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SECOND MAIN THEOREMS WITH WEIGHTED COUNTING

FUNCTIONS AND ALGEBRAIC DEPENDENCE

OF MEROMORPHIC MAPPINGS

SI DUC QUANG

(Communicated by Franc Forstneric)

Abstract. The purpose of this article is twofold. The first is to prove a new
second main theorem for meromorphic mappings and moving hyperplanes of
Pn(C), where the counting functions are truncated multiplicities and have dif-
ferent weights. Our result is an extension of previous second main theorems
for moving hyperplanes with the truncated (to level n) counting functions. As
its application, the second purpose of this article is to prove a new algebraic
dependence theorem for meromorphic mappings having the same inverse im-
ages of some moving hyperplanes, where the moving hyperplanes involve the
assumption with different roles.

1. Introduction

Nevanlinna theory for meromorphic mappings of Cm into the complex projective
space P

n(C) intersecting a finite set of fixed hyperplanes or moving hyperplanes in
Pn(C) was started about 70 years ago and has grown immensely. The main goal
in this theory is establishing the second main theorem, which is an estimate of the
characteristic function of the mappings by the sum of some counting functions. For
the case of the mappings intersecting fixed hyperplanes, the second main theorem
given by Cartan and Nochka [1,3] is sharp. For the case of meromorphic functions
and small functions, i.e., n = 1, the sharp result is given by Yamanoi [16]. So far,
there is no sharp second main theorem for meromorphic mappings into general pro-
jective spaces intersecting moving hyperplanes with truncated counting functions.
We state here some recent available results. Firstly, we recall the following.

Let a1, . . . , aq (q ≥ n + 1) be q meromorphic mappings of Cm into the dual
space Pn(C)∗ with reduced representations ai = (ai0 : · · · : ain) (1 ≤ i ≤ q).
We say that a1, . . . , aq are located in general position if det(aikl) �≡ 0 for any
1 ≤ i0 < i1 < · · · < in ≤ q. Let Mm be the field of all meromorphic functions on
Cm. Denote by R({ai}qi=1) ⊂ Mm the smallest subfield which contains C and all
aik

ail
with ail �≡ 0.

For the case of nondegenerate meromorphic mappings of Cm into P
n(C) inter-

secting moving hyperplanes, the first second main theorem with truncated (to level
n) counting functions was given by Ru [8] for the case m = 1 and reproved for the
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general case by Thai-Quang [10]. For the case of degenerate meromorphic map-
pings, in [9] Ru and Wang gave a second main theorem for moving hyperplanes
with counting function truncated to level n. Following that, the result of Ru-Wang
was improved by Thai-Quang [11] and Quang-An [7]. Recently, in [5] the author
improved and extended all those results to the following.

Theorem A (see [5, Theorem 1.1a]). Let f : Cm → Pn(C) be a meromorphic
mapping. Let {ai}qi=1 (q ≥ 2n−k+2) be meromorphic mappings of Cm into P

n(C)∗

in general position such that (f, ai) �≡ 0 (1 ≤ i ≤ q), where k + 1 = rankR{ai}(f).
Then the following assertion holds:

|| q

2n− k + 2
Tf (r) ≤

q∑
i=1

N
[k]
(f,ai)

(r) + o(Tf (r)) +O( max
1≤i≤q

Tai
(r)).

Here, by the notation “|| P” we mean that assertion P holds for all r ∈ [0,∞)
outside a Borel subset E of the interval [0,∞) with

∫
E
dr < ∞.

We see that in the above result, the counting functions N
[k]
(f,ai)

(r) involve the

inequality with the same roles. My aim in this paper is to consider the case where
the truncated counting functions involve the second main theorem with different
weights. Namely, we will extend the above result to the following.

