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A UNIFIED APPROACH FOR LITTLEWOOD-PALEY

DECOMPOSITION OF ABSTRACT BESOV SPACES

AZITA MAYELI

(Communicated by Alexander Iosevich)

Abstract. We apply spectral theoretic methods to obtain a Littlewood-Paley
decomposition of abstract inhomogeneous Besov spaces in terms of “smooth”
and “bandlimited” functions. Well-known decompositions in several contexts
are shown as special examples and are unified under the spectral theoretic
approach.

1. Introduction

Besov spaces appear in many subfields of analysis and applied mathematics. In
the classical setting, the Besov space Bα

q (L
p) is the set of functions in Lp with

smoothness degree α and (quasi)norm controlled by q. There are two types of
definitions for these spaces. One type uses Fourier transform (for example, see
[18]), and the other uses modulus of continuity. The Besov spaces defined by
modulus of continuity are more practical in many areas of analysis, for example, in
approximation theory. (See [4].)

To understand the structure of the Besov spaces for application purposes, it is
natural to decompose a Besov function into simple building blocks and hereby to
reduce the study of functions to the study of only the elements in the decomposition.
Wavelet and frame theory have been very useful tools to achieve this goal. A unified
characterization of Besov spaces in terms of atomic decomposition using the group
representation theoretic approach was given by Feichtinger and Gröchenig ([5]). In
the classical level, this kind of decomposition using the spectral theoretic approach
was proved in [8]. New results in this direction in the context of Lie groups and
homogeneous manifolds were recently published in [2]–[3], [6, 7], and [9]–[13]. In
[10, 11], the authors constructed continuous and time-frequency localized wavelets
and applied them to the classification of Besov spaces on the compact Riemannian
manifolds.

The purpose of the present paper is to describe abstract Besov spaces Bα
q (H)

when Lp is replaced by an abstract Hilbert space H. Then the other well-known
descriptions of Bα

q (L
2) will be considered as examples of our theory. The abstract

Besov spaces were introduced using modulus of continuity, for example, by Lions
in [17]. We use the definition in [17] and establish our results by developing a
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connection between “frequency content” of vectors in H and their “smoothness”.
We show that a vector (function) belongs to Bα

q (H) if and only if the sequence
of its “filtered” versions satisfies some certain rate of norm convergence in lq. By
this, we can identify the Besov space Bα

q (H) with the sequence space lq, similar to
the identification of a function with its Fourier coefficients. While the idea behind
such identification is simple, the proofs are technical and difficulties arise when L2

is replaced by an abstract Hilbert space. The main result of this paper appears in
Theorem 3.1 and its proof is given in Section 4.

2. Preliminaries

Let H be a Hilbert space and A be any self-adjoint positive definite operator in
H whose domain is dense in H. The domain of A contains all functions f ∈ H for
which ‖Af‖ is finite. Let u : R+ → R be a positive function such that u ∈ C∞(R+),
u(n) decays rapidly at infinity for all n ∈ N, and limξ→0+ u(n)(ξ) exists. Therefore,
u is a Schwartz function on R

+. Moreover, we assume that u(s+ t) = u(s)u(t) and
u(0) = 1. For t > 0, we define the operator Tt = ut(A) = u(tA) mapping H to
H. Then {Tt}t>0 satisfies the semigroup axioms Tt+s = TtTs and T0 = identity.
Let M := ‖u‖∞ denote the uniform norm of u. Then M < ∞ and we have the
following:

(1) limt→0+ Ttf = f for all f ∈ H,
(2) Tt is symmetry (self-adjoint), and
(3) ‖Ttf‖ ≤ M‖f‖ for all f ∈ H.

Under the construction of the semigroup {Tt}, the operator A is the infinitesimal
generator of semigroup {Tt}t>0. That means, in the Hilbert space norm

lim
t→0+

∥∥∥∥∥Ttf − f

t
−Af

∥∥∥∥∥ = 0.

We define the modulus of continuity for 0 < q ≤ ∞, α > 0, and r ∈ N with
r ≥ α, by

Ωr(s, f) = sup
0<τ≤s

‖ (I − Tτ )
r f‖.

Following [17], the inhomogeneous abstract Besov space Bα
q := Bα

q (H), associated
to H and A, contains all functions f ∈ H for which∫ 1

0

(
s−αΩr(s, f)

)q ds

s
< ∞.

