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A SHARP LOWER BOUND ON THE POLYGONAL
ISOPERIMETRIC DEFICIT
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ABSTRACT. It is shown that the isoperimetric deficit of a convex polygon P
admits a lower bound in terms of the variance of the radii of P, the area of P,
and the variance of the barycentric angles of P. The proof involves circulant
matrix theory and a Taylor expansion of the deficit on a compact manifold.

1. INTRODUCTION

The polygonal isoperimetric inequality states that if n > 3 and P is an n-gon
with area |P| and perimeter L(P), then the deficit is nonnegative,

§(P) := L2(P) — 4ntan —|P| > 0,
n

and uniquely minimized when P is convex and regular. A sharp stability result for
this classical inequality has recently been obtained in [INT5] via a novel approach
involving a functional minimization problem on a compact manifold and the spectral
theory for circulant matrices. The heart of the matter is a quantitative polygonal
isoperimetric inequality for convex polygons which states that

(1.1) o3 (P) +a}(P) £ 8(P),

where 02(P) is the variance of the side lengths of P and ¢2(P) is the variance of

its radii (i.e. the distances between the vertices and their barycenter).
The starting point of the proof is the following inequality [FRS85 pg. 35] which
holds for any n-gon:

(12) 8n?sin? " o?(P) < nS(P) — 4ntan ~|P|,
n n

where S(P) is the sum of the squares of the side lengths of P. Since n2?0?(P) =
nS(P) — L?(P), it follows that (L2) is equivalent to

o T

(1.3) 8n? sin - o2(P) < §(P) +n?c%(P).

In order to establish (ITI), it is shown in [IN15] that
(1.4) oi(P) S 6(P)

whenever P is a convex n-gon; thereafter, a more general stability result (e.g. valid
for simple n-gons) is deduced via a version of the Erdds-Nagy theorem which states
that a polygon may be convexified in a finite number of “flips” while keeping the

Received by the editors February 20, 2015 and, in revised form, August 28, 2015.
2010 Mathematics Subject Classification. Primary 52Bxx, 58Cxx; Secondary 51Kxx.
The author is a PIRE Postdoctoral Fellow.

©2015 American Mathematical Society
3115


http://www.ams.org/proc/
http://www.ams.org/proc/
http://dx.doi.org/10.1090/proc/12947

3116 E. INDREI

perimeter invariant. The method of proof of ([[2]) given in [FRS85] is based on
a polygonal Fourier decomposition, whereas the technique in [INT5] is based on a
Taylor expansion of the deficit (in a suitable sense). It is natural to wonder whether
one can directly deduce (I.I]) via the method in [IN15] without relying on [FRS85].
A positive answer is given in this paper. In fact, a new inequality is established
which combined with (4] improves (LI).

Let 02(P) denote the variance of the barycentric angles of P (i.e. the angles
generated by the vertices and barycenter of the set of vertices of P; see §2]). Then
the following is true.

Theorem 1.1. Let n > 3 and let P be a conver n-gon. There exists ¢, > 0 such
that

cn 8(P) 2 0(P) +|Plog(P),
and the exponent on the deficit is sharp.

This result directly combines with (L4 and yields:

Corollary 1.2. Let n > 3 and let P be a conver n-gon. There exists ¢, > 0 such
that

cn 6(P) 2 03(P) + 07 (P) + |Plog(P).

Remark 1.3. The theorem holds for a more general class of polygons. The only
requirement in the proof is that the barycentric angles of P sum to 27.

Remark 1.4. An inequality of the form
2(P) < cad(P)

cannot hold in general. One can see this by a simple scaling consideration: let P be
a convex polygon and let P, be the convex polygon obtained by dilating the radii
of P by a > 0. Then §(P,) = o?6(P), but 02(P,) = o2(P).

Quantitative polygonal isoperimetric inequalities turn out to be useful tools in
geometric problems. For instance ([I]) was recently utilized in [CM14] to improve
a result of Hales which showed up in his proof of the honeycomb conjecture [Hal01].
This was achieved by showing that the notion of asymmetry in (ILI]) directly controls
the Hausdorff distance between P and a specific regular polygon. Moreover, [IN15]
has also been employed in [CN15] to prove a quantitative version of a Faber-Krahn
inequality for the Cheeger constant of n-gons obtained in [BE15]. Related stability
results for the isotropic, anisotropic, and relative isoperimetric inequalities have
been obtained in [FMPOS,[EMP10,[FT13], respectively.

