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NEW STRUCTURE FOR ORTHOGONAL

QUANTUM GROUP INVARIANTS

QINGTAO CHEN AND KEFENG LIU

(Communicated by Lei Ni)

Abstract. Based on the orthogonal Labastida-Mariño-Ooguri-Vafa conjec-
ture made by L. Chen and Q. Chen (2012), we derive an infinite product for-
mula for Chern-Simons partition functions, which generalizes Liu and Peng’s
recent results to the orthogonal case. Symmetry property of this new infinite
product structure is also discussed.

1. Introduction

In 1984, Jones [9,10] discovered a polynomial invariant of oriented knots. Later,
using this result, the two-variable HOMFLY-PT [7,22] and one-variable Kauffman
polynomials [11] of oriented and unoriented links were also discovered in 1985 and
1987 respectively. HOMFLY-PT polynomial generalizes both the Alexander and
Jones polynomial. In 1990, the two-variable Kauffman polynomial [12] was also
introduced, which only generalizes the Jones polynomial.

By using the Chern-Simons path integral method, Witten [29] gave a quantum
field theory interpretation of the Jones polynomial. Witten [29] also predicted
the existence of 3-manifold quantum invariants. Following this track, Reshetikhin
and Turaev [26,27] gave a construction of 3-manifold invariants by using quantum
universal enveloping algebra (quantum group), Uq(sl2) at roots of unity, which led to
the colored version of classical HOMFLY-PT and Kauffman polynomial invariants.
Their work actually gave a unified understanding of the quantum group invariants
of links. Here color means the representation of quantum groups. It turns out that
a colored HOMFLY-PT invariant is a special linear quantum group invariant, i.e.,
the quantum group of An type; while colored Kauffman invariant is a quantum
group invariant of Bn, Cn and Dn type.

In a series of papers, Labastida, Mariño, Ooguri and Vafa [13, 14, 21] proposed
a conjectural description of a deep relationship between reformulated invariants of
colored HOMFLY-PT links in the early 2000s. This conjecture was proved by K.
Liu and P. Peng in [17, 18].

In some sense the Labastida-Mariño-Ooguri-Vafa (LMOV) conjecture can be
expressed purely by using mathematical language, i.e., irreducible representation
of quantum groups. The physics background of this conjecture can be dated back
to ‘t Hooft’s seminal work on large N expansion of U(N) gauge field theories in
1974. Gopakumar and Vafa [8] described the exact theory that closed topological
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string theory on the resolved conifold is dual to the U(N) Chern-Simons theory
on S3. The Gromov-Witten theory of the resolved conifold actually corresponds
to the Chern-Simons theory of an unknot. The LMOV conjecture considers the
more general case when the link or knot is nontrivial and the corresponding Wilson
loop expectation values, i.e., a colored HOMFLY-PT polynomial of the link. So the
LMOV conjecture could be viewed as a counterpart of the invariant Gopakumar-
Vafa conjecture.

Previously, people thought that only HOMFLY-PT polynomial could be ex-
pressed as a series in q − q−1 and t±1 with integer coefficients; while the colored
HOMFLY-PT invariant was just a Laurent polynomial of q±1 and t±1 with ratio-
nal coefficients. The LMOV conjecture predicts an intrinsic symmetry of q − q−1

about reformulated invariants of the colored HOMFLY-PT invariant and hidden
integrality encoded in the colored HOMFLY-PT invariant.

In 2009, the orthogonal LMOV conjecture was also formulated by Lin Chen and
Qingtao Chen [4–6]. and Marcos Mariño [20]. Chen and Chen’s formulation put an
emphasis solely on the colored Kauffman; while Mariño’s put an emphasis on the
relation between the composite colored HOMFLY-PT invariants and the colored
Kauffman invariants.

More recently, Kefeng Liu and Pan Peng [19] obtained a new structure of the
colored HOMFLY-PT polynomial; namely, that the Chern-Simons partition func-
tion appearing in the original LMOV conjecture can be expressed as an infinite
product, which indicates some potential modularity of the Chern-Simons partition
function [19].

