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A SHARP LOWER BOUND ON THE POLYGONAL

ISOPERIMETRIC DEFICIT
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(Communicated by Jeremy Tyson)

Abstract. It is shown that the isoperimetric deficit of a convex polygon P
admits a lower bound in terms of the variance of the radii of P , the area of P ,
and the variance of the barycentric angles of P . The proof involves circulant
matrix theory and a Taylor expansion of the deficit on a compact manifold.

1. Introduction

The polygonal isoperimetric inequality states that if n ≥ 3 and P is an n-gon
with area |P | and perimeter L(P ), then the deficit is nonnegative,

δ(P ) := L2(P )− 4n tan
π

n
|P | ≥ 0,

and uniquely minimized when P is convex and regular. A sharp stability result for
this classical inequality has recently been obtained in [IN15] via a novel approach
involving a functional minimization problem on a compact manifold and the spectral
theory for circulant matrices. The heart of the matter is a quantitative polygonal
isoperimetric inequality for convex polygons which states that

(1.1) σ2
s(P ) + σ2

r(P ) � δ(P ),

where σ2
s(P ) is the variance of the side lengths of P and σ2

r (P ) is the variance of
its radii (i.e. the distances between the vertices and their barycenter).

The starting point of the proof is the following inequality [FRS85, pg. 35] which
holds for any n-gon:

(1.2) 8n2 sin2
π

n
σ2
r(P ) ≤ nS(P )− 4n tan

π

n
|P |,

where S(P ) is the sum of the squares of the side lengths of P . Since n2σ2
s(P ) =

nS(P )− L2(P ), it follows that (1.2) is equivalent to

(1.3) 8n2 sin2
π

n
σ2
r(P ) ≤ δ(P ) + n2σ2

s(P ).

In order to establish (1.1), it is shown in [IN15] that

(1.4) σ2
s(P ) � δ(P )

whenever P is a convex n-gon; thereafter, a more general stability result (e.g. valid
for simple n-gons) is deduced via a version of the Erdős-Nagy theorem which states
that a polygon may be convexified in a finite number of “flips” while keeping the
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perimeter invariant. The method of proof of (1.2) given in [FRS85] is based on
a polygonal Fourier decomposition, whereas the technique in [IN15] is based on a
Taylor expansion of the deficit (in a suitable sense). It is natural to wonder whether
one can directly deduce (1.1) via the method in [IN15] without relying on [FRS85].
A positive answer is given in this paper. In fact, a new inequality is established
which combined with (1.4) improves (1.1).

Let σ2
a(P ) denote the variance of the barycentric angles of P (i.e. the angles

generated by the vertices and barycenter of the set of vertices of P ; see §2). Then
the following is true.

Theorem 1.1. Let n ≥ 3 and let P be a convex n-gon. There exists cn > 0 such
that

cn δ(P ) ≥ σ2
r(P ) + |P |σ2

a(P ),

and the exponent on the deficit is sharp.

This result directly combines with (1.4) and yields:

Corollary 1.2. Let n ≥ 3 and let P be a convex n-gon. There exists cn > 0 such
that

cn δ(P ) ≥ σ2
s(P ) + σ2

r (P ) + |P |σ2
a(P ).

Remark 1.3. The theorem holds for a more general class of polygons. The only
requirement in the proof is that the barycentric angles of P sum to 2π.

Remark 1.4. An inequality of the form

σ2
a(P ) ≤ cnδ(P )

cannot hold in general. One can see this by a simple scaling consideration: let P be
a convex polygon and let Pα be the convex polygon obtained by dilating the radii
of P by α > 0. Then δ(Pα) = α2δ(P ), but σ2

a(Pα) = σ2
a(P ).

Quantitative polygonal isoperimetric inequalities turn out to be useful tools in
geometric problems. For instance (1.1) was recently utilized in [CM14] to improve
a result of Hales which showed up in his proof of the honeycomb conjecture [Hal01].
This was achieved by showing that the notion of asymmetry in (1.1) directly controls
the Hausdorff distance between P and a specific regular polygon. Moreover, [IN15]
has also been employed in [CN15] to prove a quantitative version of a Faber-Krahn
inequality for the Cheeger constant of n-gons obtained in [BF15]. Related stability
results for the isotropic, anisotropic, and relative isoperimetric inequalities have
been obtained in [FMP08,FMP10,FI13], respectively.

