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QUANTIZATION FOR A NONLINEAR DIRAC EQUATION
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(Communicated by Guofang Wei)

Abstract. We study solutions of certain nonlinear Dirac-type equations on
Riemann spin surfaces. We first improve an energy identity theorem for a
sequence of such solutions with uniformly bounded energy in the case of a fixed
domain. Then, we prove the corresponding energy identity in the case that
the equations have constant coefficients and the domains possibly degenerate
to a spin surface with only Neveu-Schwarz type nodes.

1. Introduction

Let M be a closed Riemann surface with a fixed spin structure. Let ΣM be
the spinor bundle over M with a hermitian metric 〈·, ·〉ΣM and a compatible spin
connection ∇. Let /∂ be the Dirac operator defined on Γ(ΣM), i.e., /∂ := e1 · ∇e1 +
e2 · ∇e2 for a local orthonormal frame {e1, e2} of TM .

We consider the following nonlinear Dirac-type equation on M :

(1.1) /∂ψ = Hjkl〈ψj , ψk〉ψl,

where ψ = (ψ1, ψ2, . . . , ψd), ψi ∈ Γ(ΣM) and Hjkl = (H1
jkl, H

2
jkl, . . . , H

d
jkl) ∈

C∞(M,Cd).
Nonlinear Dirac equations of the form (1.1) appear naturally in geometry and

physics. First, consider the Dirac-harmonic map (φ, ψ) with curvature term intro-
duced by Chen-Jost-Wang [7, 8], which was derived from the nonlinear supersym-
metric σ-model of quantum field theory, then the nonlinear Dirac equation for the
spinor ψ reduces to (1.1) with H being real valued, when φ is a constant map.
Second, the generalized Weierstrass representation indicates that solutions to some
Dirac equations of the form (1.1) can be used to express surfaces immersed in R3, R4

and some three-dimensional Lie groups: SU(2),Nil, Sol, S̃L2 (see e.g. [16]). Third,
Ammann-Humbert considered a similar Dirac equation to study the first conformal
Dirac eigenvalue [3].

In order to discuss some analytic aspects of the equation (1.1), we recall that
the energy of ψ ∈ Γ(ΣM) on a domain Ω ⊂ M is defined by

(1.2) E(ψ,Ω) =

∫
Ω

|ψ|4dvol,

where |ψ| := 〈ψ, ψ〉 1
2 . Note that (1.1) and (1.2) are conformally invariant.

Chen-Jost-Wang [8] developed the basic geometric analysis tools for blow-up
analysis of the solutions of (1.1) and proved an energy identity for a sequence of
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smooth solutions on a fixed domain with small uniform energy bound. For the
energy identities of two-dimensional harmonic maps, pseudo-holomorphic curves,
we refer to [9,10,14,15,18]. For the regularity issue of (1.1), we refer to Wang [17],
where any weak solution to (1.1) was shown to be smooth.

In this article, we will prove the energy identity without assuming the small
uniform energy bound. More precisely, we have the following:

Theorem 1.1. Let M be a closed Riemann surface with a fixed spin structure, and
suppose that ψn is a sequence of smooth solutions of (1.1) on M with uniformly
bounded energy E(ψn) =

∫
M

|ψn|4 ≤ Λ < ∞. Then there exist finitely many blow-
up points {x1, x2, . . . , xI}, a solution ψ on M to (1.1) and finitely many solutions
ξi,l on S2 of (1.1) with Hjkm ≡ Hjkm(xi), i = 1, 2, . . . , I; l = 1, 2, . . . , Li, such that,
after selection of a subsequence, ψn converges in C∞

loc to ψ on M \ {x1, x2, . . . , xI}
and the following holds:

(1.3) lim
n→∞

E(ψn) = E(ψ) +
I∑

i=1

Li∑
l=1

E(ξi,l).

Furthermore, we prove that the corresponding energy identity holds in the case
that the domain converge to a possibly noncompact Riemann spin surface with all
punctures (if there are any) of Neveu-Schwarz type.

