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GAUSSIAN ESTIMATES WITH BEST CONSTANTS

FOR HIGHER-ORDER SCHRÖDINGER OPERATORS

WITH KATO POTENTIALS

G. BARBATIS

(Communicated by Joachim Krieger)

Abstract. We establish Gaussian estimates on the heat kernel of a higher-
order uniformly elliptic Schrödinger operator with variable highest order co-
efficients and with a Kato class potential. The estimates involve the sharp
constant in the Gaussian exponent.

1. Introduction

Let Ω be a domain in Rn and let H0 be a uniformly elliptic operator of order
2m with L∞ coefficients acting on L2(Ω),

(H0u)(x) = (−1)m
∑

|α|≤m
|β|≤m

Dα{aαβ(x)Dβu},

subject to Dirichlet boundary conditions on ∂Ω. If 2m ≥ n, then the semigroup
generated by H0 has a continuous integral kernel K0(t, x, y) (also referred to as the
heat kernel) which satisfies a Gaussian estimate of the form

(1.1) |K0(t, x, y)| < c1t
− n

2m exp
{
− c2

|x− y| 2m
2m−1

t
1

2m−1

+ c3t
}
;

see [8, 12].
In the article [13] Davies and Hinz studied the operator H0 + V for singular

potentials V and obtained conditions under which the L2 semigroup e−(H0+V )t ex-
tends to a strongly continuous holomorphic semigroup in Lp, 1 ≤ p < ∞. Amongst
the potentials they considered are potentials V that are Kato class with respect to
H0, that is, they satisfy

‖V (H0 + λ)−1‖L1→L1 −→ 0, as λ → +∞ .

In the recent article [14] the authors consider the question of Gaussian heat kernel
estimates for H0 + V for Kato class potentials V . Under the assumption that H0

has constant coefficients they prove that estimate (1.1) is also valid for the heat
kernel K(t, x, y) of H0 + V . In the very recent article [17] the authors consider the
operator (−Δ)m +V for Kato potentials V and apply the methods of [14] together
with Davies’ exponential perturbation technique as adapted in [7] in order to obtain
estimates such as (1.1) for K(t, x, y) with the sharp constant c2 in the Gaussian
exponent.
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The purpose of the present note is to show that if 2m > n, then more can be
achieved by an adaptation of the methods of [6]. Using purely L2 methods we
obtain a sharp Gaussian estimate for the heat kernel of H0 + V for operators H0

with variable coefficients. Moreover, unlike the three above-mentioned articles, the
Kato condition is imposed only on the negative part V− of V , the positive part V+

being merely in L1
loc(Ω).

The sharpness of these estimates depends of course on using the right distance
function which is not the Euclidean but, rather, a Finsler distance induced by the
operator. The sharp constant σm, also obtained in [17], was first identified by
Evgrafov and Postnikov [16] who obtained short time asymptotics of K0(t, x, y) for
operators with constant coefficients in R

n and a so-called strongly convex principal
symbol (see the definition below).

We prove two theorems which differ on the regularity assumptions imposed on
the coefficients. Theorem 2.1 applies to operators with a strongly convex symbol
and coefficients that are bounded in the Hölder class Cm−2,1(Ω). Theorem 2.3 is
a more general result where the coefficients are merely in L∞(Ω) and the symbol
need not be strongly convex; the price paid is that instead of the sharp constant
σm we now have a constant σ = σm −D, with D a certain measure of regularity
for H.