Theorem 1.1. Let f : Cm → Pn(C) be a meromorphic mapping. Let {ai}qi=1 (q ≥
2n− k + 2) be meromorphic mappings of Cm into P

n(C)∗ in general position such
that (f, ai) �≡ 0 (1 ≤ i ≤ q). Assume that k + 1 = rankR{ai}(f). Let λ1, . . . , λq be

q positive numbers with (2n − k + 2)max1≤i≤q λi ≤
∑q

i=1 λi. Then the following
assertions hold:

||
∑q

i=1 λi

2n− k + 2
Tf (r) ≤

q∑
i=1

λiN
[k]
(f,ai)

(r) + o(Tf (r)) +O( max
1≤i≤q

Tai
(r)).

We see that Theorem A is a corollary of Theorem 1.1 when λ1 = · · · = λq.
As an application of this second main theorem, in the last section we will prove

an algebraic dependence theorem for meromorphic mappings sharing moving hy-
perplanes regardless of multiplicities. To state our result, we need the following.

Let fi : C
m → P

n(C) (1 � i � λ) be meromorphic mappings with reduced
representations fi := (fi0 : · · · : fin). Let ai : Cm → Pn(C)∗ (1 � i � q) be slowly
moving hyperplanes in general position with reduced representations ai := (ai0 :
· · · : ain). Assume that (ft, ai) :=

∑n
j=0 ftjaij �= 0 for each 1 ≤ t ≤ λ, 1 ≤ i ≤ q

and (f1, ai)
−1{0} = · · · = (fλ, ai)

−1{0}. Put Ai = (f1, ai)
−1{0}. Assume that

every analytic set Ai has the irreducible decomposition as follows: Ai =
⋃ti

j=1 Aij .

Set A =
⋃

Aij �≡Akl
{Aij ∩Akl} with 1 ≤ j ≤ ti, 1 ≤ l ≤ tk, 0 ≤ i, k ≤ q − 1.

Denote by T [n+1, q] the set of all injective maps from {1, · · · , n+1} to {1, · · · , q}.
For each z ∈ Cm \{

⋃
β∈T [n+1,q]{z|aβ(1)(z)∧ · · ·∧aβ(n+1)(z) = 0}∪A∪

⋃λ
i=1 I(fi)},

we define ρ(z) = �{j|z ∈ Aj}. Then ρ(z) ≤ n. Indeed, suppose that z ∈ Ai

for each 0 ≤ i ≤ n. Then
∑n

j=0 f1j(z) · aij(z) = 0 for each 0 ≤ i ≤ n. Since

aβ(1)(z) ∧ · · · ∧ aβ(n+1)(z) �= 0, it implies that f1i(z) = 0 for each 0 ≤ i ≤ n. This
means that z ∈ I(f1). This is impossible.
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For any positive number r > 0, define ρ(r) = sup{ρ(z)||z| ≤ r}, where the
supremum is taken over all z ∈ Cm \ {

⋃
β∈T [n+1,q]{z|gβ(1)(z) ∧ · · · ∧ gβ(n+1)(z) =

0} ∪A ∪
⋃λ

i=1 I(fi)}. Then ρ(r) is a decreasing function. Let

d := lim
r→+∞

ρ(r).

Then d ≤ n. If for each i �= j, dim{Ai ∩Aj} ≤ m− 2, then d = 1.
In 2001, Ru [8] gave an algebraic dependence theorem for meromorphic mappings

sharing several moving hyperplanes as follows.

Theorem B (see [8, Theorem 1]). Let f1, · · · , fλ : Cm → Pn(C) (λ ≥ 2) be
nonconstant meromorphic mappings. Let ai : Cm → Pn(C)∗ (1 ≤ i ≤ q) be
slowly moving hyperplanes in general position. Assume that (fi, aj) �≡ 0 and
(f1, aj)

−1{0} = · · · = (fλ, aj)
−1{0} for each 1 ≤ i ≤ λ, 1 ≤ j ≤ q. Denote

Aj = (f1, aj)
−1({0}). Let l be a positive integer with 2 ≤ l ≤ λ. Assume that for

each z ∈ Aj (1 ≤ j ≤ q) and for any 1 ≤ i1 < · · · < ilj < q, fi1(z)∧· · ·∧fil(z) = 0.