Theorem 1.2. Let (Mn, cn,Sn) be a sequence of closed Riemann spin surfaces
of genus g > 1 with complex structures cn and spin structures Sn. Assume that
(Mn, cn,Sn) converges to a possibly noncompact Riemann spin surface (M, c,S)
with only Neveu-Schwarz type punctures (if there are any). Let ψn be a sequence of
smooth solutions of (1.1) on Mn with Hjkm ≡ const and with uniformly bounded

energy E(ψn,Mn) ≤ Λ < ∞. Then there exist a solution ψ of (1.1) on (M, c,S),
where (M, c,S) is the normalization of (M, c,S) and finitely many solutions ξk

of (1.1) on S2, k = 1, 2, . . . ,K, such that, after selection of a subsequence, the
following holds:

(1.4) lim
n→∞

E(ψn) = E(ψ) +

K∑
k=1

E(ξk).

We remark that, in the simple case of d = 1 and H ≡ 1, the equation (1.1)
becomes

(1.5) /∂ψ = |ψ|2ψ.
It is well known that any solution to (1.5) represents a branched conformal im-
mersion in R3 with constant mean curvature H ≡ 1 (see cf. [1, 16]) and hence the
concentrated energy in (1.3) and (1.4) can be explicitly quantized, i.e., in multiples
of 4π.

2. Preliminaries

We collect some basic analytic properties for solutions of (1.1) proved in [8].

Theorem 2.1. Let D be the unit disk. There exists a constant ε0 > 0 such that

(1) (ε-regularity) Let ψ be a smooth solution of (1.1) satisfying

E(ψ,D) =

∫
D

|ψ|4 < ε0.
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Then, we have

‖ψ‖
˜D,k,p ≤ C‖ψ‖D,0,4,

∀D̃ � D, p > 1 and k ∈ Z+, where C = C(D̃, k, p) > 0 is a constant.
(2) (Singularity removability) Let ψ be a smooth solution of (1.1) defined on

D \ {0} with the nontrivial spin structure. If

E(ψ,D) =

∫
D

|ψ|4 < ∞,

then ψ extends to a smooth solution of (1.1) on the whole D.
(3) For any nontrivial solution ψ of (1.1) on S2, we have

E(ψ) =

∫
S2

|ψ|4 ≥ ε0.

Remark 2.1. Theorem 2.1 was proved in [8] for equation (1.1) with real valued H
as well as certain complex valued H ( Section 5. in [8]). It is easy to check that
the results hold true also in the case of general complex valued H.

For the notion of the nontriviality of a spin structure on an annulus or a cylinder,
we refer to [2–4]. Following the terminology introduced by Jarvis-Kimura-Vaintrob
[11], the puncture {0} in (2) of Theorem 2.1 is said to be of Neveu-Schwarz type.
If D \ {0} is equipped with the trivial spin structure, then the puncture {0} is said
to be of Ramond type. See [21] for similar discussions.

Applying the analytic properties in Theorem 2.1, Chen-Jost-Wang [8] proved the
following:

Theorem 2.2. Let M be a closed Riemann surface with a fixed spin structure, and
suppose that ψn is a sequence of smooth solutions of (1.1) on M with real valued
H and with uniformly bounded energy E(ψn) =

∫
M

|ψn|4 ≤ Λ < ∞, and assume

that ψn weakly converges to some ψ in L4(ΣM). Then the blow-up set

S :=
⋂
r>0

{
x ∈ M | lim inf

n→∞

∫
D(x,r)

|ψn|4 ≥ ε0

}

is a finite set of points {x1, x2, . . . , xI}, where ε0 is as in Theorem 2.1. Furthermore,
there exists a constant c0 > 0 depending only on M such that if

(2.1) sup
M,i,j,k,l

|Hi
jkl|

√
Λ < c0,

then there are finitely many solutions of (1.1) on S2: ξi,l, i = 1, 2, . . . , I; l =
1, 2, . . . , Li, after selection of a subsequence, ψn converges in C∞

loc to ψ on M \
{x1, x2, . . . , xI} and the following holds:

(2.2) lim
n→∞

E(ψn) = E(ψ) +

I∑
i=1

Li∑
l=1

E(ξi,l).
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3. Energy identity

In this section, we will prove Theorem 1.1 and Theorem 1.2.
First, we recall the following lemma proved in [6] (see [8] for a different proof):

Lemma 3.1. Let ψ be a solution of

/∂ψ = f

on the unit disk D, with ψ|∂D = ϕ, and f ∈ Lp(D), ϕ ∈ W 1,p(∂D) for some p > 1;
then

‖ψ‖D,1,p ≤ C(‖f‖D,0,p + ‖ϕ‖∂D,1,p),

where C = C(p) > 0 is a constant.

