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PERTURBATION ESTIMATES OF WEAK KAM SOLUTIONS

AND MINIMAL INVARIANT SETS FOR NEARLY INTEGRABLE

HAMILTONIAN SYSTEMS

QINBO CHEN AND MIN ZHOU

(Communicated by Yingfei Yi)

Abstract. For nearly integrable and Tonelli system

Hε = H0(p) + εH1(q, p, t). (q, p, t) ∈ T
n × R

n × T,

we give the perturbation estimates of weak KAM solution uε with respect to
parameter ε and prove the stability of the Mather set M̃ε, Aubry set Ãε,
Mañé set Ñε and even the backward (forward) calibrated curves under the
perturbation.

1. Introduction

We denote by T
n × R

n the cotangent bundle T ∗
T
n, that we endow with its

usual coordinates (q, p) and its canonical symplectic form Ω =
n∑

i=1

dqi
∧
dpi, where

T
n = R

n/Zn.
Given r ≥ 2 and a non-decreasing dominant function C(x) : Z+ → R

+, let

S = {f ∈ Cr(Tn × R
n × T,R) : ‖f(q, p, t)‖Cr ≤ C(K), for all ‖p‖ ≤ K}.

We consider the following Cr nearly integrable Hamiltonian:

Hε(q, p, t) = H0(p) + εH1(q, p, t), H1 ∈ S, (q, p, t) ∈ T
n × R

n × T,(1.1)

where the integrable system H0(p) is strictly convex and superlinear, and we also
assume Hε satisfies the following Tonelli conditions:

(L1) Convexity: For each (q, t) ∈ T
n × T, the Hamiltonian Hε is strictly convex in

p coordinate, i.e., the Hessian ∂2Hε

∂pi∂pj
is definitely positive.

(L2) Superlinearity:

lim
‖p‖→+∞

Hε(q, p, t)

‖p‖ = +∞, uniformly on (q, t).

(L3) Completeness: All solutions of the Hamiltonian equation are well defined for
the whole t ∈ R.
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We also denote by T
n×R

n the tangent bundle TTn, and we obtain the associated
Cr Lagrangian

Lε(q, v, t) = 〈v, πp ◦ L−1(q, v, t)〉 −Hε ◦ L−1(q, v, t).(1.2)

Here L : Tn × R
n × T → T

n × R
n × T,L(q, p, t) = (q, ∂Hε(q,p,t)

∂p , t) is the Legendre-

Fenchel transformation, and πp denotes the natural projection πp(q, p, t) = p. Thus,
Lε also satisfies Tonelli conditions:

(L1) Convexity: For each (q, t) ∈ T
n×T, Lε is strictly convex in v coordinate, i.e.,

the Hessian ∂2Lε

∂vi∂vj
is definitely positive.

(L2) Superlinearity:

lim
‖v‖→+∞

Lε(q, v, t)

‖v‖ = +∞, uniformly on (q, t).

(L3) Completeness: All solutions of the Euler Lagrange equation are well defined
for the whole t ∈ R.

Because H1(Tn,R) ∼= R
n, from now on, unless otherwise specified, we use

the same symbol c = (c1, · · · , cn) ∈ R
n to denote both the cohomology class in

H1(Tn,R) and the closed 1-form
n∑

i=1

cidqi of torus T
n.

Let’s review some basic facts for nearly integrable systems. Classical KAM
theory asserts that a set of nearly full measure in phase space consists of invariant
tori carrying quasi-periodic motions ([2], [16], [21]). In addition, the Nekhoroshev
estimates tell us that all solutions stay stable for an exponentially long time under
some steepness conditions (e.g. [22]). However, for the whole time, the phenomenon
of instability may occur, such as Arnold diffusion (e.g. [8], [9], [15]).