If q >
dλn2(2n+ 1)

λ− l + 1
, then f1, · · · , fλ are algebraically dependent over C, i.e.,

f1 ∧ · · · ∧ fλ ≡ 0 on C
m.

After that, the result of Ru has been improved and extended by Thoan-Duc and
Quang in [12, 13] and [6] when the number of moving hyperplanes is reduced. We
see that in the above result, the number l is fixed for all moving hyperplanes. Now
we will consider the case where the number l depends on the moving hyperplanes.
It means that for each j, we suppose that there exists a positive number lj (lj may
be +∞) such that fi1 ∧ · · · ∧ filj on Aj for any lj mappings. Also, we will try to

reduce the number q of moving hyperplanes. Namely, we will prove the following.

Theorem 1.2. Let f1, · · · , fλ : Cm → Pn(C) (λ ≥ 2) be nonconstant meromorphic
mappings. Let ai : Cm → Pn(C)∗ (1 ≤ i ≤ q) be slowly moving hyperplanes in
general position. Assume that (fi, aj) �≡ 0 and (f1, aj)

−1{0} = · · · = (fλ, aj)
−1{0}

for each 1 ≤ i ≤ λ, 1 ≤ j ≤ q. Denote Aj = (f1, aj)
−1({0}). Let l1, . . . , lq be q

positive integers with 2 ≤ li ≤ λ. Assume that for each z ∈ Aj (1 ≤ j ≤ q) and for

any 1 ≤ i1 < · · · < ilj < q, fi1(z)∧· · ·∧filj (z) = 0. If q >
dλ(n2 + 2n) +

∑q
j=1 lj

λ+ 1
,

then f1, · · · , fλ are algebraically dependent over C, i.e., f1 ∧ · · · ∧ fλ ≡ 0 on Cm.

Letting l1 = · · · = lq = l, we get the following corollary.

Corollary 1.3. Let f1, · · · , fλ : Cm → Pn(C) (λ ≥ 2) be nonconstant meromorphic
mappings. Let ai : Cm → Pn(C)∗ (1 ≤ i ≤ q) be slowly moving hyperplanes in
general position. Assume that (fi, aj) �≡ 0 and (f1, aj)

−1{0} = · · · = (fλ, aj)
−1{0}

for each 1 ≤ i ≤ λ, 1 ≤ j ≤ q. Denote Aj = (f1, aj)
−1({0}). Let l be a positive

integer with 2 ≤ l ≤ λ. Assume that for each z ∈ Aj (1 ≤ j ≤ q) and for any

1 ≤ i1 < · · · < il < q, fi1(z)∧ · · · ∧ fil(z) = 0. If q >
dλ(n2 + 2n)

λ− l + 1
, then f1, · · · , fλ

are algebraically dependent over C, i.e., f1 ∧ · · · ∧ fλ ≡ 0 on Cm.

Letting d = 1, λ = l = 2 in Corollary 1.3 we get the following uniqueness theorem
for meromorphic mappings sharing moving hyperplanes.
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Corollary 1.4. Let f1, f2 : Cm → Pn(C) be nonconstant meromorphic mappings.
Let ai : C

m → Pn(C)∗ (1 ≤ i ≤ q) be slowly moving hyperplanes in general position.
Assume that (fi, aj) �≡ 0 and

(i) min{1, ν(f1,ai)(z)} = min{1, ν(f2,ai)(z)} for all z ∈ Cm,
(ii) dim{z : (f1, ai)(z) = (f1, ai)(z) = 0} ≤ m− 2 for all i �= j,
(iii) f1(z) = f2(z) for all z ∈

⋃q
i=1(f1, ai)

−1({0}).
If q > 2n2 + 4n, then f1 ≡ f2.