Next, inspired by the proof of Theorem 4.2 in [8], we give the following lemma:

Lemma 3.2. Let ψ be a smooth solution of (1.1) on the annulus Ar1,r2 := {x ∈
R2|r1 ≤ |x| ≤ r2}, where 0 < r1 < 2r1 < r2/2 < r2 < 1 and assume that

sup
Ar1,r2

,i,j,k,l
|Hi

jkl| ≤ h0 < ∞.

Then we have

(

∫
A2r1,r2/2

|ψ|4) 1
4 ≤ C0(

∫
Ar1,r2

|ψ|4) 1
2 (

∫
Ar1,r2

|ψ|4) 1
4

+ C(

∫
Ar1,2r1

|ψ|4) 1
4 + C(

∫
Ar2/2,r2

|ψ|4) 1
4 ,(3.1)

(

∫
A2r1,r2/2

|∇ψ| 43 ) 3
4 ≤ C0(

∫
Ar1,r2

|ψ|4) 1
2 (

∫
Ar1,r2

|ψ|4) 1
4

+ C(

∫
Ar1,2r1

|ψ|4) 1
4 + C(

∫
Ar2/2,r2

|ψ|4) 1
4 ,(3.2)

where C0, C are positive constants that do not depend on r1, r2 and C0 = C0(h0)
depends on h0.

Proof. We will prove this lemma using some arguments from [8]. Let D be the unit
disk. Choose a cut-off function η ∈ [0, 1] on D satisfying

η ∈ C∞
0 (Ar1,r2) ; η ≡ 1 in A2r1,r2/2,(3.3)

|∇η| ≤ 4/r1 in Ar1,2r1 ; |∇η| ≤ 4/r2 in Ar2/2,r2 .(3.4)

Then by the equation (1.1) and Lemma 3.1, we have

‖ηψ‖D,1,4/3 ≤ C‖/∂(ηψ)‖D,0,4/3

≤ C‖η/∂ψ‖D,0,4/3 + C‖|∇η|ψ‖D,0,4/3

≤ Ch0‖ψ‖2Ar1,r2
,0,4‖ηψ‖D,0,4 + C‖|∇η|ψ‖D,0,4/3.(3.5)

It follows from (3.4) and Cauchy inequality that

‖|∇η|ψ‖D,0,4/3 ≤ ‖|∇η|ψ‖Ar1,2r1
,0,4/3 + ‖|∇η|ψ‖Ar2/2,r2

,0,4/3

≤ C‖ψ‖Ar1,2r1
,0,4 + C‖ψ‖Ar2/2,r2

,0,4.(3.6)
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In view of (3.3), we conclude from the Sobolev embedding theorem that

(3.7) ‖ψ‖A2r1,r2/2,0,4+‖ψ‖A2r1,r2/2,1,4/3 ≤ ‖ηψ‖D,0,4+‖ηψ‖D,1,4/3 ≤ 2‖ηψ‖D,1,4/3.

Combining (3.5), (3.6) and (3.7) gives (3.1) and (3.2). �

Now, let us recall the conformal transformation between an annulus and a
cylinder (cf. [21]). Let (r, θ) be the polar coordinates of R

2 centered at 0 and
heucl = dr2 + r2dθ2 be the Euclidean metric on R2. Equip the cylinder R1 × S1

with the metric ds2 = dt2 + dθ2, where S1 = R/2πZ. Then the following map
f : R1 × S1 → R2

(3.8) r = e−t, θ = θ, (t, θ) ∈ R
1 × S1,

is a conformal transformation. One can verify that

f∗heucl = e−2tds2.

Given r1 > r2, then, the annulus Ar1,r2 := {reiθ|r2 ≤ r ≤ r1} is mapped to the
cylinder Pt1,t2 := [t1, t2]× S1, where ti = − log ri, i = 1, 2.

Let ψ be a solution of (1.1) defined on the annulus Ar1,r2 ⊂ R2. Set

Ψ := e−
t
2 f∗ψ.