2. Setting and statement of results

Let Ω be a domain in Rn and let H0 be a uniformly elliptic operator of order
2m acting on L2(Ω),

(H0u)(x) = (−1)m
∑

|α|≤m
|β|≤m

Dα{aαβ(x)Dβu}

subject to Dirichlet boundary condintions on ∂Ω. The coefficients aαβ(x), |α|, |β| ≤
m, are assumed to be real-valued functions in L∞(Ω) and the matrix {aαβ(x)} is
assumed to be symmetric for a.e. x ∈ Ω (the conditions on lower-order coefficients
can easily be weakened). Under these assumptions the quadratic form

Q0(u) =

∫
Ω

∑
|α|≤m
|β|≤m

aαβ(x)D
αuDβū dx

is then defined on Dom(Q0) := Hm
0 (Ω); we assume that G̊arding’s inequality

(2.1) Q0(u) ≥ c1‖u‖2Hm(Ω) − c2‖u‖2L2(Ω), u ∈ Hm
0 (Ω),

is satisfied for some c1, c2 > 0. The quadratic form Q0(·) is then closed and H0

is defined on L2(Ω) as the self-adjoint operator associated to Q0(·). We note [1,
Theorem 7.12] that inequality (2.1) implies that the principal symbol of H0 satisfies∑

|α|=m
|β|=m

aαβ(x)ξ
α+β ≥ c1|ξ|2m, x ∈ Ω, ξ ∈ R

n.

It is proved in [10] that if 2m > n, then the semigroup e−H0t has a continuous
integral kernel K0(t, x, y) which satisfies (1.1). This result was later extended in
the case 2m = n [3,15]. Estimate (1.1) implies that the semigroup e−H0z, Re z > 0,
extends to a strongly continuous bounded holomorphic semigroup Tp(z) on Lp(Ω)
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for all 1 ≤ p < ∞, and moreover the corresponding generators have spectrum which
is independent of p [10]. In the case 2m < n the estimate (1.1) is not valid as is seen
by the counterexamples constructed in [11]. We refer to the recent review article
[8] for more information.

2.1. Finsler distance and strong convexity. To state our results we need to
define the distance function in terms of which our Gaussian estimates will be ex-
pressed and also to introduce the notion of strong convexity.

The principal symbol

A(x, ξ) =
∑

|α|=m
|β|=m

aαβ(x)ξ
α+β, x ∈ Ω, ξ ∈ R

n,

of H induces canonically a Finsler distance d(·, ·) on Ω given by
(2.2)
d(y1, y2) = sup{φ(y2)−φ(y1) : φ Lipschitz in Ω and A(x,∇φ(x)) ≤ 1 a.e. x ∈ Ω}.

If additional regularity is imposed on the coefficients, then d(·, ·) is the distance
induced by the Finsler metric with length element ds = p(x, dx) where

p(x, η) = sup
ξ∈R

n

ξ �=0

〈ξ, η〉
A(x, ξ)1/2m

, x ∈ Ω, η ∈ R
n.

This metric is Riemannian if m = 1 or, more generally, if A(x, ξ) is the mth power
of a second order polynomial in ξ; we refer to [2,5] for a very short introduction to
Finsler geometry and to [4] for further reading.

Let the functions aγ , |γ| = 2m, be defined by

A(x, ξ) =
∑

|γ|=2m

(
2m
γ

)
aγ(x)ξ

γ , x ∈ Ω , ξ ∈ R
n,

where
(
2m
γ

)
= (2m)!/(γ1! . . . γn!). The following notion of strong convexity was first

introduced by Evgrafov and Postnikov [16].

Definition. The principal symbol A(x, ξ) is strongly convex if for a.e. x ∈ Ω the
quadratic form

Γ(x; p) =
∑

|α|=m
|β|=m

aα+β(x)pαpβ

is positive semi-definite on
⊕

|α|=m C.

Evgrafov and Postnikov [16] proved that if in addition to the assumptions above
H0 has constant coefficients on Rn and if the symbol A(ξ) is strongly convex, then

K0(t, x, y) = exp
{
− σm

d(x, y)2m/(2m−1)

t1/(2m−1)

}
(1 + o(1)), as t → 0+ ,

modulo subexponential terms, where

σm = (2m− 1)(2m)−
2m

2m−1 sin
( π

4m− 2

)
.