In this paper, an infinite product expression for the orthogonal Chern-Simons
partition function appearing in the orthogonal LMOV type conjecture [4–6] is es-
tablished and the case of an unknot is presented in an explicit formula.

This paper is organized as follows. In Section 2, we introduce the basic setups
for the quantum group invariant of links. In Section 3, we describe the original and
the orthogonal LMOV conjecture as well as notation. In Section 4, we derive the
orthogonal Chern-Simons partition function as an infinite product and illustrate an
example of the unknot. In Section 5, we discuss the symmetric properties associated
to this infinite product structure.

2. Quantum invariants of links

Let g be a finite dimensional complex semi-simple Lie algebra of rank N with
Cartan matrix (Cij). Let Uq(g) be the quantum enveloping algebra of g. Let V be
a vector space over a field k. A linear automorphism c of V ⊗ V is said to be an
R-matrix if it is a solution of the following Yang-Baxter equation:

(2.1) (c⊗ idV )(idV ⊗ c)(c⊗ idV ) = (idV ⊗ c)(c⊗ idV )(idV ⊗ c)

that holds in the automorphism group of V ⊗ V ⊗ V .
It is well known that the solution of the Yang-Baxter equation provides a rep-

resentation of the braid group. The solution we used is the following so-called
universal R-matrix:

(2.2) R = q

∑
i,j

C−1
ij Hi⊗Hj∏

β

expq[(1− q−2)X+
β ⊗X−

β ],



NEW STRUCTURE FOR ORTHOGONAL QUANTUM GROUP INVARIANTS 3647

where β runs over positive roots of sl(N,C), (Cij) is the Cartan matrix, and
q−exponential is given by

(2.3) expq[x] =

∞∑
k=0

q
1
2k(k+1) xk

[k]q!
,

where

[k]q ! = [k]q · [k − 1]q · · · [1]q, [k]q =
[k]

[1]

and [n] = qn − q−n.
Given a link L with L components, it is well known that L can be represented

by an element in some braid group Bm with m strands. For each component, we
associate to it an irreducible representation Aα of quantized universal enveloping
algebra Uq(sl(N,C)). Aα is labeled by the highest weight Λα. As usual, we associate
them with the Young diagrams. Without loss of generality, one can assume the first
m1 strands correspond to the first component, the second m2 strands correspond
to the second component, and so on. Let

(2.4) V̂ =
L⊗

α=1

V mα

Λα

and write the braiding Ř = P12R : V ⊗W → W ⊗ V , where P12(s⊗ t) = t⊗ s.
For a generator of the braid group Bm, σi, define

(2.5) π(σ±1
i ) = IdV1

⊗ IdV2
⊗ · · · ⊗ IdVi−1

⊗ Ř±1 ⊗ · · · ⊗ IdVm
.

The quantum group invariants of the link L is defined as follows:

(2.6) W g

A1,···,AL(L) = qd(L)TrV̂ (μ
m · π(L)),

where μ = qρ
∗
, ρ∗ is the element in h ⊂Uq(h) corresponding to the Weyl vector (i.e.

the sum of fundamental weights) under the natural isomorphism h � h
∗ and d(L)

and is given by the following formula:

(2.7) d(L) = −
L∑

α=1

ω(Kα)(Λα,Λα + 2ρ) +
2

N

L∑
α<β

lk(Kα,Kβ)lαlβ.

Special case 1. For the unknot ©, WA(©) is the quantum dimension dimq(VA) of
the corresponding representation space VA.

Special case 2. If g = slN and A1 = A2 = · · · = AL = (1), the quantum group
invariant of links is equal to the HOMFLY polynomial at t = qN up to a universal

factor t−t−1

q−q−1 .

Special case 3. If g = so2N+1 and A1 = A2 = · · · = AL = (1), the quantum group
invariant of links is equal to the Kauffman polynomial at t = q2N up to a universal

factor 1 + t−t−1

q−q−1 and some t power of the linking numbers.

Thus the quantum group invariants associated to g = slN and g = so2N+1

are called the colored HOMFLY invariants and the colored Kauffman invariants
respectively.

Actually the irreducible representation of the quantum groups of special linear
and orthogonal cases can be labeled by the Young Tableau. Now we would like
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to introduce some basic notation of the partition and the corresponding Young
Tableau.