Here, we would like to note that in Corollaries 1.3 and 1.4 we do not need the
condition on the nondegeneracy of the mappings. With the additional assumption
that the mappings are linearly nondegenerate overR({ai}), Thai-Quang [10] proved
the uniqueness theorem for the mappings sharing q = 2n2+4n (n ≥ 2). Without the
assumption on the nondegeneracy, in 2007 Chen-Li-Yan [2] obtained the uniqueness
theorem with q = 4n2 + 2n (n ≥ 2) and in 2013 Thoan-Duc-Quang [13] proved the
uniqueness theorem for the case where q > 4n2+2. Therefore, we see that Corollary
1.4 is an improvement of these results.

2. Basic notions and auxiliary results from Nevanlinna theory

(a) Counting function of divisor.

For z = (z1, . . . , zm) ∈ Cm, we set ‖z‖ =
( m∑

j=1

|zj |2
)1/2

and define

B(r) = {z ∈ C
m; ‖z‖ < r}, S(r) = {z ∈ C

m; ‖z‖ = r},

dc =

√
−1

4π
(∂ − ∂), σ =

(
ddc‖z‖2

)m−1
,

η = dclog‖z‖2 ∧
(
ddclog‖z‖

)m−1
.

A divisor E on Cm is given by a formal sum E =
∑

μνXν , where {Xν} is a locally
family of distinct irreducible analytic hypersurfaces in C

m and μν ∈ Z. We define
the support of the divisor E by setting Supp (E) =

⋃
ν �=0Xν . Sometimes we identify

the divisor E with a function E(z) from Cm into Z defined by E(z) :=
∑

Xν	z μν .

Let k be a positive integer or +∞. We define the truncated divisor E[k] by

E[k] :=
∑
ν

min{μν , k}Xν

and the truncated counting function to level k of E by

N [k](r, E) :=

r∫
1

n[k](t, E)

t2m−1
dt (1 < r < +∞),

where

n[k](t, E) :=

⎧⎨
⎩

∫
Supp (E)∩B(t)

E[k]σ if m ≥ 2,

∑
|z|≤t E

[k](z) if m = 1.

We omit the character [k] if k = +∞.
For an analytic hypersurface E of Cm, we may consider it as a reduced divisor

and denote by N(r, E) its counting function.
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Let ϕ be a nonzero meromorphic function on Cm. We denote by ν0ϕ (resp. ν∞ϕ )
the divisor of zeros (resp. divisor of poles) of ϕ. The divisor of ϕ is defined by

νϕ = ν0ϕ − ν∞ϕ .

We have the following Jensen’s formula:

N(r, ν0ϕ)−N(r, ν∞ϕ ) =

∫
S(r)

log|ϕ|η −
∫

S(1)

log|ϕ|η.

For convenience, we will write Nϕ(r) and N
[k]
ϕ (r) for N(r, ν0ϕ) and N [k](r, ν0ϕ), re-

spectively.
(b) The first main theorem.
Let f be a meromorphic mapping of Cm into Pn(C). For arbitrary fixed ho-

mogeneous coordinates (w0 : · · · : wn) of Pn(C), we take a reduced representation
f = (f0 : · · · : fn), which means that each fi is a holomorphic function on Cm

and f(z) = (f0(z) : · · · : fn(z)) outside the analytic set I(f) := {z; f0(z) = · · · =
fn(z) = 0} of codimension at least 2.

Denote by Ω the Fubini-Study form of Pn(C). The characteristic function of f
(with respect to Ω) is defined by

Tf (r) :=

∫ r

1

dt

t2m−1

∫
B(t)

f∗Ω ∧ σ, 1 < r < +∞.

By Jensen’s formula we have

Tf (r) =

∫
S(r)

log ||f ||η +O(1),

where ‖f‖ = max{|f0|, . . . , |fn|}.
Let a be a meromorphic mapping of Cm into Pn(C)∗ with a reduced representa-

tion a = (a0 : · · · : an). We define

mf,a(r) =

∫
S(r)

log
||f || · ||a||
|(f, a)| η −

∫
S(1)

log
||f || · ||a||
|(f, a)| η,

where ‖a‖ =
(
|a0|2 + · · ·+ |an|2

)1/2
and (f, a) =

∑n
i=0 fi · ai.