This was generalized to operators with smooth coefficients by Tintarev [19].
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The Gaussian estimates of Theorems 2.1 and 2.3 are expressed not in terms of
d(·, ·) but rather in terms of an approximating family of distances: for any M > 0
we define the distance

dM (y1, y2) = sup{φ(y2)− φ(y1) : φ ∈ EA,M},
where

EA,M =
{
φ ∈ Cm(Ω) : A(x,∇φ(x)) ≤ 1 , |Dαφ(x)| ≤ M , x ∈ Ω, 2 ≤ |α| ≤ m

}
.

2.2. Kato potentials. Let H0 be an operator of order 2m > n as above. We
consider a real potential V = V+ − V− (V± ≥ 0) and we make the following

Hypothesis (H). The potentials V± belong in L1
loc(Ω). Moreover V− has zero

form bound with respect to H0, that is, for any ε > 0 there exists cε such that

(2.3)

∫
Ω

V−|u|2dx ≤ εQ0(u) + cε‖u‖2L2 , u ∈ Hm
0 (Ω).

Under Hypothesis (H) the operator H = H0 + V is defined in a standard way
by means of the quadratic form

(2.4) Q(u) = Q0(u) +

∫
Ω

V |u|2dx,

defined initially in C∞
c (Ω) and then extended by closure. We note that (2.3) implies

(2.5) Q0(u) ≤
1

1− ε

(
Q(u) + cε‖u‖2L2

)
, u ∈ Dom(Q),

for any ε ∈ (0, 1).

Example 1. If V− is Kato class with respect to H0, that is, if

(2.6) lim
λ→+∞

‖V−(H0 + λ)−1‖L1→L1 = 0 ,

then Hypothesis (H) is satisfied. This well-known fact is seen by considering the
weighted Lp spaces Lp

V−
:= Lp(Ω, V−dx) (the fact that V− may be zero on a set of

positive measure can easily be dealt with). We then have

‖(H0 + λ)−1V−‖L1
V−

→L1
V−

= sup
w∈L1

V−

∫
Ω
V−(x)

∣∣∣{(H0 + λ)−1(V−w)}(x)
∣∣∣dx∫

Ω
V−(x)|w(x)|dx

= sup
u∈L1

∫
Ω
V−(x)

∣∣∣{(H0 + λ)−1u}(x)
∣∣∣dx∫

Ω
|u(x)|dx

= ‖V−(H0 + λ)−1‖L1→L1

and

‖(H0 + λ)−1V−‖L∞
V−

→L∞
V−

= ‖(H0 + λ)−1V−‖L∞→L∞ = ‖V−(H0 + λ)−1‖L1→L1 .

By the Stein interpolation theorem we then obtain

‖(H0 + λ)−1V−‖L2
V−

→L2
V−

≤ ‖(H0 + λ)−1V−‖1/2L1
V−

→L1
V−
‖(H0 + λ)−1V−‖1/2L∞

V−
→L∞

V−

= ‖V−(H0 + λ)−1‖L1→L1 ,

so V− has zero operator bound with respect to H0. Applying [9, Lemma 4.20] we
conclude that Hypothesis (H) is satisfied. Let us note here that condition (2.6) is
also related to certain integral conditions on V ; see also [13, 21].



HIGHER-ORDER SCHRÖDINGER OPERATORS 195

Example 2. Suppose V− satisfies the weak Miyadera condition with respect to
H0: for any ε > 0 there exists δ > 0 such that

(2.7)

∫ δ

0

‖V−e
−tH0u‖L1dt ≤ ε‖u‖L1

for all u ∈ L1(Ω)∩L2(Ω). It is known [18,20] that condition (2.6) is then satisfied,
hence Hypothesis (H) is satisfied.