A partition of n is a tuple of positive integers μ = (μ1, μ2, . . . , μk) such that

|μ| �
k∑

i=1

μi = n and μ1 ≥ μ2 ≥ · · · ≥ μk > 0, where |μ| is called the degree of μ and

k is called the length of μ, denoted by �(μ). A partition can be represented by a
Young diagram, for example, partition (5, 4, 2, 1) can be identified as the following
Young diagram.

Denote by P the set of all Young diagrams. Let χA be the character of irreducible
representation of symmetric group, labeled by partition A. Given a partition μ,
define mj = #(μk = j; k ≥ 1). The order of the conjugate class of type μ is given
by:

(2.8) zμ =
∏
j≥1

jmjmj !.

The theory of symmetric functions has a close relationship with the representations
of a symmetric group. The symmetric power functions of a given set of variables
x = {xj}j≥1 are defined as the direct limit of the Newton polynomials:

(2.9) pn(x) =

∞∑
j=1

xn
j , pμ(x) =

�(μ)∏
i=1

pμi
(x).

We will consistently denote by L a link and by L the number of components in
L.

The irreducible Uq(g) modules associated to L will be labeled by their highest

weights, thus by Young diagrams. We usually denote it by a vector form 	A =
(A1, . . . , AL).

Let 	x = (x1, . . . , xL) be L sets of variables, each of which is associated to a
component of L, and 	μ = (μ1, . . . , μL) ∈ PL be a tuple of L partitions. Define:

[μ] =

�(μ)∏
i=1

[μi], [	μ] =
L∏

α=1

[μα], z�μ =
L∏

α=1

zμα ,

χ �A(C�μ) =

L∏
α=1

χAα(Cμα), s �A(	x) =

L∏
α=1

sAα(xα), p�μ(	x) =

L∏
α=1

pμα(xα).

When we consider the orthogonal quantum group invariants, we need to study
the Brauer algebra Brn which contains the group algebra C[Sn] as a direct sum-
mand. Thus all the irreducible representations of Sn are also irreducible represen-
tations of Brn, labeled by partitions of the integer n. Indeed, the set of irreducible
representations of Brn are bijective to the set of partitions of the integers n − 2k,
where k = 0, 1, · · · , [n2 ] [24, 28]. Thus the semi-simple algebra Brn can be decom-
posed into the direct sum of simple algebras

(2.10) Brn ∼=
[n2 ]⊕
k=0

⊕
λ�n−2k

Mdλ×dλ
(C).

The work of Beliakova and Blanchet [1] constructed an explicit basis of the above
decomposition. An up and down tableau Λ = (λ1, λ2, · · · , λn) is a tube of n Young
diagrams such that λ1 = (1) and each λi is obtained by adding or removing one
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box from λi−1. Let λ be a partition of n−2k. Denote by |Λ| = λ if λn = λ, and we
say an up and down tableau Λ is of shape λ. There is a minimal path idempotent
pΛ ∈ Brn associated to each Λ. Then the minimal central idempotent πλ of Brn
corresponding to the irreducible representation labeled by λ is given by

(2.11) πλ =
∑
|Λ|=λ

pΛ.

In particular, the dimension of the irreducible representations dλ is the number of
up and down tableau of shape λ. More details can be found in [1, 28].

The table of the characters and orthogonal relations can be found in [23–25].
The values of a character of Brn is completely determined by its values on the set
of elements ek ⊗ γλ, where e is the conjugacy class of e1, · · · , en−1 and γλ is the
conjugacy class in Sn−2k labeled by the partition λ of n− 2k. The notion ek ⊗ γλ
stands for the tangle in the following diagram:

e0 e2 · · · e2k γλ

2k

Г λ

n-2k

where Γλ is a diagram in the conjugacy class of Sn−2k labeled by a partition λ of
n− 2k.

Denote by χA the character of the irreducible representation of Brn labeled by a
partition A 
 n− 2k for some k, and denote by χSn

B the character of the irreducible
representation of Sn labeled by a partition B 
 n. It is known that when A is a
partition of n, then χA(e

m ⊗ γλ) = 0 for all m > 0 and partition λ 
 n − 2m,

and χA(γμ) = χSn

A (γμ) for partition μ 
 n coincide with the characters of the
permutation group Sn [24].