The space Bα
q , 1 ≤ q < ∞, becomes a Banach space with the norm

‖f‖+
(∫ 1

0

(
s−αΩr(s, f)

)q ds

s

)1/q

.

We use the standard convention for the definition of norm when q = ∞.

Remark. Notice that the Besov norm does not depend on r due to the monotonicity
of the modulus of continuity. Therefore, for fixed q and α, all definitions of Besov
spaces in terms of modulus of continuity are equivalent, so they are independent of
the choice of r.
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By the definition of the Besov spaces, it is trivial that the following inclusions
hold:

D(A) ⊂ Bα
q ⊂ H,

where D(A) is the domain of the operator A and is dense in H under the assump-
tions. Also, note that the space D(A) is a Banach space with the norm ‖f‖+‖Af‖.
(See, for example, [14].)

By the spectral theory, the operator A has a representation

A =

∫ ∞

0

ξdPξ ,

where dPξ is a spectral measure. Therefore, for any f ∈ D(A) and g ∈ H one has

〈Af, g〉 =
∫ ∞

0

ξ d(Pξf, g),

and hence the definition for a domain of A becomes equivalent to

D(A) =

{
f ∈ H : ‖Af‖2 :=

∫ ∞

0

ξ2d(Pξf, f) < ∞
}
.

For any bounded Borel measurable function β on the interval (0,∞), by the spectral
theorem the operator β(A) is bounded with ‖β(A)‖op = ‖β‖∞, and has an integral
representation

β(A) :=

∫ ∞

0

β(ξ)dPξ.

We say a vector (function) f ∈ H is a Paley-Wiener function with respect to
the operator A and belongs to PW[a,b](A) for some 0 ≤ a < b < ∞ if d(Pξf, f)
is supported in the interval [a, b]. An equivalent definition of Paley-Wiener spaces
PW[a,b](Δ) using the so-called functional form of the spectral theorem has been
given in [1].

Associated to the operator A, there exist a measure ν on R
+, a direct integral of

Hilbert spaces E = (Eλ)λ>0, and a unitary operator F which maps H onto E. The
Hilbert space E contains all ν-measurable vector valued functions λ → e(λ) ∈ Eλ

for which

‖e‖E =

(∫ ∞

0

‖e(λ)‖2Eλ
dν(λ)

)1/2

< ∞ .

It is natural to use the notation E =
∫∞
0

Eλ dν(λ). The operator F transforms the

domain of Ak onto Ek = {e ∈ E|λke ∈ E}. The norm on Ek is given by

‖e(λ)‖Ek =

(∫ ∞

0

λ2k‖e(λ)‖2Eλ
dν(λ)

)1/2

,

and for any f in the domain of Ak, F(Akf)(λ) = λk(Ff)(λ). In analogy to the
classical case, we call the unitary operator F the “Fourier transform” or “Plancherel
transform” of H, and ν the “Plancherel measure”.

We say f is “bandlimited” if its Fourier transform Ff has support in [a, b]. It
is easy to verify that f belongs to the Hilbert space PW[a,b](A) if and only if it is

bandlimited. We say a function f in H is “smooth” if it lies in
⋂

k∈N
D(Ak). One

can easily prove that PW[a,b](A) ⊂
⋂

k∈N
D(Ak), so every bandlimited function is

smooth.
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Notation. In the sequel, we will drop the subscripts for the norms ‖ ‖op , ‖ ‖∞,
and ‖ ‖H when there is no confusion. And, we use � (�) for ≤ (≥) up to some
constant.

3. Littlewood-Paley decomposition

In this section we will show how to decompose an abstract Besov function in
terms of “smooth” and “bandlimited” functions. The smoothness and bandlimit-
edness of a function is understood in terms of the concepts described in the pre-

vious section. To begin with the idea, we need the following set up. Let ψ̂0 be a

bounded and real valued function such that supp(ψ̂0) ⊂ [0, 2] and ψ̂0(0) = 1. Let

ψ̂ be another real valued function with supp(ψ̂) ⊂ [1/2, 2]. For any j ≥ 1, put

ψ̂j(ξ) := ψ̂(2−jξ) and assume that the resolution of identity holds:∑
j≥0

ψ̂j(ξ)
2 = 1, a.e. ξ ≥ 0.(1)