The perturbation estimates and regularity of weak KAM solutions (see Section
2) in the normally hyperbolic invariant cylinders are very important in construction
of diffusion orbits (e.g. [3], [10], [24]) and propagation of singularities [7]. It was
proved by [12] that if Mather’s α function α(c) is twice differentiable at c0, then∫

Tn

‖(c+ dxu
c)− (c0 + dxu

c0)‖2dσ ≤ C‖c− c0‖2

for ‖c − c0‖ � 1, where σ is the projection on T
n of some Mather measure μ

supported on the Mather set M̃(c0). Moreover, it was shown by [17] that if M̃(c0)
is a real analytic quasi-periodic invariant torus with a Diophantine frequency, then

‖(c+ dxu
c)− (c0 + dxu

c0)‖ ≤ C‖c− c0‖
for ‖c− c0‖ � 1. We also refer the readers to ([1], [14]) for the ε-regularity of weak
KAM solutions. Notice that all of these results ([1], [12], [14], [17]) were estab-
lished for time-independent Hamiltonians. In Theorem 1.1, we give the ε-regularity
of weak KAM solutions for time-dependent nearly integrable Hamiltonians. Fur-
thermore, Example 1.3 illustrates that Theorem 1.1 may not be true for general
Hamiltonians, even when the Hamiltonian is time-independent.

For nearly integrable Hamiltonians, [6] provides an estimate on the speed of
minimal orbits by using the globally topological trick. For quasi-integrable exact
maps, [4] provides the same estimate on the speed of minimal orbits in an invariant
set with homoclinic orbits for each resonant frequency. However, in Theorem 1.2,
combining Mather’s variational theory and Fathi’s weak KAM theory, we also give
similar estimates to those in [4] and [6]. Furthermore, we give the perturbation
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estimates of globally minimal invariant sets such as the Mather sets, Aubry sets
and Mañé sets. Theorem 1.2 also gives the perturbation size of all backward (resp.
forward) calibrated curves. This can be viewed as the complement to KAM theory
and Nekhoroshev estimates.

Theorem 1.1. Given c ∈ H1(Tn,R), there exists a small number ε0 = ε0(H0, c) >
0 and a constant D = D(H0, c) > 0 such that for all ε with |ε| < ε0, Hamiltonian
systems (1.1) and its associated Lagrangian (1.2) have the following estimates:

for each weak KAM solution uc
ε of Lε − c and uc

0 of L0 − c, we have

‖uc
ε(x, t)− uc

ε(y, s)‖ ≤ D
√
ε(‖x− y‖+ |s− t|)

and
‖duc

ε(q, t)− duc
0(q, t)‖ ≤ D

√
ε, for almost all (q, t) ∈ T

n × T.

Theorem 1.2. Given c ∈ H1(Tn,R), there exists a small number ε0 = ε0(H0, c) >
0 and a constant D = D(H0, c) > 0 such that for all ε with |ε| < ε0, we have

(1) For each curve γε(t) : (−∞,+∞) → T
n which is calibrated by a weak KAM

solution uc
ε of Lagrangian (1.2), i.e., for all t1 < t2 ∈ R such that uc

ε(γε(t2), t2)−
uc
ε(γε(t1), t1) =

∫ t2
t1
(Lε − c+ αε(c))(dγε(s), s)ds, we have

‖γ̇ε(t)− γ̇ε(0)‖ ≤ D
√
ε, ∀t ∈ R.

(2) For each backward curve γε(t) : (−∞, t0] → T
n which is calibrated by a weak

KAM solution uc
ε of Lagrangian (1.2), i.e., for all t1 < t2 ∈ (−∞, t0) such that

uc
ε(γε(t2), t2)− uc

ε(γε(t1), t1) =
∫ t2
t1
(Lε − c+ αε(c))(dγε(s), s)ds, we have

‖γ̇ε(t)− γ̇ε(0)‖ ≤ D
√
ε, ∀t ≤ t0.

(3) For each minimal orbit γε(t) in the Mather set Mε(c)
(
resp. Aubry set Aε(c),

Mañé set Nε(c)
)
, we have

‖γ̇ε(t)− γ̇ε(0)‖ ≤ D
√
ε, ∀t ∈ R.

In addition, the Mather set M̃ε(c)
(
resp. Ãε(c), Ñε(c)

)
of Lagrangian (1.2)

is contained in a D
√
ε neighbourhood of the Mather set M̃0(c)

(
resp. Ãε(c),

Ñε(c)
)
of L0, i.e., dH(M̃ε(c),M̃0(c)) ≤ D

√
ε

(resp. dH(Ãε(c), Ã0(c)) ≤ D
√
ε, dH(Ñε(c), Ñ0(c)) ≤ D

√
ε ),

where dH(A,B) denotes the Hausdorff distance, i.e.,

dH(A,B) = max{sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)}.

The following example shows that Theorem 1.1 may not be true for general
Hamiltonians.