3. Labastida-Mariño-Ooguri-Vafa type conjecture

for the colored Kauffman invariant

Let’s quickly review the original LMOV conjecture first.
For each link L, the type−A Chern-Simons partition function of L is defined by

(3.1) ZSL
CS(L; q, t;−→x ) =

∑
−→
A∈PL

WSL−→
A

(L; q, t)s−→
A
(−→x ) = 1 +

∑
−→μ 	=−→

0

ZSL−→μ p−→μ (
−→x ),

where s−→
A
(−→x ) are the Schur polynomials.

The original LMOV conjecture describes a very subtle structure of
ZSL
CS(L; q, t;−→x ), which was proved by Kefeng Liu and Pan Peng [17, 18], based

on the cabling technique and a careful degree analysis of the cut-join equation. As
an application, the LMOV conjecture gives highly nontrivial relations between col-
ored HOMFLY invariants. The first such relation is the classical Lickorish-Millett
theorem [15].

The study of the colored Kauffman invariants is more difficult. For instance,
the definition of the Chern-Simons partition function for the orthogonal quantum
groups involves the representations of Brauer centralizer algebras, which admit a
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more complicated orthogonal relation [23–25]. In a joint work with Lin Chen, we
[5] rigorously formulate the orthogonal quantum group version of LMOV conjecture
by using the representation of the Brauer centralizer algebra.

Now we set g =so2N+1.
Let L be a link with L components and

(3.2) pbn(z) =

∞∑
j=−∞

znj , pbμ(z) =

�(μ)∏
i=1

pbμi
(z), pb−→μ (

−→z ) =

L∏
α=1

pbμα(zα).

Let ZSO
CS (L, q, t) be the orthogonal Chern-Simons partition function defined by

(3.3) ZSO
CS (L; q, t;−→z ) =

∑
−→μ∈PL

pb−→μ (
−→z )

z�μ

∑
−→
A∈B̂r|−→μ |

χ−→
A
(γ−→μ )W

SO−→
A

(L; q, t),

where z�μ = ||−→μ ||!
|C−→μ | , |

−→μ | = (d1, . . . , dL), B̂r|−→μ | denotes the set B̂rd1 × · · · × B̂rdL

(every element is a representation of the Brauer algebra), −→μ = (μ1, . . . , μL) for

partitions μi of di ∈ Z and χ−→
A
(γ−→μ ) =

L∏
i=1

χAi(γμi) for the character χAi of Brdi

labeled by Ai.
Expend the free energy

(3.4) FSO
CS (L; q, t;−→z ) = logZSO

CS (L; q, t;−→z ) =
∑

−→μ 	=−→
0

FSO−→μ (L; q, t)pb−→μ (−→z ).

Then the reformulated invariants are defined by

(3.5) g−→μ (L; q, t) =
∑
k|−→μ

μ(k)

k
F−→μ /k(L; qk, tk).

The orthogonal LMOV conjecture was formulated by L. Chen and Q. Chen [4–6]
as follows.

Conjecture 3.1 (Orthorgonal LMOV, Chen-Chen [4–6]). Let

z�μ[1]
2 · [g−→μ (L; q, t)− g−→μ (L; q,−t)]

2[−→μ ]
=

∞∑
g=0

∑
β∈Z

N−→μ ,g,β(q − q−1)gtβ ,

where N−→μ ,g,β are the integer coefficients and vanish for sufficiently large g and |β|.

This conjecture is a rigorous mathematical formulation of the LMOV type con-
jecture about the colored Kauffman invariant; while in [2, 20], their conjecture
emphasizes the relationship between colored HOMFLY-PT and colored Kauffman
invariants. The integer coefficients N−→μ ,g,β are closely related to the BPS numbers.

4. Infinite product formula for orthogonal Chern-Simons

partition functions

To derive an infinite product formula, we will state the result for a knot first,
since the notation in the computation for a knot is relatively simpler.
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4.1. The case of a knot. Given z = {zi}−∞<i<∞, x = {xj}j≥1, define

x ∗ y = {xi · yj}−∞<i<∞,j≥1.