2. Preliminaries

Let n ≥ 3 and let P ⊂ R
2 be an n-gon generated by the set of vertices {A1,

A2, . . . , An} ⊂ R
2 whose center of mass O is taken to be the origin. For i ∈

{1, 2, . . . , n}, the i-th side length of P , denoted by li := AiAi+1, is the length

of the vector
−−−−→
AiAi+1 which connects Ai to Ai+1, where Ai = Aj if and only if

i = j (mod n); with this notation in mind, {ri := OAi}ni=1 is the set of radii.

Furthermore, xi is the angle between the vectors
−−→
OAi and

−−−−→
OAi+1 and the set

{xi}ni=1 comprises the barycentric angles of P .
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The circulant matrix method introduced in [IN15] is based on the idea that a
large class of polygons can be viewed as points in R

2n satisfying some constraints.
More precisely, consider

M :=
{
(x; r) ∈ R

2n : xi, ri ≥ 0, (2.1), (2.2), (2.3) hold
}
,

where

(2.1)
n∑

i=1

xi = 2π,

(2.2)

n∑
i=1

ri = n,

(2.3)

⎧⎪⎪⎨
⎪⎪⎩

n∑
i=1

ri cos

(
i−1∑
k=1

xk

)
= 0,

n∑
i=1

ri sin

(
i−1∑
k=1

xk

)
= 0.

Note that M is a compact 2n− 4 dimensional manifold and each point (x; r) ∈ M
represents a polygon centered at the origin with barycentric angles x and radii r;
therefore, it is appropriate to name such objects polygonal manifolds. Indeed, a
point O is the barycenter of the set of vertices of P if and only if

n∑
i=1

−−→
OAi = 0,

which is equivalent to saying that the projections of
n∑

i=1

−−→
OAi onto

−−→
OA1 and

−−→
OA1

⊥

vanish; in other words, (x; r) satisfies (2.3). Furthermore, (2.1) is satisfied by
all convex polygons (also many nonconvex ones) and (2.2) is a convenient technical
assumption which derives from scaling considerations. Note that the convex regular
n-gon corresponds to the point (x∗; r∗) =

(
2π
n , . . . , 2πn ; 1, . . . , 1

)
. With this in mind,

the variance of the interior angles and radii of P are represented, respectively, by
the quantities

σ2
a(P ) = σ2

a(x; r) :=
1

n

n∑
i=1

x2
i −

1

n2

(
n∑

i=1

xi

)2

,

σ2
r (P ) = σ2

r(x; r) :=
1

n

n∑
i=1

r2i −
1

n2

(
n∑

i=1

ri

)2

.

Moreover, in (x; r) coordinates, the deficit is given by the formula

δ(P ) = δ(x; r) :=

(
n∑

i=1

(
r2i+1 + r2i − 2ri+1ri cosxi

)1/2)2

− 2n tan
π

n

n∑
i=1

riri+1 sin xi.
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3. Proof of Theorem 1.1

By a simple reduction argument, it suffices to prove the inequality on M: let P
be a convex n-gon and note that it is represented by (x; r) ∈ R

2n, where x ∈ R
n

denotes its interior angles and r ∈ R
n its radii. Convexity implies (2.1), and (2.3)

follows from the definition of barycenter. If

n∑
i=1

ri = s �= n,

consider (by a slight abuse of notation) the polygon Ps = (x; ns r) obtained by scaling

the radii of P . Evidently σ2
a(Ps) = σ2

a(P ), |Ps| = (n/s)2|P |, σ2
r (Ps) = (n/s)2σ2

r(P ),
and δ(Ps) = (n/s)2δ(P ). Hence if the inequality stated in the theorem holds for
Ps ∈ M, then it also holds for P . Now let

φ(x; r) := n2(|P |σ2
a + σ2

r )

=
1

2

( n∑
i=1

riri+1 sinxi

)(
n

n∑
i=1

x2
i −

( n∑
i=1

xi

)2)
+ n

n∑
i=1

r2i −
( n∑
i=1

ri
)2
,

and note that it suffices to show

(3.1) φ(x; r) ≤ c δ(x; r)

for all (x; r) ∈ M. The polygonal isoperimetric inequality implies δ(x; r) ≥ 0 for
every (x; r) ∈ M with δ(x; r) = 0 if and only if (x; r) = z∗ := (x∗; r∗). Since M is
compact and δ is continuous it follows that for μ > 0,

inf
M\Bμ(z∗)