2. PRELIMINARIES

Let n > 3 and let P C R? be an n-gon generated by the set of vertices {A;,
Ag, ..., A} C R? whose center of mass O is taken to be the origin. For i €
{1,2,...,n}, the i-th side length of P, denoted by Il; := A;A;;1, is the length
of the vector A;A;11 which connects A; to A;yi, where A, = A; if and only if
i = j (mod n); with this notation in mind, {r; := OA;}?_; is the set of radii.
Furthermore, z; is the angle between the vectors OA; and OA;;1 and the set
{z;}_, comprises the barycentric angles of P.
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The circulant matrix method introduced in [IN15] is based on the idea that a

large class of polygons can be viewed as points in R?” satisfying some constraints.
More precisely, consider

M= {(zr) €R": s >0, @D, @), @) hold},

where

1) S e = o
i=1

(2.2) zn:ri =n,
i=1

n i—1
> r;cos <Z zk> =0,
i=1

(23) n ll'cfll
> risin (E :Ck) =0.
i=1 k=1

Note that M is a compact 2n — 4 dimensional manifold and each point (z;7) € M
represents a polygon centered at the origin with barycentric angles x and radii r;
therefore, it is appropriate to name such objects polygonal manifolds. Indeed, a
point O is the barycenter of the set of vertices of P if and only if

which is equivalent to saying that the projections of i O—AZ onto O—/ll> and O—AIJ-

i=1
vanish; in other words, (z;r) satisfies (23). Furthermore, (21)) is satisfied by
all convex polygons (also many nonconvex ones) and (2:2)) is a convenient technical
assumption which derives from scaling considerations. Note that the convex regular
n-gon corresponds to the point (z.;7.) = (%’T, cee %’T; 1,..., 1). With this in mind,
the variance of the interior angles and radii of P are represented, respectively, by
the quantities

2
1 < 1 (<
2 2/, - 2
Ua(P) —O'a(LIT,T) E E;xz - ﬁ <;$2> )

2
I 1 [
2 200 2
JT’(P) - 0'7,(11,',’]”’) . E;rz - ﬁ (;72) .

Moreover, in (z;7) coordinates, the deficit is given by the formula

n 2

0(P)=6(x;r) := (Z (1"1»2_|r1 + 7‘12 — 27417 COS xi)1/2>
i=1

n
™ .
— 2ntan — E TiTi+1 Sin x;.
n
i=1
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3. PrROOF oF THEOREM [I.1]

By a simple reduction argument, it suffices to prove the inequality on M: let P
be a convex n-gon and note that it is represented by (x;7r) € R?*", where x € R"
denotes its interior angles and r € R™ its radii. Convexity implies (1), and (Z3)
follows from the definition of barycenter. If

n
Zri:s#n,
i=1

consider (by a slight abuse of notation) the polygon P; = (z; 27) obtained by scaling
the radii of P. Evidently 02(P,) = 02(P), |Ps| = (n/s)?|P|, 02(Ps) = (n/s)?c2(P),

and §(P;) = (n/s)?6(P). Hence if the inequality stated in the theorem holds for
P, € M, then it also holds for P. Now let

$(a;r) = n*(|Plog + o)

n n n n n

(ZTiT‘i+1Sin:Ei) (nzzf_( Ii)2)+nzrf—(2m)2,

i=1 i=1 i=1 =1 =1

N =

and note that it suffices to show
(3.1) o(x;r) < e d(x;r)

for all (z;7) € M. The polygonal isoperimetric inequality implies §(z;7) > 0 for
every (z;1) € M with §(z;7) = 0 if and only if (x;r) = 2z, := (24; 7). Since M is
compact and ¢ is continuous it follows that for u > 0,

inf  §>0,
M\B, ()
and so (B1) follows easily on M \ B, (z.). Thus it suffices to prove [B.I]) for some

neighborhood B, of the point z,. Direct calculations imply (recall that the notation
is periodic mod n)

(3.2) D¢(2.) := (Da(z4), Drg(24)) = 0,
n(n—1)sin 2%, k=1,

n "’

Dwsz¢(2*) = {

—nsin%’r, k #1,
2(n—1), k=1,
Drm(ﬁ(z*):{ L9, k#l

and D,, ,,¢(z:) = 0. Thus by letting ® := D?¢(2,) it follows that

o — nsin%ﬂc Onxn 7
Onxn 2C
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where 0,,%x,, is the n X n zero matrix and

n—1 -1 -1

nxn

Moreover, Dd(z,) is given by

Dy, 0(2x) = 2ntan T,
D, 0(z) =0;

hence, (2I)) implies
<D5(Z*), (x —zy;r — r*)> = <Dx5(z*),:l: - x*> + <D,«5(z*),r - 7‘*>

n

(3.3) — 2ntan % 3 (@i — (22)i) = 0.

i=1
Since ¢(z.) = 6(zx) = 0, by utilizing B2), B3), and performing a Taylor expan-
sion, it follows that for z close enough to z,,

6(2) =5 (D%0(2)(= — 22), (2 = )

2n
1
= > Dijed((1—02)z +0:2) (2 — 2)i(2 — 22)(2 — 2
6iJ$:1

and

5() =5 (D%0(20) (= — ), (= — )

2n
1
+ 8 Z Dijid((1 = 7o)z + T22) (2 — 24)i(2 — 24) (2 — 24 )
i,J,k=1
for some 6,,7, € (0,1). Furthermore, since in a neighborhood of z,, ¢ and § are
C? and M is compact, there exists C > 0 such that