We also define zd = {zdi }−∞<i<∞. The d-th Adam operation of a type-B Schur
function is given by sbA(z

d).
Introducing variables qρ = {−q2j−1}j≥1, we have

(4.1) pn(q
ρ) =

1

[n]
,

where we assume |q| < 1.
Set w = z ∗ qρ. Then we have

(4.2) pbn(w) =
pbn(z)

[n]

and

(4.3) pbμ(w) =
pbμ(z)

[μ]
.

Consider the free energy weighted by the pbμ(w). The orthogonal LMOV con-
jecture implies the following reformulation of the free energy:

(4.4) FSO(K; q, t;w) =
∞∑
d=1

∑
μ 	=0

1

d
gμ(K; qd, td)pbμ(w

d)

and

(4.5) gμ(K; q, t)− gμ(K; q,−t) =
2[μ]

zμ[1]2

∞∑
g=0

∑
β∈Z

N−→μ ,g,β(q − q−1)gtβ .

There exists integers nB; g,β such that

(4.6)

∞∑
g=0

NB,g,β(q − q−1)g =

∞∑
g=0

nB,g,β

g∑
k=0

qg−2k.

By the orthogonal LMOV conjecture, NB;g,β vanish for sufficiently large g and
|β|, thus nB; g,β vanish for sufficiently large g and |β|.
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We have

FSO(K; q, t;w)− FSO(K; q,−t;w)

=

∞∑
d=1

∑
μ 	=0

1

d
gμ(K; qd, td)pbμ(w

d)−
∞∑
d=1

∑
μ 	=0

1

d
gμ(K; qd, (−1)dtd)pbμ(w

d)

=
∑

d∈OZ+

∑
μ 	=0

1

d
(gμ(K; qd, td)− gμ(K; qd,−td))pbdμ(w)

=
∑

d∈OZ+

∑
μ 	=0

1

d

2[dμ]

zμ[d]2

∞∑
g=0

∑
β∈Z

Nμ,g,β(q
d − q−d)gtdβpbdμ(w)

=
∑

d∈OZ+

∑
μ 	=0

1

d

2

zμ[d]2

∞∑
g=0

∑
β∈Z

Nμ,g,β(q
d − q−d)gtdβpbdμ(z)(4.7)

=
∑

d∈OZ+

∑
μ 	=0

1

d

2

zμ[d]2

∞∑
g=0

∑
β∈Z

g∑
k=0

nμ,g,βq
(g−2k)dtdβpbdμ(z)

=
∑

d∈OZ+

∑
μ 	=0

1

d

2

zμ

∞∑
m=1

mq2md
∞∑
g=0

∑
β∈Z

g∑
k=0

nμ,g,βq
(g−2k)dtdβpbdμ(z)

=
∑

d∈OZ+

∑
μ 	=0

1

d

2

zμ

∞∑
g=0

∑
β∈Z

∞∑
m=1

g∑
k=0

mnμ,g,βq
(g−2k+2m)dtdβpbdμ(z)

=
∑
μ 	=0

∞∑
g=0

∑
β∈Z

∞∑
m=1

g∑
k=0

mnμ,g,β

zμ

∑
d∈OZ+

2

d
q(g−2k+2m)dtdβpbdμ(z),(4.8)

where OZ+ = {1, 3, 5, . . . } denotes the set of all positive odd integers.
Now we analyze the following computation in detail:

∑
d∈OZ+

2

d
q(g−2k+2m)dtdβpbdμ(z)

=
∑

d∈OZ+

2

d
q(g−2k+2m)dtdβ

�(μ)∏
j=1

( ∞∑
i=−∞

(zi)
dμj

)

=
∑

d∈OZ+

2

d
q(g−2k+2m)dtdβ

∑
i1,...,i�(μ)

(zμ1

i1
zμ2

i2
· · · zμ�(μ)

i�(μ)
)d

=
∑

i1,...,i�(μ)