Example 1.3. We take Hε(q, p) = H0(q, p) + εH1(q, p), (q, p) ∈ T × R, where
H0(q, p) =

1
2p

2 + δ
(
cos(2πq)− 1

)
and H1(q, p) = p, we also let ε � δ. Notice that

Hε is not nearly integrable. It’s easy to compute the associated Lagrangian of Hε:

Lε(q, v) = L0(q, v) + εL1(q, v, ε) =
1

2
v2 − δ

(
cos(2πq)− 1

)
− ε(v − ε

2
).

(1) ε = 0, the weak KAM solution u0(q) is a 1-periodic function and satisfies:

dqu0 =

{
2
√
δ sin(πq), 0 ≤ q < 1

2 ,

−2
√
δ sin(πq), 1

2 < q ≤ 1.
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(2) 0 < ε < 4
π

√
δ, the weak KAM solution uε(q) is 1-periodic and satisfies:

dquε =

{
2
√
δ sin(πq)− ε, 0 ≤ q < a(ε),

−2
√
δ sin(πq)− ε, a(ε) < q ≤ 1,

where a(ε) is determined by the equation cos(πa(ε)) = −ε/( 4
√
δ

π ) and a(ε) ≥ 1
2 .

We have,

‖dquε − dqu0‖ = max
q∈[0,1]

|dquε − dqu0| ≥ max
1
2≤q<a(ε)

|dquε − dqu0|

≥ |2
√
δ sin(πq)− ε− (−2

√
δ sin(πq))|

= 4
√
δ

√
1− ε2/(

4
√
δ

π
)2 − ε =

√
16δ − π2ε2 − ε.

Then for 0 < ε < 3
√
δ

π , ‖dquε − dqu0‖ ≥ 7
√
δ − 3

√
δ

π >
√
δ.

In view of ε � δ and that δ is fixed, so ‖dquε − dqu0‖ ≤ O(εκ), (0 < κ < 1)
cannot hold. Therefore, Theorem 1.1 is not true in this case.

2. Brief introduction to Mather theory and weak KAM theory

Let’s review some basic results of Mather theory ([19], [20]) first. Let M be a
compact connected C∞ manifold, and TM be its tangent bundle. Let L : TM×T →
R be a Cr(r ≥ 2) Tonelli Lagrangian, where T = R/Z.

The Tonelli conditions imply that the Legendre-Fenchel transformation L is a
Cr−1 diffeomorphism of TM × T onto T ∗M × T,

L(q, v, t) = (q,
∂L

∂v
(q, v, t), t).

Therefore, we obtain the associated Hamiltonian H(q, p, t) = 〈p, v〉 − L(q, v, t),
where v = v(q, p, t) is implicitly determined by p = ∂L

∂v (q, v, t).
Let I = [a, b] be an interval, and γ : I → M be an absolutely continuous curve.

We denote by

A(γ) =

∫ b

a

L(dγ(t), t)dt

the action of γ. An absolute curve γ : I → M is called a minimizer or action
minimizing curve if

A(γ) = min
ξ(a)=γ(a),ξ(b)=γ(b)

ξ∈Cac(I,M)

∫ b

a

L(dξ(t), t)dt.

We call γ : (−∞,+∞) → M a globally minimizing curve if for all a < b, γ is a
minimizer on [a, b]. Notice that the minimizer satisfies the Euler Lagrange equation.

Let ML be the space of Euler Lagrangian flow invariant probability measures on
TM ×T. To each μ ∈ ML, note that

∫
λdμ=0 for each exact 1-form λ. Therefore,

given c ∈ H1(M,R) and a closed 1-form ηc ∈ c = [ηc], we can define Mather’s α
function

α(c) = − inf
μ∈ML

Ac(μ) = − inf
μ∈ML

∫
TM×T

L− ηcdμ.

It’s easy to check that α(c) is finite everywhere, convex and superlinear.
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We associate to μ ∈ ML its rotation vector ρ(μ) ∈ H1(M,R) in the following
sense:

〈ρ(μ), [ηc]〉 =
∫
TM×T

ηcdμ, ∀c ∈ H1(M,R).

So we can define Mather’s β function:

β(h) = inf
μ∈ML,ρ(μ)=h

∫
Ldμ.

β is finite, convex, and superlinear and β is the Legendre-Fenchel dual of α .
Let Mc = {μ ∈ ML|Ac(μ) = −α(c)}, Mh = {μ ∈ ML|ρ(μ) = h,A(μ) = β(h)}.