Let f and a be as above. If (f, a) �≡ 0, then the first main theorem for moving
hyperplanes in the value distribution theory states

Tf (r) + Ta(r) = mf,a(r) +N(f,a)(r) +O(1) (r > 1).

The mapping a is usually called the moving hyperplanes. We will say that a is
slow with respect to f if

|| Ta(r) = o(Tf (r)) as a −→ +∞.

(c) Family of moving hyperplanes.
We assume that thoughout this paper, the homogeneous coordinates of Pn(C)

are chosen so that for each given meromorphic mapping a = (a0 : · · · : an) of Cm

into Pn(C)∗, then a0 �≡ 0. We set

ãi =
ai
a0

and ã = (ã0 : ã1 : · · · : ãn).

Let f : Cm → Pn(C) be a meromorphic mapping with the reduced representation
f = (f0 : · · · : fn). We put (f, a) :=

∑n
i=0 fiai and (f, ã) :=

∑n
i=0 fiãi.
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Let {ai}qi=1 be q meromorphic mappings of Cm into Pn(C)∗ with reduced repre-
sentations ai = (ai0 : · · · : ain) (1 ≤ i ≤ q). We denote by R({ai}) (for brevity we
will write R if there is no confusion) the smallest subfield of M which contains C
and all aij/aik with aik �≡ 0.

Definition 2.1. The family {ai}qi=1 is said to be in general position if
dim({ai0 , . . . , ain})M = n+1 for any 1 ≤ i0 ≤ · · · ≤ in ≤ q, where ({ai0 , . . . , ain})M
is the linear span of {ai0 , . . . , aiN} over the field M.

Definition 2.2. A subset L of M (or Mn+1) is said to be minimal over the field R
if it is linearly dependent over R and each proper subset of L is linearly independent
over R.

(d) Theorems for general position.

Theorem 2.3 (The First Main Theorem for general position [15, p. 326]). Let
fi : C

m → Pn(C), 1 ≤ i ≤ k, be meromorphic mappings located in general position.
Assume that 1 ≤ k ≤ n. Then

Nμf1∧···∧fλ
(r) +m(r, f1 ∧ · · · ∧ fλ) ≤

∑
1≤i≤λ

Tfi(r) +O(1).

Here, by μf1∧···∧fλ we denote the divisor associated to f1 ∧ · · · ∧ fλ.
Let V be a complex vector space of dimension N ≥ 1. The vectors {v1, · · · , vk}

are said to be in general position if for each selection of integers 1 ≤ i1 < · · · <
ip ≤ k with p ≤ N, then vi1 ∧ · · · ∧ vip �= 0. The vectors {v1, · · · , vk} are said to
be in special position if they are not in general position. Take 1 ≤ p ≤ k. Then
{v1, · · · , vk} are said to be in p-special position if for each selection of integers
1 ≤ i1 < · · · < ip ≤ k, the vectors vi1 , · · · , vip are in special position.

Theorem 2.4 (The Second Main Theorem for general position [15, Theorem 2.1,
p. 320]). Let M be a connected complex manifold of dimension m. Let A be a
pure (m − 1)-dimensional analytic subset of M. Let V be a complex vector space
of dimension n + 1 > 1. Let p and k be integers with 1 ≤ p ≤ k ≤ n + 1. Let
fi : M → P (V ), 1 ≤ i ≤ k, be meromorphic mappings. Assume that f1, . . . , fk
are in general position. Also assume that f1, . . . , fk are in p-special position on A.
Then we have

μf1∧···∧fk ≥ (k − p+ 1)νA.

3. Proof of Theorem 1.1

In order to prove Theorem 1.1 we need the following.

Lemma 3.1 (see [5, Lemma 3.1]). Let f : Cm → P
n(C) be a meromorphic mapping.

Let {ai}qi=1 (q ≥ n+ 1) be q meromorphic mappings of Cm into Pn(C)∗ in general
position. Assume that there exists a partition {1, . . . , q} = I1∪I2∪· · ·∪Il satisfying:

(i) {(f, ãi)}i∈I1 is minimal over R, and {(f, ãi)}i∈It is linearly independent over
R (2 ≤ t ≤ l).