Our first theorem reads:

Theorem 2.1. Let 2m > n. Let V be a real potential satisfying Hypothesis (H).
Assume that the principal symbol A(x, ξ) is strongly convex and that the principal
coefficients aαβ, |α| = |β| = m, belong in Wm−1,∞(Ω). Then for any ε > 0 and
M > 0 there exists a constant Γε,M such that the heat kernel of H satisfies

|K(t, x, y)| < Γε,M t−
n

2m exp
{
− (σm − ε)

dM (x, y)
2m

2m−1

t
1

2m−1

+ Γε,M t
}
,

for all t > 0 and x, y ∈ Ω.

Under additional assumptions we can obtain a better estimate that involves the
actual Finsler distance d(x, y) defined by (2.2) rather than the distances dM (x, y).

Corollary 2.2. In addition to the assumptions of Theorem 2.1 assume that (i) Ω
is bounded with Cm+1 boundary or Ω = R

n and (ii) the coefficients aαβ belong in
Cm+1(Ω) and have bounded all derivatives of order up to m+1. Then for any ε > 0
there exists Γε such that

(2.8) |K(t, x, y)| < Γεt
− n

2m exp
{
− (σm − ε)

d(x, y)
2m

2m−1

t
1

2m−1

+ Γεt
}
,

for all t > 0 and x, y ∈ Ω.

Proof of Corollary 2.2. It is proved in [5, Proposition 8 and Example p. 595] that
under the assumptions of the corollary there holds

(2.9)
dM (x, y)

d(x, y)
−→ 1, as M → +∞,

uniformly in x, y ∈ Ω. Estimate (2.8) then follows directly from Theorem 2.1 and
(2.9). �

We next state a variation of Theorem 2.1 which applies to a wider class of
operators. Let DA denote the distance in L∞(Ω) of the symbol A(x, ξ) to the class
of all strongly convex symbols with coefficients in Wm−1,∞(Ω); more precisely,

DA = inf max
|α|=m
|β|=m

‖aαβ − âαβ‖L∞(Ω),

where the infimum is taken over all coefficient matrices {âαβ} whose entries belong

in Wm−1,∞(Ω) and for which the symbol Â(x, ξ) =
∑

âαβξ
α+β is strongly convex;

in particular DA = 0 if the symbol is strongly convex and the principal coefficients
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are uniformly continuous. We then have

Theorem 2.3. Let 2m > n. Let V be a real potential satisfying Hypothesis (H).
For any ε > 0 and M > 0 the heat kernel estimate

|K(t, x, y)| < Γε,M t−
n

2m exp
{
− (σm − cDA − ε)

dM (x, y)
2m

2m−1

t
1

2m−1

+ Γε,M t
}
,

is valid for some Γε,M and all t > 0 and x, y ∈ Ω; here c is a positive constant that
depends on the operator H but not on ε or M .

3. Proofs of theorems

Throughout this section we assume that H is an operator defined via the qua-
dratic form (2.4) where V is a potential satisfying Hypothesis (H). We do not yet
assume that the coefficients belong in Wm−1,∞(Ω) or that the symbol A(x, ξ) is
strongly convex; these assumptions will only be made when we arrive at equation
(3.5).

Our approach is based on Davies’ exponential perturbation technique. For any
M > 0 we define

EM = {φ ∈ Cm(Ω) : |Dαφ(x)| ≤ M, x ∈ Ω , 1 ≤ |α| ≤ m}.
Let φ ∈ EM be fixed. We define a sesquilinear form Qφ by Dom(Qφ) = Dom(Q)
and

Qφ(u, v) = Q(eφu, e−φv);

here Q(·, ·) denotes the sesquilinear form associated with the quadratic form Q(·).
We denote by Qφ(·) the quadratic form corresponding to the sesquilinear form
Qφ(·, ·). Let Hφ be the (non-self-adjoint) operator associated to the form Qφ(·, ·),
so that Hφ = e−φHeφ. This conjugation induces canonically a functional calculus
for Hφ via the relation f(Hφ) = e−φf(H)eφ. In particular Hφ is the generator of a
strongly continuous semigroup given by

(3.1) e−Hφt = e−φe−Hteφ.