Note that for j ≥ 1, ψ̂j is compact supported and supp(ψ̂j) ⊆ [2j−1, 2j+1]. By

applying the spectral theorem for A in (1), and under the assumptions that ψ̂0 and

ψ̂ are real valued, the following version of the Calderón decomposition, in complete
analogy to the Euclidean space, holds:∑

j≥0

ψ̂j(A)2f = f, ∀f ∈ H.(2)

Here, the series converges in H and under our assumptions, the functions ψ̂j(A)f
are smooth and bandlimited with the “Fourier support” in [2j−1, 2j+1].

Our main result in Theorem 3.1 presents a unified description of inhomogeneous
abstract Besov spaces for all α > 1/2 in terms of smooth and bandlimited functions,
as follows.

Theorem 3.1. Given any α > 1/2, 1 ≤ q ≤ ∞ and f ∈ H,

(3) ‖f‖Bα
q
� ‖f‖+

⎛
⎝ ∞∑

j=0

(
2jα‖ψ̂j(A)f‖

)q

⎞
⎠

1/q

,

with the standard modifications for q = ∞, provided that both sides are finite.

By properties of the semigroup {Tτ}τ>0 and that ‖ψ̂j(A)‖op = ‖ψ̂j‖∞ ≤ 1, one
can easily prove the following estimations for the operator norm for all r ∈ N:

‖ (I − Tτ )
r ψ̂0(A)‖ � τ r, and(4)

‖ (I − Tτ )
r ψ̂j(A)‖ � τ r2(j+1)r/2 j ≥ 1.

The inequality constants are uniform in (4), i.e., they are independent of j, r, τ, ψ,
and ψ0. We will use (4) in the following lemma to provide an upper estimation for
the modulus of continuity Ωr. We need some preparation before the lemma: Let
m ∈ R and k < 0 such that k + m ≥ 0. Put wj := 2kj and cj := 2mj for j ∈ Z.
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Then,

Lemma 3.2. For r ∈ N, 1 ≤ q < ∞, and f ∈ H,

Ωr(s, f)
q � sqr

∞∑
j=0

(
2jr/2w

1/q
j cj‖ψ̂j(A)f‖

)q

∀ s ∈ (0, 1).

The estimation holds for q = ∞ by modification.

Proof. Take 0 < τ ≤ s < 1 and let f ∈ H. By applying the discrete version of
Calderon decomposition as in (2), for f we have

‖ (I − Tτ )
r f‖ ≤

∞∑
j=0

‖ (I − Tτ )
r ψ̂j(A)2f‖.(5)

So,

Ωr(s, f)
q :=

(
sup

0<τ≤s
‖ (I − Tτ )

r
f‖

)q

≤

⎛
⎝∑

j=0

sup
0<τ≤s

‖ (I − Tτ )
r
ψ̂j(A)2f‖

⎞
⎠

q

≤

⎛
⎝∑

j=0

wjcj sup
0<τ≤s

‖ (I − Tτ )
r
ψ̂j(A)2f‖

⎞
⎠

q

.

The Hölder inequality and the relation (4) imply that

Ωr(s, f)
q �

∑
j=0

wj

(
cj sup

0<τ≤s
‖ (I − Tτ )

r ψ̂j(A)2f‖
)q

�
∑
j=0

(w
1/q
j cj ‖ψ̂j(A)f‖)q

(
sup

0<τ≤s
‖ (I − Tτ )

r ψ̂j(A)‖
)q

� sqr
∑
j=0

(
2jr/2w

1/q
j cj ‖ψ̂j(A)f‖

)q

.

This proves the assertion of the lemma for q > 1. For q = 1 and q = ∞, the
proof can be easily obtained by some modifications and similar arguments. �

The decay property of Ωr near the origin is a consequence of the preceding lemma
as follows.

Corollary 3.3. For any r ∈ N,

Ωr(s, f) = O(sr) 0 < s < 1.

4. Proof of Theorem 3.1

Theorem 3.1 is a result of Theorems 4.1 and 4.2.