(ii) For any 2 ≤ t ≤ l, i ∈ It, there exist meromorphic functions ci ∈ R \ {0}
such that ∑

i∈It

ci(f, ãi) ∈
(t−1⋃

j=1

⋃
i∈Ij

(f, ãi)

)
R
.
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Then we have

Tf (r) ≤
q∑

i=1

N
[k]
(f,ai)

+ o(Tf (r)) +O( max
1≤i≤q

Tai
(r)),

where k + 1 = rankR(f).

Proof of Theorem 1.1.
(a) We denote by I the set of all permutations of q-tuple (1, . . . , q). For each

element I = (i1, . . . , iq) ∈ I, we set

NI = {r ∈ R+;N
[k]
(f,ai1

)(r) ≤ · · · ≤ N
[k]
(f,aiq )

(r)}.

We now consider an element I = (i1, . . . , iq) of I. We will construct subsets It
of the set A1 = {1, . . . , 2n− k + 2} as follows.

We choose a subset I1 of A which is the minimal subset of A satisfying that
{(f, ãij )}j∈I1 is minimal over R. If �I1 ≥ n+ 1, then we stop the process.

Otherwise, set A2 = A1 \ I1. We consider the following two cases:

• Case 1. Suppose that �A2 ≥ n+ 1. Since {ãij}j∈A2
is in general position,

we have
(
(f, ãij ); j ∈ A2

)
R = (f0, . . . , fn)R ⊃

(
(f, ãij ); j ∈ I1

)
R �≡ 0.

• Case 2. Suppose that �A2 < n+ 1. Then we have the following:

dimR
(
(f, ãij ); j ∈ I1

)
R ≥ k + 1− (n+ 1− �I1) = k − n+ �I1,

dimR
(
(f, ãij ); j ∈ A2

)
R ≥ k + 1− (n+ 1− �A2) = k − n+ �A2.

We note that �I1 + �A2 = 2n− k + 2. Hence the above inequalities imply
that

dimR

((
(f, ãij ); j ∈ I1

)
R∩

(
(f, ãij ); j ∈ A2

)
R

)

≥ dimR
(
(f, ãij ); j ∈ I1

)
R + dimR

(
(f, ãij ); j ∈ A2

)
R − (k + 1)

= k − n+ �I1 + k − n+ �A2 − (k + 1) = 1.

Therefore, from the above two cases, we see that
(
(f, ãij ); j ∈ I1

)
R∩

(
(f, ãij ); j ∈ A2

)
R �= {0}.

Therefore, we may choose a subset I2 ⊂ A2 which is the minimal subset of A2

satisfying that there exist nonzero meromorphic functions ci ∈ R (i ∈ I2) so that

∑
i∈I2

ci(f, ãi) ∈
(⋃

i∈I1

(f, ãi)

)
R
.

By the minimality of the set I2, the family {(f, ãij )}j∈I2 is linearly independent
over R, and hence �I2 ≤ k + 1 and

�(I2 ∪ I2) ≤ 2n− k + 2.

If �(I2 ∪ I2) ≥ n+ 1, then we stop the process.
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Otherwise, by repeating the above argument, we have a subset I3 of A3 = A1 \
(I1 ∪ I2), which satisfies the following:

• there exist nonzero meromorphic functions ci ∈ R (i ∈ I3) so that

∑
i∈I3

ci(f, ãi) ∈
( ⋃

i∈I1∪I2

(f, ãi)

)
R
,

• {(f, ãij )}j∈I3 is linearly independent over R.

Continuing this process, we get the subsets I1, . . . , Il, which satisfy:

• {(f, ãij )}j∈I1 is minimal over R and {(f, ãij )}j∈It is linearly independent
over R (2 ≤ t ≤ l),

• for any 2 ≤ t ≤ l, j ∈ It, there exist meromorphic functions cj ∈ R \ {0}
such that ∑

j∈It

cj(f, ãij ) ∈
(t−1⋃

s=1

⋃
j∈Is

(f, ãij )

)
R
.