∑
d∈OZ+

2

d
(qg−2k+2mtβzμ1

i1
zμ2

i2
· · · zμ�(μ)

i�(μ)
)d.
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Now we compute the series
∑

d∈OZ+

2
dx

d as follows:

∑
d∈OZ+

2

d
xd

= 2

⎛⎝ ∞∑
d=1

1

d
xd −

∑
d∈2Z+

1

d
xd

⎞⎠
= 2

( ∞∑
d=1

1

d
xd −

∞∑
d=1

1

2d
x2d

)

= 2

(
− log(1− x) +

1

2
log(1− x2)

)
= log

1 + x

1− x
,

where 2Z+ = {2, 4, 6, . . . } denotes the set of all positive even integers.
Thus we obtain

FSO(K; q, t;w)− FSO(K; q,−t;w)

=
∑
μ 	=0

∞∑
g=0

∑
β∈Z

∞∑
m=1

g∑
k=0

mnμ,g,β

zμ

∑
d∈OZ+

2

d
q(g−2k+2m)dtdβpbdμ(z)

=
∑
μ 	=0

∞∑
g=0

∑
β∈Z

∞∑
m=1

g∑
k=0

mnμ,g,β

zμ

∑
i1,...,il(μ)

∑
d∈OZ+

2

d
(qg−2k+2mtβzμ1

i1
zμ2

i2
· · · zμ�(μ)

i�(μ)
)d

=
∑
μ 	=0

∞∑
g=0

∑
β∈Z

∞∑
m=1

g∑
k=0

mnμ,g,β

zμ

∑
i1,...,il(μ)

log
1 + qg−2k+2mtβzμ1

i1
zμ2

i2
· · · zμ�(μ)

i�(μ)

1− qg−2k+2mtβzμ1

i1
zμ2

i2
· · · zμ�(μ)

i�(μ)

=
∑
μ 	=0

∞∑
g=0

∑
β∈Z

∞∑
m=1

g∑
k=0

mnμ,g,β

zμ
log

∏
i1,...,il(μ)

1 + qg−2k+2mtβzμ1

i1
zμ2

i2
· · · zμ�(μ)

i�(μ)

1− qg−2k+2mtβzμ1

i1
zμ2

i2
· · · zμ�(μ)

i�(μ)

.

Define the symmetric product as shown in the following formula:〈
1± ωzμ

〉
=

∏
i1,...,i�(μ)

(
1± ωzμ1

i1
· · · zμ�(μ)

i�(μ)

)
.

Thus we have

FSO(K; q, t;w)− FSO(K; q,−t;w)

=
∑
μ 	=0

∞∑
g=0

∑
β∈Z

∞∑
m=1

g∑
k=0

mnμ,g,β

zμ
log

〈
1 + qg−2k+2mtβzμ

〉〈
1− qg−2k+2mtβzμ

〉
= log

∏
μ 	=0

∞∏
g=0

∏
β∈Z

∞∏
m=1

g∏
k=0

(〈
1 + qg−2k+2mtβzμ

〉〈
1− qg−2k+2mtβzμ

〉)
mnμ,g,β

zμ

.

Now we obtain the infinite product formula for the orthogonal Chern-Simons
partition function of knots.
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Theorem 4.1 (Orthogonal infinite product formula for knots). Based on Conjec-
ture 3.1, the Chern-Simons partition function for orthogonal quantum group invari-
ants can be expressed as the following infinite product formula:

(4.9)
ZSO
CS (K; q, t;w)

ZSO
CS (K; q,−t;w)

=
∏
μ 	=0

∞∏
g=0

∏
β∈Z

∞∏
m=1

g∏
k=0

(〈
1 + qg−2k+2mtβzμ

〉〈
1− qg−2k+2mtβzμ

〉)
mnμ,g,β

zμ

.

4.2. The case of a link. Now we consider the case of a link.
Given a link L of L components, let −→w = (w1, . . . , wL) and −→z = (z1, . . . , zL)

satisfying wi = zi ∗ qρ, for i = 1, . . . , L.
We generalize the symmetric product to the case of a link as follows:〈
1± ω(z1)μ

1 · · · (zL)μL〉
=

∏
i1,1,...,i1,�(μ1),...,iL,1,...,iL,�(μL)

(
1± ω

L∏
α=1

(
(zαiα,1

)μ
α
1 · · · (zαiα,�(μα)

)μ
α
�(μα)

))
.