Lemma 3.1. Assume that 2m > n. Let φ ∈ EM be fixed and let k ∈ R be such that

ReQφ(u) ≥ −k‖u‖2L2 , all u ∈ C∞
c (Ω).

Then the heat kernel of H satisfies

(3.2) |K(t, x, y)| ≤ cδ,M t−
N
2m exp

{
φ(y)− φ(x) + (1 + δ)kt

}
for any δ > 0, all t > 0 and x, y ∈ Ω and some constant cδ,M which depends only
on δ and M .

Proof. Let Q0,φ(·) denote the quadratic form defined as above for the free operator
H0 (rather than H). The difference Q0,φ(·)−Q0(·) is of order smaller than 2m and
this yields (see also [10, Lemma 2])

|Q0,φ(u)−Q0(u)| ≤ εQ0(u) + cε,M‖u‖2L2 ,

for any ε > 0 and all u ∈ C∞
c (Ω). Hence we have from (2.5)

|Qφ(u)−Q(u)| = |Q0,φ(u)−Q0(u)|
≤ εQ0(u) + cε,M‖u‖2L2

≤ ε

1− ε
Q(u) +

( εcε
1− ε

+ cε,M

)
‖u‖2L2 ,
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and therefore

(3.3) Q(u) ≤ 2ReQφ(u) + cM‖u‖2L2 , all u ∈ C∞
c (Ω).

Now, let u ∈ L2(Ω) be given and for t > 0 let ut = e−Hφtu. By the multiplicative
Sobolev inequality [10, Lemma 16] and by inequalities (2.5) and (3.3) we have

‖ut‖L∞ ≤ cQ0(ut)
n

4m ‖ut‖
1− n

2m

L2

≤ c
(
Q(ut) + ‖ut‖2L2

) n
4m ‖ut‖

1− n
2m

L2

≤ cM

(
ReQφ(ut) + ‖ut‖2L2

) n
4m ‖ut‖

1− n
2m

L2

≤ cM

(
‖Hφut‖L2‖ut‖L2 + ‖ut‖2L2

) n
4m ‖ut‖

1− n
2m

L2

≤ cM

(
‖Hφut‖

n
4m

L2 ‖ut‖
1− n

4m

L2 + ‖ut‖L2

)
.(3.4)

Now, it follows from (2.5) and (3.3) that for any δ > 0 there exists cδ such that

‖ut‖L2 ≤ ekt‖u‖L2 , ‖Hφut‖L2 ≤ cδ
t
e(k+δ)t‖u‖L2 , t > 0 .

This has been proved in [7, Lemma 2.1] in the case V = 0; since the proof in our
case is identical, we omit further details.

Renaming nδ/4m as δ it follows from (3.4) that

‖e−Hφtu‖L∞ ≤ cδ,Mekt
(
t−

n
4m eδt + 1

)
‖u‖L2 ≤ c′δ,M t−

n
4m e(k+δ)t‖u‖L2 .

Using duality we conclude that the semigroup e−Hφt maps L1 ∩ L2 into L∞ and

‖e−Hφt‖L1→L∞ ≤ cδ,M t−
n

2m e(k+δ)t.

This together with (3.1) implies (3.2). �

Proof of Theorem 2.1. We shall now make use of the assumptions that aαβ ∈
Wm−1,∞(Ω) and that A(x, ξ) is strongly convex. Let

km =
(
sin(

π

4m− 2
)
)1−2m

.