Then the family of subsets I1, . . . , It satisfies the assumptions of Lemma 3.1.
Therefore, we have

|| Tf (r) ≤
∑

j∈I1∪···∪Il

N
[k]
(f,aij

) + o(Tf (r)) +O( max
1≤i≤q

Tai
(r))

≤
2n−k+2∑

j=1

N
[k]
(f,aij

) + o(Tf (r)) +O( max
1≤i≤q

Tai
(r)).

Then for all r ∈ NI (maybe outside a finite Borel measure subset of R+) we
have

|| (
q∑

i=1

λi)Tf (r) ≤ (

q∑
i=1

λi)

(2n−k+2∑
j=1

N
[k]
(f,aij

)(r)

)
+o(Tf (r)) +O( max

1≤i≤q
Tai

(r))

≤ (2n− k + 2)

(2n−k+2∑
j=1

∑q
i=1 λi

2n− k + 2
N

[k]
(f,aij

)(r)

)

+ o(Tf (r)) +O( max
1≤i≤q

Tai
(r))

= (2n− k + 2)
2n−k+2∑

j=1

(
λijN

[k]
(f,aij

)(r)

+

2n−k+2∑
j=1

(

∑q
i=1 λi

2n−k + 2
−λij )N

[k]
(f,aij

)(r)

)
+o(Tf (r))+O( max

1≤i≤q
Tai

(r))

≤ (2n− k + 2)
2n−k+2∑

j=1

λijN
[k]
(f,aij

)(r)

q∑
j=2n−k+3

λijN
[k]
(f,ai2n−k+2

)(r) + o(Tf (r)) +O( max
1≤i≤q

Tai
(r))

≤ (2n− k + 2)

q∑
j=1

λijN
[k]
(f,aij

)(r) + o(Tf (r)) +O( max
1≤i≤q

Tai
(r)).
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Then we have

||
∑q

i=1 λi

2n− k + 2
Tf (r) ≤

q∑
i=1

λiN
[k]
(f,ai)

(r) + o(Tf (r)) +O( max
1≤i≤q

Tai
(r)), r ∈ NI .

(3.2)

We see that
⋃

I∈I NI = R+ and the inequality (3.2) holds for every r ∈ NI , I ∈ I.
This yields that

||
∑q

i=1 λi

2n− k + 2
Tf (r) ≤

q∑
i=1

λiN
[k]
(f,ai)

(r) + o(Tf (r)) +O( max
1≤i≤q

Tai
(r)).

The theorem is proved. �

4. Proof of Theorem 1.2

In order to prove Theorem 1.2, we need the following lemma.

Lemma 4.1. With the assumptions of Theorem 1.1, we have

||
∑q

i=1 λi

n2 + 2n
Tf (r) ≤

q∑
i=1

λiN
[1]
(f,ai)

(r) + o(Tf (r)) +O( max
1≤i≤q

Tai
(r)).

Proof. From Theorem 1.1 we have

||
q∑

i=1

λiN
[1]
(f,ai)

(r) ≥ 1

k

q∑
i=1

λiN
[k]
(f,ai)

(r)

≥
∑q

i=1 λi

(2n− k + 2)k
Tf (r) + o(Tf (r)) +O( max

1≤i≤q
Tai

(r))

≥
∑q

i=1 λi

n2 + 2n
Tf (r) + o(Tf (r)) +O( max

1≤i≤q
Tai

(r)).

Here we note that (2n− k+2)k = (n+1)2− (n+1− k)2 ≤ (n+1)2− 1 = n2+2n,
since k ≤ n. Then the lemma is proved. �

It suffices to prove Theorem 1.2 in the case of λ ≤ N + 1.
Assume that f1 ∧ · · · ∧ fλ �≡ 0. We denote by μf1∧···∧fλ the divisor associated

with f1 ∧ · · · ∧ fλ. Denote by Nf1∧···∧fλ(r) the counting function associated with
the divisor μf1∧···∧fλ . We now prove the following.