2n
S Didl(1 - 6.)z. +0.2)(z — 2)ilz — 2);(2 — 2| < Clz — 2.2,
ij, k=1

S| =

2n
1 .
G g Dijrd((1 = 0)ze 4+ 0.2) (2 — 2.)i(2 — 24) (2 — 22)x| < Clz — 2 °
i, k=1

for z € M sulfficiently close to z,. Thus there exists C' > 0 for which

(3.0 6) - § D8z = 2, (2 = 2)| < s = P
(3.5) ‘5(2) — %<D2§(z*)(z —24), (2 — z*)>’ <Oz — 22
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in a neighborhood of z,. In particular, there exists 7 = 7(n) > 0 such that
1
(3.6) ¢(z) < §||<I>||2\Z—Z*I2+C|Z—Z*\3
for all z € By (z«). By the results of [IN15l §3.6], it follows that
inf (D?§(z)w,w) =: o > 0,[]
wWESy

where H is the tangent space of M at z, and S is the unit sphere in H with center
.. Moreover by continuity there exists a neighborhood U C R?" of S, such that

(D?6(z)w, w) > )

for all w € U. Note that Z=2= € U for z € M sufficiently close to z.. Hence there

|z—zx]

exists u = p(n, o) € (0,n] such that
(D?8(z)(z = ), (2 = ) 2 S|z = 2
for 2 € By, (2«). In particular, for fi := min{yu, %} and z € Bj(2.),
5(2) 2 §(D?6(22)(z — ), (2 = =)
thus, recalling (36,

8(2) < (118l + 221z = 2] ) (D?(2)(z = 22), (= = ) < ead(2),

where ¢, := %H‘PHQ + %ﬁ. To achieve the second part of the theorem, it suffices
to prove the existence of ¢ > 0 such that

(3.7) (@ (1), (w;7)) > el (a;7)

for

(x;r) e 2= {(x;r): in:(), Zri—()}.

Indeed, if B7) holds, let w : [0,00] — [0,00] be any modulus of continuity (i.e.
w(0+) = 0) such that

$(2) < enw(6(2))-
Then for z € M close to z,., (B3] implies

5(2) < colz — 22

for some ¢g > 0. Moreover, z — z, € Z since z € M, and by combining ([B.4]) with
B0 it follows that

(3.8) 6(2) < colz — 2|2 < er(®(2 — 22), (2 — 2)) < c26d(2) < &w(6(2))

for some ¢ > 0 provided z is close to z,; however, since §(z) — 0 as z — z, and
0(z) > 0 for z # z., (B8) leads to a contradiction if

lim inf & =0.
t—0t

Hn fact, something stronger is proved: namely that infyes,, (D? f(2z)w,w) =: ¢ > 0, where f
is an explicit function for which D2 f < D2§. This is achieved via the spectral theory for circulant
matrices and an analysis involving the tangent space of M at z, and the identification of a suitable
coordinate system in which calculations can be performed efficiently. The barycentric condition
(23) built into the definition of M comes up in this analysis.



SHARP LOWER BOUND ON THE POLYGONAL ISOPERIMETRIC DEFICIT 3121

Thus the liminf is strictly greater than zero and this implies w is at most linear at
Zero.
To verify ([B7), note first that C is a real, symmetric, circulant matrix generated

by the vector (n — 1,—1,...,—1). A calculation shows that the eigenvalues of C,
say A, are given by
(3.9) Ao =0 and A =n fork=1,...,n—1.

Moreover, let vg := (1,...,1), and for [ € {1,...,[ 5]} define

( 27l 47rl 27l(n — 1))
vo;—1 := | 1,co08s—,cos —,...,cos —— | ,
n

n n

( . 2nl . 4wl : 27rl(n—1))

vg := | 0,8in —,sin —, ..., sin —— | .
n n n

One can readily check that vy is an eigenvector of C corresponding to the eigenvalue
AT%T , and that the set {vg,v1,...,v,—1} forms a real orthogonal basis of R™ (see e.g.
Proposition 2.1 in [INTH]). For k = 1,2,...,n, define by := (vy_1;0,...,0) € R*"
and by, := (0,...,0;vp_n_1) € R for k = n+1,...,2n. Since the set {bk}%il forms
a real orthogonal basis of R?", given (z;7r) € R?" there exist unique coefficients

ay, € R such that
2n

T) = Z Ozkbk.
k=1

Thus, by utilizing (3.9]) it follows that

2n

(@(x;r), (57)) = D e (Bby, by)
keyk'=1
2n
—nsm—Zak/\(k 1]|bk\ +2 Z Oék,A"k ne 1]\bk|
k=n+1
=n sm—Zak|bk|2+2n Z az|bgl?.
k=n-+2

Furthermore, if (z;7) € Z,

Cklz

|b1|2 le—o

Qnt1 = <( 71+1 Z’rz =0

\51\2
hence,
o n 2n
P . . — n2qin 2 2b 2 2 2b 2
(@ (asr) (air)) = wsin 23 el 20 3 adin

2n
> 2nz AR
k=1

and this concludes the proof.
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