Then by the conformal invariance of (1.1), Ψ is a solution of (1.1) defined on the
cylinder Pt1,t2 ⊂ R1 × S1.

Denote by PT1,T2
= [T1, T2]×S1 a cylinder with metric ds2 = dt2+dθ2 and with

the spin structure being nontrivial along the boundary curves. Then we have the
following cylindrical version of Lemma 3.2:

Lemma 3.3. Let Ψ be a smooth solution of (1.1) on PT1,T2
, where T2−1 > T1+1 >

1. Assume that

sup
PT1,T2

,i,j,k,l
|Hi

jkl| ≤ h0 < ∞.

Then we have

(

∫
PT1+1,T2−1

|Ψ|4) 1
4 ≤ C0(

∫
PT1,T2

|Ψ|4) 1
2 (

∫
PT1,T2

|Ψ|4) 1
4

+ C(

∫
PT2−1,T2

|Ψ|4) 1
4 + C(

∫
PT1,T1+1

|Ψ|4) 1
4 ,(3.9)

(

∫
PT1+1,T2−1

|∇Ψ| 43 ) 3
4 ≤ C0(

∫
PT1,T2

|Ψ|4) 1
2 (

∫
PT1,T2

|Ψ|4) 1
4

+ C(

∫
PT2−1,T2

|Ψ|4) 1
4 + C(

∫
PT1,T1+1

|Ψ|4) 1
4 ,(3.10)

where C0, C are positive constants that do not depend on T1, T2 and C0 = C0(h0)
depends on h0.

Proof. Applying the conformal transformation (3.8) to Lemma 3.2, then, (3.9),
(3.10) are direct consequences of (3.1), (3.2). �
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Lemma 3.4. Given a cylinder PT1−1,T2+1, assume that

sup
PT1−1,T2+1,i,j,k,l

|Hi
jkl| ≤ h0 < ∞.

Then there exists ε1 = ε1(h0) > 0 such that if Ψ is a smooth solution of (1.1)
defined on PT1−1,T2+1 and

(3.11)

∫
PT1−1,T2+1

|Ψ|4 ≤ Λ < ∞,

(3.12) ω := sup
t∈[T1−1,T2]

∫
[t,t+1]×S1

|Ψ|4 ≤ ε1,

then

(3.13)

∫
PT1,T2

|Ψ|4 +
∫

PT1,T2

|∇Ψ| 43 ≤ C(h0,Λ)ω
1
3 .

Here, C(h0,Λ) is a constant depending only on h0 and Λ, but not on T1, T2.

Proof. Let ε1 = min{ 1
8C2

0
, 1}, where C0 > 0 is the constant in Lemma 3.3. Then

by assumption (3.12), we have

(3.14) sup
t∈[T1−1,T2]

∫
[t,t+1]×S1

|Ψ|4 ≤ ε1 ≤ 1

8C2
0

.

Note that μ(t) :=
∫
[T1,t]×S1 |Ψ|4 is a continuous and nondecreasing function defined

on [T1, T2] and the energy of Ψ over PT1−1,T2+1 is bounded by Λ. With similar
arguments as in [19] (Theorem 3.5, p. 134), we can separate PT1,T2

into finitely
many parts as follows (cf. [21, Lemma 3.3]):

PT1,T2
=

N0⋃
n=1

Pn, Pn := [Tn−1, Tn]× S1, T 0 = T1, T
N0 = T2

such that N0 is an integer no larger than [8C2
0Λ] + 1, and the following hold:

(3.15) E(Ψ;Pn) ≤ 1

4C2
0

, n = 1, 2, . . . , N0.

Applying Lemma 3.3 to each part Pn gives

(

∫
Pn

|Ψ|4) 1
4 ≤ C0(

∫
[Tn−1−1,Tn+1]×S1

|Ψ|4) 1
2 (

∫
[Tn−1−1,Tn+1]×S1

|Ψ|4) 1
4

+ C(

∫
[Tn−1−1,Tn−1]×S1

|Ψ|4) 1
4 + C(

∫
[Tn,Tn+1]×S1

|Ψ|4) 1
4 .(3.16)

It follows from the definition of ω (see (3.12)) that

(3.17) (

∫
Pn

|Ψ|4) 1
4 ≤ C0((

∫
Pn

|Ψ|4) 1
2 + ω

1
2 + ω

1
2 )((

∫
Pn

|Ψ|4) 1
4 + ω

1
4 + ω

1
4 ) + ω

1
4 + ω

1
4 .
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By the energy bound (3.11), we have

(3.18) (

∫
Pn

|Ψ|4) 1
4 ≤ C0(

∫
Pn

|Ψ|4) 1
2 (

∫
Pn

|Ψ|4) 1
4 + C(h0,Λ)(ω

1
4 + ω

1
2 + ω

3
4 ).