δ > 0,

and so (3.1) follows easily on M\ Bμ(z∗). Thus it suffices to prove (3.1) for some
neighborhood Bμ of the point z∗. Direct calculations imply (recall that the notation
is periodic mod n)

(3.2) Dφ(z∗) := (Dxφ(z∗), Drφ(z∗)) = 0,

Dxkxl
φ(z∗) =

{
n(n− 1) sin 2π

n , k = l,

−n sin 2π
n , k �= l,

Drkrlφ(z∗) =

{
2(n− 1), k = l,

−2, k �= l,

and Drkxl
φ(z∗) = 0. Thus by letting Φ := D2φ(z∗) it follows that

Φ =

(
n sin 2π

n C 0n×n

0n×n 2C

)
,
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where 0n×n is the n× n zero matrix and

C =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

n− 1 −1 · · · −1
−1 n− 1 −1 · · ·

−1 n− 1 −1
. . .

...
...

. . .
. . .

. . .
...

. . . −1 n− 1 −1
−1 · · · −1 n− 1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

n×n

.

Moreover, Dδ(z∗) is given by{
Dxk

δ(z∗) = 2n tan π
n ,

Drkδ(z∗) = 0;

hence, (2.1) implies〈
Dδ(z∗), (x− x∗; r − r∗)

〉
=

〈
Dxδ(z∗), x− x∗

〉
+
〈
Drδ(z∗), r − r∗

〉

= 2n tan
π

n

n∑
i=1

(xi − (x∗)i) = 0.(3.3)

Since φ(z∗) = δ(z∗) = 0, by utilizing (3.2), (3.3), and performing a Taylor expan-
sion, it follows that for z close enough to z∗,

φ(z) =
1

2
〈D2φ(z∗)(z − z∗), (z − z∗)〉

+
1

6

2n∑
i,j,k=1

Dijkφ((1− θz)z∗ + θzz)(z − z∗)i(z − z∗)j(z − z∗)k

and

δ(z) =
1

2
〈D2δ(z∗)(z − z∗), (z − z∗)〉

+
1

6

2n∑
i,j,k=1

Dijkδ((1− τz)z∗ + τzz)(z − z∗)i(z − z∗)j(z − z∗)k

for some θz, τz ∈ (0, 1). Furthermore, since in a neighborhood of z∗, φ and δ are
C3 and M is compact, there exists C > 0 such that

1

6

∣∣∣∣∣∣
2n∑

i,j,k=1

Dijkφ((1− θz)z∗ + θzz)(z − z∗)i(z − z∗)j(z − z∗)k

∣∣∣∣∣∣ ≤ C|z − z∗|3,

1

6

∣∣∣∣∣∣
2n∑

i,j,k=1

Dijkδ((1− θz)z∗ + θzz)(z − z∗)i(z − z∗)j(z − z∗)k

∣∣∣∣∣∣ ≤ C|z − z∗|3

for z ∈ M sufficiently close to z∗. Thus there exists C > 0 for which∣∣∣∣φ(z)− 1

2
〈D2φ(z∗)(z − z∗), (z − z∗)〉

∣∣∣∣ ≤ C|z − z∗|3,(3.4) ∣∣∣∣δ(z)− 1

2
〈D2δ(z∗)(z − z∗), (z − z∗)〉

∣∣∣∣ ≤ C|z − z∗|3(3.5)
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in a neighborhood of z∗. In particular, there exists η = η(n) > 0 such that

(3.6) φ(z) ≤ 1

2
||Φ||2|z − z∗|2 + C|z − z∗|3

for all z ∈ Bη(z∗). By the results of [IN15, §3.6], it follows that
inf

w∈SH
〈D2δ(z∗)w,w〉 =: σ > 0, 1

where H is the tangent space of M at z∗ and SH is the unit sphere in H with center
z∗. Moreover by continuity there exists a neighborhood U ⊂ R

2n of SH such that

〈D2δ(z∗)w,w〉 ≥
σ

2

for all w ∈ U . Note that z−z∗
|z−z∗| ∈ U for z ∈ M sufficiently close to z∗. Hence there

exists μ = μ(η, σ) ∈ (0, η] such that

〈D2δ(z∗)(z − z∗), (z − z∗)〉 ≥
σ

2
|z − z∗|2

for z ∈ Bμ(z∗). In particular, for μ̃ := min{μ, σ
8C } and z ∈ Bμ̃(z∗),

δ(z) ≥ 1

4
〈D2δ(z∗)(z − z∗), (z − z∗)〉;

thus, recalling (3.6),

φ(z) ≤
( 1

σ
||Φ||2 +

2C

σ
|z − z∗|

)
〈D2δ(z∗)(z − z∗), (z − z∗)〉 ≤ cnδ(z),

where cn := 4
σ ||Φ||2 +

8C
σ μ̃. To achieve the second part of the theorem, it suffices

to prove the existence of c > 0 such that

(3.7) 〈Φ (x; r), (x; r)〉 ≥ c|(x; r)|2

for

(x; r) ∈ Z :=

{
(x; r) :

n∑
i=1

xi = 0,

n∑
i=1

ri = 0

}
.