There exist integers n−→
B ; g,β

such that

∞∑
g=0

N−→
B,g,β

(q − q−1)g =

∞∑
g=0

n−→
B,g,β

g∑
k=0

qg−2k.

In a similar way, the infinite product formula for the orthogonal Chern-Simons
partition function of a link can be obtained as follows.

Theorem 4.2 (Orthogonal infinite product formula for links). Based on Conjecture
3.1, the Chern-Simons partition function for orthogonal quantum group invariants
can be expressed as the following infinite product formula:

ZSO
CS (L; q, t;−→w )

ZSO
CS (L; q,−t;−→w )

=
∏

−→μ 	=−→
0

∞∏
g=0

∏
β∈Z

∞∏
m=1

g∏
k=0

(〈
1 + qg−2k+2mtβ(z1)μ

1 · · · (zL)μL〉〈
1− qg−2k+2mtβ(z1)μ1 · · · (zL)μL

〉)
mn−→μ ,g,β

z−→μ

.

(4.10)

4.3. The case of the unknot. In Proposition 10.2 of [5], we have computed the
free energy associated to the orthogonal Chern-Simons partition function of the
knot as

FSO(©; q, t; z) =
∞∑
k=1

1

k

(
1 +

tk − t−k

qk − q−k

)
pbk(z).

Thus we have

FSO(©; q, t;w)− FSO(©; q,−t;w)

=
∑

k∈OZ+

2

k

tk − t−k

qk − q−k
pbk(w)

=
∑

k∈OZ+

2

k

tk − t−k

[k]2
pbk(z).

Compared with (4.7), we obtain

(4.11) N(1),0,1 = −N(1),0,−1 = 1.
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All other coefficients NB;g,Q are zero.
Thus we have

(4.12) nμ,g,β = δμ,(1)δg,0sign(β)

and

(4.13)
ZSO
CS (©; q, t;w)

ZSO
CS (©; q,−t;w)

=

∞∏
m=1

∞∏
i=−∞

(
(1 + q2mtzi)(1− q2mt−1zi)

(1− q2mtzi)(1 + q2mt−1zi)

)m

.

4.4. Symmetry property of q → q−1 in infinite product structure. In this
subsection, we discuss a basic symmetric property of this infinite product structure
obtained from the orthogonal LMOV partition function. Here we focus on the
knot case only, while the case of links exactly follows from the same analysis. In
the derivation of the infinite product formula, we assume |q| < 1 for the Taylor
expansion of 1

[d]2 . In the case of |q| > 1, the Taylor expansion is given by

(4.14)
1

[d]2
=

∞∑
m=1

mq−2md.

Therefore, the infinite product formula will be read as

ZSO
CS (K; q, t;w)

ZSO
CS (K; q,−t;w)

=
∏
μ 	=0

∞∏
g=0

∏
β∈Z

∞∏
m=1

g∏
k=0

(〈
1 + qg−2k−2mtβzμ

〉〈
1− qg−2k−2mtβzμ

〉)
mnμ,g,β

zμ

=
∏
μ 	=0

∞∏
g=0

∏
β∈Z

∞∏
m=1

g∏
k=0

(〈
1 + q−g+2(g−k)−2mtβzμ

〉〈
1− q−g+2(g−k)−2mtβzμ

〉)
mnμ,g,β

zμ

=
∏
μ 	=0

∞∏
g=0

∏
β∈Z

∞∏
m=1

g∏
k=0

(〈
1 + q−g+2k−2mtβzμ

〉〈
1− q−g+2k−2mtβzμ

〉)
mnμ,g,β

zμ

=
∏
μ 	=0

∞∏
g=0

∏
β∈Z

∞∏
m=1

g∏
k=0

(〈
1 + (q−1)g−2k+2mtβzμ

〉〈
1− (q−1)g−2k+2mtβzμ

〉)
mnμ,g,β

zμ

.(4.15)

This is the symmetry of q → q−1 for the infinite product formula.
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