Claim 4.2. For every 1 ≤ t ≤ λ, we have
q∑

j=1

(λ− lj +1)min{1, ν(ft,gj)(z)} ≤ dμf1∧···∧fλ(z)+ q(λ− 1)
∑
β

μgβ(1)∧···∧gβ(n+1)
(z)

for each z �∈ A ∪
⋃λ

i=1 I(fi), where the sum is taken over all injective maps β :
{1, 2, · · · , n+ 1} → {1, 2, · · · , q}

We now prove Claim 4.2. Set A =
⋃q

j=1(ft, gj)
−1{0}. For each regular point

z0 ∈ A \ (A ∪
⋃λ

i=1 I(fi) ∪
⋃

β∈T [n+1,q]{z|gβ(1)(z) ∧ · · · ∧ gβ(N+1)(z) = 0}) and for

each increasing sequence 1 ≤ j1 < · < jl ≤ λ, we have

fj1(z0) ∧ · · · ∧ fjl(z0) = 0,

where l = maxz0∈Aj
lj .
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By the Second Main Theorem for general position [15, Theorem 2.1, p. 320], we
have

μf1∧···∧fλ(z0) ≥ λ− (l − 1).

Hence
q∑

j=1

min{1, ν(ft,gj)(z0)} ≤ d ≤ d

λ− l + 1
μf1∧···∧fλ(z0).

This implies that

q∑
j=1

(λ− lj + 1)min{1, ν(ft,gj)(z0)} ≤ dμf1∧···∧fλ(z0).

If z0 ∈
⋃

β∈T [n+1,q]{z|gβ(1)(z) ∧ · · · ∧ gβ(n+1)(z) = 0}, then we have

(λ− lj + 1)

q∑
j=1

min{1, ν(ft,gj)(z0)} ≤ (λ− 1)q
∑

β∈T [n+1,q]

μgβ(1)∧···∧gβ(n+1)
(z0).

Thus, for each z �∈ A ∪
⋃λ

j=1 I(fj), we have

q∑
j=1

(λ− lj + 1)min{1, ν(ft,gj)(z)} ≤dμf1∧···∧fλ(z)

+ (λ− 1)q
∑

β∈T [n+1,q]

μgβ(1)∧···∧gβ(n+1)
(z).

Then Claim 4.2 is proved.
The above claim yields that

q∑
j=1

(λ−lj+1)N
[1]
(ft,gj)

(r) ≤dNμf1∧···∧fλ
(r)+(λ−1)qN

∑
β∈T [n+1,q]

Nμgβ(1)∧···∧gβ(n+1)
(r)

≤ d

λ∑
i=1

Tfi(r) + qN
∑

β∈T [n+1,q]

n+1∑
i=1

Taβ(i)
(r)

= d

λ∑
i=1

Tfi(r) + o( max
1≤i≤λ

Tfi(r)).

Thus, by summing up both sides of these inequalities, we have

λ∑
t=1

q∑
j=1

(λ− lj + 1)N
[1]
(ft,gj)

(r) ≤ dλ

λ∑
i=1

Tfi(r) + o( max
1≤i≤λ

Tfi(r).(4.3)

We easily see that

(2n− rankR{ai}(ft) + 3) max
1≤j≤q

(λ− lj + 1) ≤ (2n+ 1)(λ− 1) ≤ q ≤
q∑

j=1

(λ− lj + 1).

Then by using Lemma 4.1, the inequality (4.3) implies that

||
λ∑

i=1

q(λ+ 1)−
∑q

j=1 lj

n2 + 2n
Tfi(r) ≤ dλ

λ∑
i=1

Tfi(r) + o( max
1≤i≤λ

Tfi(r)).
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Letting r → +∞, we get q ≤
dλ(n2 + 2n) +

∑q
j=1 lj

λ+ 1
. This is a contradiction.

Thus, the family {f1, · · · , fλ} is algebraically dependent over C, i.e., f1∧· · ·∧fλ =
0. Theorem 1.2 is proved. �
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