Here C(h0,Λ) depends on h0 and Λ. From (3.15), we can rewrite (3.18) as follows:

(3.19) (

∫
Pn

|Ψ|4) 1
4 ≤ C(h0,Λ)(ω

1
4 + ω

1
2 + ω

3
4 ).

Since ε1 ≤ 1, by assumption (3.12), we get

ω := sup
t∈[T1−1,T2]

∫
[t,t+1]×S1

|Ψ|4 ≤ ε1 ≤ 1.

Hence, we conclude from (3.19) that

(

∫
Pn

|Ψ|4) 1
4 ≤ C(h0,Λ)(ω

1
4 + ω

1
2 + ω

3
4 ) ≤ C(h0,Λ)ω

1
4 .

With similar arguments, we have (by (3.10) in Lemma 3.3)

(

∫
Pn

|∇Ψ| 43 ) 3
4 ≤ C(h0,Λ)ω

1
4 .

Summing up the above estimates on Pn gives

(3.20)

∫
PT1,T2

|Ψ|4 =

N0∑
n=1

∫
Pn

|Ψ|4 ≤ C(h0,Λ)N0ω ≤ C(h0,Λ)ω
1
3

and

(3.21)

∫
PT1,T2

|∇Ψ| 43 =

N0∑
n=1

∫
Pn

|∇Ψ| 43 ≤ C(h0,Λ)N0ω
1
3 ≤ C(h0,Λ)ω

1
3 .

(3.13) follows immediately from combining (3.20) and (3.21). �

Applying Lemma 3.4, we show Theorem 1.1.

Proof of Theorem 1.1. The uniform energy bound E(ψn) =
∫
M

|ψn|4 ≤ Λ < ∞ im-

plies that ψn weakly subconverges to some ψ in L4(ΣM). By a standard covering
argument and ε-regularity, there exist finitely many blow-up points {x1, x2, . . . , xI}
such that, after passing to subsequences, ψn converges in C∞

loc to ψ on
M \ {x1, x2, . . . , xI}. It follows from the smoothness of ψn and the singularity
removability that ψ extends to a smooth solution of (1.1) on M .

To prove the energy identity (1.3), we only need to consider the case that I = 1
and L1 = 1, because the general case can be reduced to the simplest case by
induction. Following the arguments and notation as in the proof of Theorem 4.2 in
[8] (see Theorem 3.6 in [5] for similar arguments), we only need to show that

(3.22) lim
R→∞

lim
δ→0

lim
n→∞

E(Ψn, PT0,Tn
) = 0,

where PT0,Tn
= [T0, Tn]× S1, T0 := | log δ|, Tn := | log λnR|, δ > 0, R > 0. Here, Ψn

are induced from the solutions ψn on anuli near the blow-up point under a conformal
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transformation (cf. Theorem 4.2 in [8]) and hence Ψn are smooth solutions of (1.1)

on PT0−1,Tn+1 with corresponding H̃ satisfying

max
n,i,j,k,l

{
|H̃i

jkl|(x) : x ∈ PT0−1,Tn+1

}
≤ max

i,j,k,l

{
|Hi

jkl|(x) : x ∈ M
}
≤ C < +∞.

Moreover, through a standard argument by contradiction, one can prove that

(3.23) lim
R→∞

lim
δ→0

lim
n→∞

sup
t∈[T0−1,Tn]

∫
[t,t+1]×S1

|Ψn|4 = 0,

On the other hand, we have∫
PT0−1,Tn+1

|Ψn|4 ≤ E(ψn,Mn) ≤ Λ < ∞.

Then we can apply Lemma 3.4 ((3.23) implies that the condition (3.12) can be
satisfied) to conclude that

(3.24) lim
R→∞

lim
δ→0

lim
n→∞

(

∫
PT0,Tn

|Ψ|4 +
∫

PT0,Tn

|∇Ψ| 43 ) = 0.