μ ∈ ML is called a c−minimal measure if μ ∈ Mc and we can define the Mather
set:

M̃(c) =
⋃

μ∈Mc

suppμ.

To study more properties of dynamic systems, we need to find “larger” invariant
sets and study their topology structure. First, we define a function Φc,

Φc : (M × T)× (M × T) → R,

((x, τ ), (x′, τ ′)) �→ inf
t′>t, t≡τmod 1
t′≡τ ′mod 1, γ∈Γ

∫ t′

t

(L− ηc + α(c))(dγ(s), s)ds,

where Γ is a set of absolutely continuous curves γ satisfying γ(t) = x, γ(t′) = x′,
and ηc is a closed 1-form such that [ηc] = c ∈ H1(M,R). A curve γ : R → M is
called c-semi-static if

Ac(γ|[t, t′]) = Φc

(
(γ(t), t mod 1), (γ(t′), t′ mod 1)

)
.

A curve γ : R → M is called c-static if

Ac(γ|[t, t′]) = −Φc

(
(γ(t′), t′ mod 1), (γ(t), t mod 1)

)
.

Thus, we define the Aubry set Ã(c) and the Mañé set Ñ (c) in TM × T as

Ã(c) =
⋃

{(dγ(t), t mod 1) | γ is c-static},

Ñ (c) =
⋃

{(dγ(t), t mod 1) | γ is c-semi-static}.

Then, we have the following relation:

M̃(c) ⊆ Ã(c) ⊆ Ñ (c).

Let π : TM × T → M × T be the natural projection. We denote

M(c) � π ◦ M̃(c), A(c) � π ◦ Ã(c), N (c) � π ◦ Ñ (c).

Now, we will review some basic results of weak KAM theory. For the autonomous
case, see [13]. For the non-autonomous case, see e.g. [5], [11], [23].

Definition 2.1. We say u− : M × T → R is a backward weak KAM solution if

(1) u− is dominated by L+ α(0), i.e.,

u−(x, s)− u−(y, t) ≤ Φ0((y, t), (x, s)).

(2) For each (x, s) ∈ M × T, there exists a calibrated curve γ : (−∞, s] → M such
that

u−(x, s)− u−(γ(t), t) = A(γ|[t,s]) + α(0)(s− t), ∀t ∈ (−∞, s].
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Similarly, we can also define the forward weak KAM solution u+.
The Lax-Oleinik semigroup is well known in PDE and in Calculus of Variations.

Now we will introduce the associated Lax-Oleinik operator on C0(M × T,R) for
non-autonomous and time 1-periodic Lagrangian:

T−
ηc,n : C0(M × T,R) → C0(M × T,R),

T−
ηc,nu(x, t) = inf

γ∈Cac

γ(t)=x

(
u(γ(t− n), t− n) +

∫ t

t−n

(L− ηc + α(c))(dγ(s), s)ds
)
,

where n ∈ N. The sequence {T−
ηc,n}n∈N constitutes a semigroup.

Proposition 2.2 ([13], [23]). There exist backward weak KAM solutions corre-
sponding to the Lagrangian L − ηc. Let v−c be any backward weak KAM solution;
then

(1) T−
ηc,nv

−
c = v−c , for all n. In addition, v−c is Lipschitz and it is a viscosity

solution of the following Hamilton-Jacobi equation:

∂tf +H(q, dqf + ηc, t) = α(c).

(2) If the curve γ : (−∞, s] → M is calibrated by v−c , then γ is c-semi-static and
v−c is differentiable at (γ(t), t) for all t ∈ (−∞, s), i.e.,

dqv
−
c (γ(t), t) =

∂(L− ηc)

∂v
(dγ(t), t),

dtv
−
c (γ(t), t) = −H(q,

∂(L− ηc)

∂v
(dγ(t), t) + ηc, t) + α(c).

3. Proof of the main theorems

In this section, we turn to the proof of Theorem 1.1 and Theorem 1.2. We need
the following lemmas. In this section, for all K ∈ Z

+, we define the following set
by using Legendre-Fenchel transformation L:

Dε(K) = L{(q, p, t) ∈ T
n × R

n × T : ‖p‖ ≤ K}
= {(q, v, t) ∈ T

n × R
n × T : ∃ p, ‖p‖ ≤ K such that v = ∂pHε(q, p, t)}.

