is Li-Yorke chaotic.
But Li-York chaos is shared by the shift homeomorphism on inverse limits [9], hence
the result follows. �

Clearly, not every map of type 2∞ defines a hereditarily decomposable inverse
limit. For example, when constructing the map F we can define F : Ii → Iφ(i)
using any map fixing endpoints (e.g. maps presented in Example 4 or Example 5
in [3]), not necessarily linear homeomorphism. While such a modification has no
influence on either the type of a map (new periodic points cannot be produced), or
Li-Yorke chaos, an indecomposable subcontinuum such as the Knaster buckethandle
continuum, or even the pseudoarc can be introduced in XF .

Remark 10. There is a Li-Yorke chaotic interval map ϕ of type 2∞ such that Xϕ

contains the pseudoarc.

The above observation also explains why we were so careful about the choice of
the point z (and the set Dz) for the Denjoy extension. For example 0 ∈ Q however
fk(0) is a singular point (i.e. point in which f is not monotone) for infinitely many
values of k > 0. But if we insert Ii in a point at which f is not monotone, then
F must send both endpoints of Ii into the same endpoint of Iφ(i). This forces us
to send an inner point of Ii into the second endpoint of Iφ(i), and could lead to an
indecomposable subcontinuum in XF .

Recall that a continuum X is said to be Suslinean if every family of pairwise-
disjoint subcontinua of X is countable (finite or not). Note that each Suslinean
continuum is hereditarily decomposable. We note that both Xf and XF are Suslin-
iean.

Proposition 11. Continuum Xf is Suslinean.

Proof. We take advantage of the partition of Xf used in the proof of Theorem 7. By
contradiction, suppose ℵ is an uncountable cardinal and {Cβ : β < ℵ} is a family
of pairwise disjoint subcontinua of Xf . Because the topological line limiting to
the continua X1

0 and X1
1 is Susliniean, uncountably many Cβ’s must be contained

in either X0
1 or X1

1 . Without loss of generality suppose X1
0 contains uncountably

many Cβ’s. Since, according to Theorem 7, X1
0 is a union of a topological line L

and two continua X2
0 and X2

3 homeomorphic to Xf , and L is Susliniean, either X2
0

or X2
3 must contain uncountably many Cβ’s. Proceeding with the continua Xi

j by
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induction on i we obtain a contradiction since otherwise for some sequence in the
set

⋂∞
n=1 X

n
in

must contain at least one continuum Cβ while it is a singleton. �
Proposition 12. Continuum XF is Susliniean.

Proof. Notice that it follows from the definition of the map F that the continuum
XF is obtained from Xf by blow-up of some of the points to an arc. There are two
types of blow-up points in Xf . Specifically, f |Q is a homeomorphism and there are
countably many blow-up points in Q, hence there are also at most countably many
points blown up to intervals in lim←−{f,Q}. Now, let b ∈ Xf \lim←−{f,Q} be a blow-up

point. Denote Ik = [0, 1/3k] for k = 0, 1, 2, . . .. First of all, since b /∈ lim←−{f,Q}
there exists minimal k and N > 0 such that bj �∈ Orb+(Ik+1) for all j ≥ N and if

bj ∈ Is then bi ∈ Orb+(Is) for all i ≥ j. But note that if bj ∈ Orb+(Ik)\Orb+(Ik+1)
for all j ≥ N , then each bj is uniquely determined by bN . It is easy to see that it is

true for Orb+(I0) \ Orb+(I1) = (1/3, 2/3) and then using mathematical induction
and symmetry of the graph of f we obtain (similarly to Lemma 4) that the same
holds for all other k > 0. This shows that every b /∈ lim←−{f,Q} is unique after

dropping a few first positions. But then, since #f−1(t) ≤ 3 for every t ∈ [0, 1]
and the set D used in the construction of F from f is countable, we obtain that
there are at most countably many blown up points in Xf \ lim←−{f,Q} (when we
know N , there are at most countably many choices for first N coordinates is each
b /∈ lim←−{f,Q} and then the choice for all subsequent coordinates is unique). Indeed,
we have countably many blow-up points in Xf .