In particular, (3.22) holds. This completes the proof. �

Now, we consider a sequence of smooth solutions of (1.1) on long spin cylinders
under certain assumptions and give the following proposition, which is analogous
to the cases of harmonic maps and Dirac-harmonic maps (cf. Proposition 3.1 in
[20] and Proposition 3.1 in [21]). The scheme of the proof is similar to the neck
analysis for certain approximate harmonic maps by Ding-Tian [9].

Proposition 3.1. Let Ψn be a sequence of smooth solutions of (1.1) defined on Pn,
where Pn = [T 1

n , T
2
n ] × S1 is equipped with the nontrivial spin structure. Suppose

that there is a constant C > 0 such that

sup
Pn,i,j,k,l

|Hi
jkl| ≤ C < +∞.

Assume that:

(1)

(3.25) 1 � T 1
n � T 2

n ,

(2)

(3.26) E(Ψn, Pn) ≤ Λ < ∞,

(3)

(3.27) lim
n→∞

ω(Ψn, PT 1
n,T

1
n+R) = lim

n→∞
ω(Ψn, PT 2

n−R,T 2
n
) = 0, ∀R ≥ 1,

where

ω(Ψ, PT1,T2
) := sup

t∈[T1,T2−1]

∫
[t,t+1]×S1

|Ψ|4.
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Then there are finitely many solutions of (1.1) on S2: ζj,l, l = 1, 2, . . . , Lj; j =
1, 2, . . . ,K, such that after selection of a subsequence of (Ψn, Pn), the following
holds:

(3.28) lim
n→∞

E(Ψn, Pn) =
K∑
j=1

Lj∑
l=1

E(ζj,l).

Proof. In view of Theorem 1.1 and Theorem 2.1, with similar arguments as in [20]

(Proposition 3.1), we can decompose Pn into neck domains
⋃K

i=0 I
i
n and bubble

domains
⋃K

j=1 J
j
n (take subsequences if necessary):

(3.29) Pn =
K⋃
i=0

Iin

K⋃
j=1

Jj
n,

where K is independent of n. Furthermore, we have

(1) For each i, lim
n→∞

ω(Ψn, I
i
n) = 0.

(2) For each j, there are finitely many solutions of (1.1) on S2: ζj,l, l =
1, 2, . . . , Lj , such that:

(3.30) lim
n→∞

E(Ψn, J
j
n) =

Lj∑
l=1

E(ζj,l).

Note that, here, some bubbles (solutions of (1.1) on R × S1) corresponding to
collapsing homotopically nontrivial simple closed curves on Pn can possibly appear.
Therefore, in order to apply the singularity removability result - Theorem 2.1 (2),
the nontriviality of the spin structures along Pn should be required (see Proposition
3.1 in [21] for similar discussions).

We need to verify that, in the limit, the necks Ψn : Iin → N, i = 0, 1, . . . ,K
contain no energy. It is not difficult to verify that, after passing to subsequences,
the local energy of Ψn over a small neighborhood of the two boundary components
of Iin can be arbitrarily small. Then, applying Lemma 3.4 gives

(3.31)

K∑
i=0

E(Ψn, I
i
n) ≤ C(Λ)

K∑
i=0

(ω(Ψn, I
i
n))

1
3 → 0, n → ∞.

(3.28) follows from combining (3.30) and (3.31). �

Now, we shall use Proposition 3.1 to prove Theorem 1.2.

Proof of Theorem 1.2. Recall that any closed surface of genus g > 1 is of general
type (cf. [20]). For each n, let hn be the hyperbolic metric on Mn compatible with
the complex structure cn. As discussed in [20,21], we can assume that (Mn, hn, cn)
converges to a hyperbolic Riemann surface (M,h, c) by collapsing a possibly empty
collection of finitely many pairwise disjoint simple closed geodesics {γj

n, j ∈ J} on
Mn. Note that 0 ≤ |J | ≤ 3g − 3. For each j, the geodesics γj

n degenerate into a
pair of punctures (Ej,1, Ej,2) and ljn := length(γj

n) → 0 as n → ∞. Let P j
n be the

standard cylindrical collar about γj
n (cf. [20]), namely

P j
n =

[
2π

ljn
arctan(sinh(

ljn
2
)),

2π

ljn
(π − arctan(sinh(

ljn
2
)))

]
× S1
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with metric ds2 = (
ljn

2π sin
l
j
nt
2π

)2(dt2 + dθ2). Let τn : M → Mn \
⋃

j∈J γj
n be the

corresponding diffeomorphisms realizing the convergence (cf. [20]). Let (M, c) be
the normalization of (M, c).