Lemma 3.1. The associated Lagrangian Lε (with respect to Hε) has the form
Lε = L0(v) + εL1(q, v, t, ε) and

‖L1(q, v, t, ε)‖C0 ≤ C(K), ∀(q, v, t) ∈ Dε(K),

where L0(v) is the associated Lagrangian of H0(p), and C(x) : Z+ → R
+ is the

non-decreasing dominant function in (1.1).

Proof. Because H0(p) is convex in p, we have

H0(p) ≥ H0(∂vL0(v))− 〈∂pH0(∂vL0(v)), p− ∂vL0(v)〉
= H0(∂vL0(v))− 〈v, p− ∂vL0(v)〉.
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Then for (q, v, t) ∈ Dε(K),

Lε(q, v, t) = sup
‖p‖≤K

{〈p, v〉 −H0(p)− εH1(q, p, t)}

≤ sup
‖p‖≤K

{〈p, v〉 −H0(∂vL0(v))− 〈v, p− ∂vL0(v)〉 − εH1}

= sup
‖p‖≤K

{〈∂vL0(v), v〉 −H0(∂vL0(v))− εH1}

= sup
‖p‖≤K

{L0(v)− εH1} ≤ L0(v) + εC(K).

In addition,

Lε(q, v, t) = sup
p
{〈p, v〉 −H0(p)− εH1}

≥ 〈∂vL0(v), v〉 −H0(∂vL0(v))− εH1(q, ∂vL0(v), t)

= L0(v)− εH1(q, ∂vL0(v), t) ≥ L0(v)− εC(K).

This completes the proof. �
Lemma 3.2. There exist two constants R0 = R0(H0) > 0, K0 = K0(H0) > 0 large
enough and a small constant ε1 = ε1(H0) > 0, such that {(q, v, t) : ‖v‖ ≤ R0} ⊆
Dε(K0) and

(1) For all v ∈ R
n with ‖v‖ ≥ R0

2 , we have L0(v) ≥ A+2, where A = max
‖v‖≤2

√
n
L0(v).

(2) For all ε, |ε| < ε1, each minimizing curve γ(t) of Lε : [t1, t2] → T
n, t2 − t1 ≥ 1

satisfies
‖γ̇(t)‖ ≤ R0 − 1, ∀t ∈ [t1, t2].

(3) For all ε, |ε| < ε1, the weak KAM solution uε of Lε satisfies:

|uε(x, t)− uε(y, t)| ≤ K0‖x− y‖.

Proof. (1) is a straight consequence of the property of superlinearity.
For the proof of (2), it’s enough to show this lemma for t2 − t1 = 1. Indeed, for

general [t1, t2] and t ∈ [t1, t2], we can find an interval of the form [c, c + 1], with
t ∈ [c, c+ 1] ⊆ [t1, t2].

For simplicity, we assume [t1, t2] = [0, 1]. Obviously, we can find a geodesic
segment connecting γ(0) to γ(1) in Tn, and parameterize it by the time interval [0,1]
with speed of constant norm. We denote by η(t) : [0, 1] → T

n, η(0) = γ(0), η(1) =
γ(1), ‖η̇(t)‖ = d(γ(0), γ(1)) ≤ diam(Tn) = diam(Rn/Zn) =

√
n.

Take a constant R0 > 0 large enough, so (η(s), η̇(s), s) ∈ {(q, v, t) : ‖v‖ ≤
√
n} ⊆

{(q, v, t) : ‖v‖ ≤ R0}. There exists a constant K0 such that {(q, v, t) : ‖v‖ ≤ R0} ⊆
Dε(K0); notice that R0,K0 only depend on H0.

Take a small number ε1 > 0 satisfying ε1C(K0) < 1. By Lemma 3.1, for all
|ε| < ε1, we have∫ 1

0

Lε(γ(s), γ̇(s), s)ds ≤
∫ 1

0

Lε(η(s), η̇(s), s)ds ≤
∫ 1

0

A+ εC(K0)ds < A+ 1,

where A = max
‖v‖≤2

√
n
L0(v). Hence, there exists ξ ∈ [0, 1] such that

(3.1) Lε(γ(ξ), γ̇(ξ), ξ) < A+ 1.