It has been proved in [6, Proposition 6 and Lemma 7] that for any ε,M > 0 there
exists a constant cε,M such that

(3.5) ReQ0,λφ(u) ≥ −
(
λ2m(km + ε) + cε,M

)
‖u‖2L2 ,

for all φ ∈ EA,M , all λ > 0 and all u ∈ C∞
c (Ω) (the constant cε,M also depends on

maxα,β max0≤k≤m−1 ‖∇kaαβ‖L∞). Moreover, using (2.3) and recalling (3.3) (for
H0 rather than H) we obtain

ReQλφ(u) = ReQ0,λφ(u) +

∫
Ω

V |u|2dx

≥ ReQ0,λφ(u)− εQ0(u)− cε‖u‖2L2

≥ (1− 2ε)ReQ0,λφ(u)− (εcM + cε)‖u‖2L2 .(3.6)

From (3.5) and (3.6) it follows that for all ε > 0 small enough and for any M > 0
there exists cε,M such that

(3.7) ReQλφ(u) ≥ −
(
λ2m(km + ε) + cε,M

)
‖u‖2L2 , u ∈ C∞

c (Ω).
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We complete the standard argument by first applying Lemma 3.1 and then opti-
mizing over all φ ∈ EA,M and all λ > 0. Noting that

inf
λ>0

(
− λdM (x, y) + λ2mkmt

)
= −σm

dM (x, y)
2m

2m−1

t
1

2m−1

completes the proof of the theorem. �

Proof of Theorem 2.3. The main idea in the proof is that estimate (3.7) is stable
under perturbations that are small in the L∞ norm: a perturbation of order δ (in
L∞) results in a perturbation of order δ on the lower bound k of Lemma 3.1, and

this results in a perturbation of order δ of the coefficient of d
2m/(2m1)
M t−1/(2m−1)

in the Gaussian estimate. To see this, suppose Ĥ is an operator with coefficients
{âαβ} for which

(3.8) Re Q̂λφ(u) ≥ −
(
λ2m(km + ε) + cε,M

)
‖u‖2L2 , u ∈ C∞

c (Ω),

for all φ ∈ EÂ,M and all ε,M > 0. Suppose now that H is another operator

satisfying the assumptions in Section 2 and such that ‖aαβ − âαβ‖L∞ < δ, |α| =
|β| = m, where δ > 0 is small. For any u ∈ C∞

c (Ω) we then have∣∣∣ReQλφ(u)− ReQ̂λφ(u)
∣∣∣ ≤ cδ{Q(u) + λ2m‖u‖2L2}+ cMδ(1 + λ2m−1)‖u‖2L2 .

This has been proved in detail in [6, eqn. (18)]. The fact that the coefficient of
λ2m can be estimated independently of M is due to the fact that when Qλφ(u) and

Q̂λφ(u) are expanded into polynomials of λ, the coefficients of λ2m involve only
first order derivatives of φ and not higher-order derivatives (see also [6, Lemma 3]).
Recalling also (3.3) (with φ replaced by λφ) we thus obtain

Re Q̂λφ(u)

≥ ReQλφ(u)− cδ{Q(u) + λ2m‖u‖2L2} − cMδ(1 + λ2m−1)‖u‖2L2

≥ (1− 2cδ)ReQλφ(u)−
[
cδλ2m + cMδ(1 + λ2m−1)

]
‖u‖2L2

≥ −
[
(1− 2cδ)

(
λ2m(km + ε) + cε,M

)
+ cδλ2m + cMδ(1 + λ2m−1)

]
‖u‖2L2 .

We note that given ε1 > 0 the term in square brackets can be made smaller than
λ2m(km + cδ + ε1) + cε1,M , so estimate (3.7) is true for the operator H with km
being replaced by km + cδ.

This leads to an estimate involving a constant σm−cδ and the distance d̂M (x, y).
To obtain an estimate with dM (x, y) we note that there exists c > 0 such that if

φ̂ ∈ EÂ,M , then (1 + cδ)−1φ ∈ EA,M . From this follows that

d̂M (x, y) = sup{φ̃(y)− φ̃(x) : φ̃ ∈ EÂ,M}
≥ sup{(1 + cδ)−1

(
φ(y)− φ(x)

)
: φ ∈ EÂ,M}

= (1 + cδ)−1dM (x, y).

Combining the above concludes the proof of the theorem. �
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