Indeed, if (3.7) holds, let ω : [0,∞] → [0,∞] be any modulus of continuity (i.e.
ω(0+) = 0) such that

φ(z) ≤ cnω(δ(z)).

Then for z ∈ M close to z∗, (3.5) implies

δ(z) ≤ c0|z − z∗|2

for some c0 > 0. Moreover, z − z∗ ∈ Z since z ∈ M, and by combining (3.4) with
(3.7) it follows that

(3.8) δ(z) ≤ c0|z − z∗|2 ≤ c1〈Φ(z − z∗), (z − z∗)〉 ≤ c2φ(z) ≤ c̃ω(δ(z))

for some c̃ > 0 provided z is close to z∗; however, since δ(z) → 0 as z → z∗ and
δ(z) > 0 for z �= z∗, (3.8) leads to a contradiction if

lim inf
t→0+

ω(t)

t
= 0.

1In fact, something stronger is proved: namely that infw∈SH〈D2f(z∗)w,w〉 =: σ > 0, where f

is an explicit function for which D2f ≤ D2δ. This is achieved via the spectral theory for circulant
matrices and an analysis involving the tangent space of M at z∗ and the identification of a suitable
coordinate system in which calculations can be performed efficiently. The barycentric condition
(2.3) built into the definition of M comes up in this analysis.
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Thus the lim inf is strictly greater than zero and this implies ω is at most linear at
zero.

To verify (3.7), note first that C is a real, symmetric, circulant matrix generated
by the vector (n − 1,−1, . . . ,−1). A calculation shows that the eigenvalues of C,
say λk, are given by

(3.9) λ0 = 0 and λk = n for k = 1, . . . , n− 1.

Moreover, let v0 := (1, . . . , 1), and for l ∈ {1, . . . , �n
2 �} define

v2l−1 :=

(
1, cos

2πl

n
, cos

4πl

n
, . . . , cos

2πl(n− 1)

n

)
,

v2l :=

(
0, sin

2πl

n
, sin

4πl

n
, . . . , sin

2πl(n− 1)

n

)
.

One can readily check that vk is an eigenvector of C corresponding to the eigenvalue
λ� k

2 �
, and that the set {v0, v1, . . . , vn−1} forms a real orthogonal basis of Rn (see e.g.

Proposition 2.1 in [IN15]). For k = 1, 2, . . . , n, define bk := (vk−1; 0, . . . , 0) ∈ R
2n

and bk := (0, . . . , 0; vk−n−1) ∈ R
2n for k = n+1, . . . , 2n. Since the set {bk}2nk=1 forms

a real orthogonal basis of R2n, given (x; r) ∈ R
2n there exist unique coefficients

αk ∈ R such that

(x; r) =
2n∑
k=1

αkbk.

Thus, by utilizing (3.9) it follows that

〈Φ(x; r), (x; r)〉 =
2n∑

k,k′=1

αkαk′〈Φbk, bk′〉

= n sin
2π

n

n∑
k=1

α2
kλ� k−1

2 �|bk|
2 + 2

2n∑
k=n+1

α2
kλ� k−n−1

2 �|bk|
2

= n2 sin
2π

n

n∑
k=2

α2
k|bk|2 + 2n

2n∑
k=n+2

α2
k|bk|2.

Furthermore, if (x; r) ∈ Z,

α1 =
〈(x; r), b1〉

|b1|2
=

n∑
i=1

xi = 0,

αn+1 =
〈(x; r), bn+1〉

|b1|2
=

n∑
i=1

ri = 0;

hence,

〈Φ (x; r), (x; r)〉 = n2 sin
2π

n

n∑
k=1

α2
k|bk|2 + 2n

2n∑
k=n+1

α2
k|bk|2

≥ 2n

2n∑
k=1

α2
k|bk|2,

and this concludes the proof.
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