Theorem 4.1. Let 1 ≤ q < ∞ and α > 1/2. Given f ∈ H, if {2jαψ̂j(A)f}j ∈
lq(Z+,H), then f ∈ Bα

q and∫ 1

0

(
s−αΩr(f, s)

)q
ds/s �

∑
j∈Z+

(2jα‖ψ̂j(A)f‖)q ,(6)

provided that the expression on the right is finite. The inequality also holds for
q = ∞ with modification.
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Proof. Pick r ∈ N such that r ≤ 2α. Let k and m be as above. Furthermore,
assume that k +mq ≤ q(α− r/2). (Note that there is a large class of pairs (k,m)
such that k+m ≥ 0 and satisfy the inequality.) Thus by Lemma 3.2, and wj = 2kj

and cj = 2mj , we obtain the following:∫ 1

0

(
s−αΩr(f, s)

)q
ds/s �

∑
j=0

(
2jr/2w

1/q
j cj ‖ψ̂j(A)f‖

)q

�
∑
j=0

(
2jα‖ψ̂j(A)f‖

)q

.

This completes the proof of the theorem for 1 ≤ q < ∞. For q = ∞, the proof can
be easily obtained by some modifications. �

The next theorem completes the proof of Theorem 3.1.

Theorem 4.2. Let 1 ≤ q < ∞ and α > 1/2. Given f ∈ H, r ∈ N such that
r < 2α, we have

∑
j∈Z+

(2jα‖ψ̂j(A)f‖)q �
∫ 1

0

(
s−αΩr(f, s)

)q
ds/s.(7)

The inequality also holds for q = ∞ with modification.

Proof. Let u be the function that we had in Section 2, and Ts = u(sA). For all
λ > 0, define

G(λ) := λ−n

∫ 1

0

s−α+r+1(1− u(sλ))rds/s.(8)

Here, n is a large number that can be fixed later. Therefore, by applying functional
calculus theory for (8), for all g ∈ H,

G(A)g =

∫ 1

0

s−α+r+1A−n(I − Ts)
rg ds/s.(9)

If we take g = ψ̂j(A)f in (9), and use the Hölder inequality, we obtain the following
inequalities:

‖G(A)ψ̂j(A)f‖ ≤
∫ 1

0

s−α‖A−n(I − Ts)
rψ̂j(A)f‖ sr+1ds/s

≤
∫ 1

0

s−α‖(I − Ts)
rf‖ ‖A−nψ̂j(A)‖ sr+1ds/s

≤
(∫ 1

0

(
s−α‖(I − Ts)

rf‖
)q

ds/s

)1/q (∫ 1

0

s(r+1)q′
(2−nq′(j−1)) ds/s

)1/q′

� 2−n(j−1)

(∫ 1

0

(
s−αΩr(s, f)

)q
ds/s

)1/q

.

Therefore, we proved that

‖G(A)ψ̂j(A)f‖q ≤ 2−n(j−1)q

∫ 1

0

(
s−αΩr(s, f)

)q
ds/s.(10)

From the other hand, with a simple calculation one can show that

‖G(A)ψ̂j(A)f‖ � 2j(−n+1−α+r)‖ψ̂j(A)f‖ .(11)
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As a result of (10) and (11), we get

2jαq‖ψ̂j(A)f‖q ≤ 2jαq2−jq(−n+1−α+r)‖G(A)ψ̂j(A)f‖q(12)

� 2j(−2n+1+r)q

∫ 1

0

(
s−αΩr(s, f)

)q
ds/s.

Hence,

∑
j≥0

2jαq‖ψ̂j(A)f‖q ≤

⎛
⎝∑

j≥0

2j(−2n+1+r)q

⎞
⎠∫ 1

0

(
s−αΩr(s, f)

)q
ds/s.(13)

This proves the theorem if we let n > r+1
2 . �

Questions. These questions are still open and need to be answered. Can we remove
the restriction α > 1/2 and prove Theorem 3.1 for 0 < α < 1/2? Can we prove
Theorem 3.1 for 0 < q < 1?
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[2] Jens Gerlach Christensen and Gestur Ólafsson, Examples of coorbit spaces for dual pairs,
Acta Appl. Math. 107 (2009), no. 1-3, 25–48, DOI 10.1007/s10440-008-9390-4. MR2520008
(2010h:43002)

[3] Jens G. Christensen, Azita Mayeli, and Gestur Ólafsson, Coorbit description and atomic
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