Moreover, by taking subsequences, we can assume that τn is compatible with the
spin structures Sn, namely, the pull-back spin structure on the limit surface M is
fixed. We denote it by S. In particular, for each j, S is nontrivial or trivial along
the pair of punctures (Ej,1, Ej,2) if and only if Sn is nontrivial or trivial along the
geodesic γj

n for all n. By assumption, all punctures of the limit spin surface (M,S)
are of Neveu-Schwarz type. It is equivalent to say that the spin structure S on M
is nontrivial around all punctures of M . Thus, S extends to some spin structure
S on M (cf. [2, 4, 21]).

As in [21] (see [13] for a more detailed explanation), by pulling back the geometric
data via the diffeomorphisms τn, we can fix the spinor bundle ΣM and think of
the hyperbolic metrics and the compatible complex structures (hn, cn) as all living
on the limit surface M and converging in C∞

loc to (h, c). Let ∇n be the connection
on ΣM coming from hn and ∇ the connection on ΣM coming from h. Then, we
can consider ψn as a sequence of solutions of (1.1) defined on (M,hn, cn,S) with
respect to (cn,∇n).

Note that all estimates in Theorem 2.1 and Theorem 1.1 are uniform for the
metrics hn and the complex structures cn. With similar arguments as in [20] (The-
orem 1.1) and [21] (Theorem 1.1, Theorem 1.2), we can apply Theorem 1.1 and
Theorem 2.1 to prove that there exist finitely many blow-up points {x1, x2, . . . , xI}
which are away from the punctures {(Ej,1, Ej,2), j ∈ J} and finitely many smooth
solutions of (1.1) on S2: ξi,l, l = 1, 2, . . . , Li, near the i-th blow-up point xi; a
smooth solution ψ of (1.1) on (M, c,S), such that, after selection of a subsequence,
the following holds:

(3.32) lim
n→∞

E(ψn) = E(ψ) +

I∑
i=1

Li∑
l=1

E(ξi,l) +
∑
j∈J

lim
δ→0

lim
n→∞

E(ψn, P
j,δ
n ),

where P j,δ
n is the δ-subcollars of P j

n, for δ ∈
[
ljn
2 , arcsinh(1)

]
(see the proof of

Theorem 1.1 in [20]), namely,

P j,δ
n := [T 1,j,δ

n , T 2,j,δ
n ]× S1 ⊆ P j

n,

where

T 1,j,δ
n =

2π

ljn
arcsin(

sinh(
ljn
2 )

sinh δ
), T 2,j,δ

n =
2π2

ljn
− 2π

ljn
arcsin(

sinh(
ljn
2 )

sinh δ
).

In fact, for each fixed n and each fixed δ ∈
[
ljn
2 , arcsinh(1)

]
, P j,δ

n is exactly the j-th

component of the δ-thin part of the hyperbolic surface (Mn, hn).
To capture the concentrated energy at the punctures, i.e.,∑

j∈J

lim
δ→0

lim
n→∞

E(ψn, P
j,δ
n ),

we shall apply Proposition 3.1. By conformal invariance of the equation (1.1) and
the energy functional (1.2), we equip P j

n with the Euclidean metric. Then applying
similar arguments as in [20] (Theorem 1.1) and [21] (Theorem 1.2), we can use
Proposition 3.1 to show that there exist finitely many smooth solutions of (1.1)
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on S2: ζj,k, k = 1, 2, . . . ,Kj , j ∈ J , such that, after selection of a subsequence of
(ψn,Mn), we have

(3.33) lim
δ→0

lim
n→∞

E(ψn, P
j,δ
n ) =

Kj∑
k=1

E(ζj,k), j ∈ J.

Finally, combining (3.32) and (3.33) gives the energy identity (1.4). Thus, we
have finished the proof. �
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