Next, suppose by the way of contradiction that XF is not Susliniean. Again, sup-
pose ℵ is an uncountable cardinal and {Cβ : β < ℵ} is a family of pairwise disjoint
subcontinua of Xf . By Proposition 8 there is a monotone onto map Π: XF → Xf .
Since this map is continuous the family {Π(Cβ) : β < ℵ} consists of compact and
connected subsets of Xf (some of which may be singletons). If Π(Cβ) is not a
singleton for uncountably many β’s, then we obtain a contradiction with the fact
that Xf is Susliniean. So Π(Cβ) is a singleton for uncountably many β’s. But then
it follows from the definition of Π that there would be uncountably many blow-up
points in Xf , which is a contradiction. �

In [20] in Example 3.1 the authors provided a sequence of bonding maps f1, f2, . . .
such that fn(0) = 0 and fn(1) = 1, but the inverse limit

X = lim←−{{fn}∞n=0 , [0, 1]}
is not Sulinean, while is hereditarily decomposable. Hence, if we take a sequence
ij such that i0 = 0 and iterate backwards, so that ik = φ(ik+1), then putting
(F : Ik+1 → Ik) = fk (after appropriate rescaling of domain of fk) we can embed
X as a subcontinuum of XF creating a non-Suslinean continuum.

Remark 13. There is a Li-Yorke chaotic interval map ϕ of type 2∞ such that Xϕ

is not Suslinean (but is hereditarily decomposable).

Our next objective is to prove Theorem 2.

Lemma 14. There is a Li-Yorke chaotic circle map G : S1 → S
1 such that the

inverse limit XG = lim←−
{
G, S1

}
contains no indecomposable subcontinuum.

Proof. Consider the map f̄ : [−1, 2] → [−1, 2], a modification of the interval map
f represented in Figure 2. Since x = −1 and x = 2 are fixed points of f̄ , we
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can identify them to a point to obtain a circle map g. It is easily checked that
the inverse limit Xg is hereditarily decomposable and g can be modified again to
give a Li-Yorke chaotic circle map G with XG that contains no indecomposable
subcontinuum. �

-1 2
-1

2

Figure 2. The map f̄ .

Proof of Theorem 2. The homeomorphism h1 and the arc-like attractor Λ1 exist
by Theorem 1 and [4]. The homeomorphism h2 and the cofrontier Λ2 can be
constructed according to [5], by the fact that G in Lemma 14 is a degree 1 circle
map. �

4. Concluding remarks

Clearly, there exist Li-Yorke chaotic maps of type 2∞ which are C∞-smooth
[24]. It would be interesting to know if one can improve the differentiability of our
example.

Problem 1. Is there n > 0 such that ϕ is a Cn-smooth Li-Yorke chaotic interval
map with the Xϕ that is hereditarily decomposable? Does Xϕ have a “periodic”
topological structure similar to Xf or XF (see Lemmas 4, 5 and Figure 3)?

Also, it is known that there is an arc-like hereditarily decomposable continuum
that contains no arc (e.g. see page 29 in [27]). Therefore the following question
seems to be of interest.

Problem 2. Is there a Li-Yorke chaotic interval map ϕ such that Xϕ is hereditarily
decomposable and contains no arc?

An arc-like hereditarily decomposable continuum that contains no arc should
not be confused with a pseudoarc, which is hereditarily indecomposable. Recall
that the pseudoarc is the unique homogeneous arc-like continuum [6],[7]. The pseu-
doarc contains no arc, as all subcontinua of it are indecomposable (in fact it is
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Figure 3. A hereditarily decomposable attractor XF .

homeomorphic to each of its nondegenerate subcontinua). Every interval map is
semi-conjugate to a pseudoarc homeomorphism [18] and the pseudoarc admits tran-
sitive homeomorphisms [17, 21]. Recently, Mouron showed in [25] that if Xϕ is the
pseudoarc then the entropy of ϕ (and the shift map σϕ) is either 0 or ∞. It is still
an open question if there is a homeomorphism, or even a map, of the pseudoarc
with positive finite entropy. Note that there is a zero entropy map ψ with very
simple dynamics, such that Xψ is the pseudoarc [13]. Motivated by our examples
and the aforementioned results we ask the following.

Problem 3. Is there a Li-Yorke chaotic zero entropy homeomorphism of the pseu-
doarc?

At this point, it is also worth mentioning that a positive answer to Problem 3
cannot be obtained using the inverse limit approach. It was proved in [8, Theorem F]
that if a map ϕ : [0, 1] → [0, 1] has a periodic point of period 2 or larger, and Xϕ

is the pseudoarc, then it has a periodic point of odd period other than one. In
particular, the inverse limit of a map of type 2∞ is never the pseudoarc.
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