Next, we claim that

(3.2) Lε(γ(ξ), v, ξ) ≥ A+ 1 for all v, ‖v‖ ≥ R0.
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We prove by contradiction. Indeed, suppose there exists (γ(ξ), v1, ξ), ‖v1‖ ≥ R0

such that

(3.3) Lε(γ(ξ), v1, ξ) < A+ 1.

Since we already know that for all (γ(ξ), v2, ξ), ‖v2‖ ≤
√
n < R0

2 ,

(3.4) Lε(γ(ξ), v2, ξ) ≤ A+ εC(K0) < A+ 1.

Moreover, Lemma 3.2 (1) implies that for all (γ(ξ), v3, ξ),
R0

2 ≤ ‖v3‖ < R0,

(3.5) Lε(γ(ξ), v3, ξ) ≥ A+ 2− εC(K0) > A+ 1.

Therefore, (3.3), (3.4) and (3.5) lead to a contradiction to the strict convexity of
Lε(γ(ξ), . . . , ξ).

By (3.1), (3.2) and (3.5), we obtain

‖γ̇(ξ)‖ ≤ R0

2
.

Denote by ΦT
ε the time T map of Lagrangian flow. Since R0 is very large and ε1 is

very small, it’s not hard to check that ‖ΦT
ε (γ(ξ), γ̇(ξ), ξ)‖ ≤ 2

3R0 ≤ R0−1, ∀ |T | ≤
1, which completes (2).

Finally, we turn to the proof of (3). Taking a differentiable point (x, t) of uε,
there exists a backward minimizing curve γ(s) : (−∞, t] → T

n such that γ(t) = x
and dquε(x, t) = ∂vLε(γ(t), γ̇(t), t) by Proposition 2.2. By Lemma 3.2 (2), we obtain

‖γ̇(t)‖ ≤ R0, ‖dquε(x, t)‖ = ‖∂vLε(γ(t), γ̇(t), t)‖ ≤ K0.

Because uε is Lipschitz and differentiable almost everywhere, we have

|uε(x, t)− uε(y, t)| ≤ K0‖x− y‖.
�

Lemma 3.3. Let ε1,K0 be the constants as in Lemma 3.2. Then, for all ε such
that |ε| < ε1, we have

|αε(0)− α0(0)| ≤ εC(K0),

where αε(·) (resp. α0(·)) is the α-function with respect to Lε (resp. L0).

Proof. It’s not hard to obtain that α0(c) = H0(c). By the Legendre-Fenchel in-
equality, Lε(q, v, t) +Hε(q, 0, t) ≥ 0, so

Lε(q, v, t) ≥ −Hε(q, 0, t) ≥ − max
q∈Tn,t∈T

Hε(q, 0, t).

It follows

−αε(0) = inf
μ

∫
Tn×Rn×T

Lεdμ ≥ inf
μ

∫
Tn×Rn×T

− max
q∈Tn,t∈T

Hε(q, 0, t)dμ

= − max
q∈Tn,t∈T

Hε(q, 0, t),

αε(0) ≤ max
q∈Tn,t∈T

Hε(q, 0, t) ≤ H0(0) + εC(K0) = α0(0) + εC(K0).

Let v0 = ∂pH0(0) and take a closed curve γ(t) = (t, 0, 0, . . . , 0) ⊆ T
1 × T

n−1;
then γ̃(t) = (γ(t), v0, t) gives a closed curve on T

n × R
n × T. This introduces a

probability measure μγ̃ on T
n × R

n × T defined by,∫
Tn×Rn×T

Ψdμγ̃ =

∫ 1

0

Ψ(γ(t), v0, t)dt,
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for all continuous function Ψ with compact support. Thus, by an equivalent defi-
nition of α function (see Section 1 of [18]), we have

−αε(0) ≤
∫

Lεdμγ̃ = L0(v0) +

∫ 1

0

εL1(γ(t), v0, t, ε)dt

= −H0(0) + ε

∫ 1

0

L1(γ(t), v0, t, ε)dt ≤ −α0(0) + εC(K0).

The last inequality follows from Lemma 3.1. Thus, αε(0) ≥ α0(0)− εC(K0). This
leads to our conclusion. �

For brevity, given f ∈ Cr(Tn × R
n × T), we denote by ∂2f

∂p2 the Hessian matrix(
∂2f

∂pi∂pj

)
n×n

, by ∂2f
∂p∂q the Hessian matrix

(
∂2f

∂pi∂qj

)
n×n

and by ∂2f
∂q2 the Hessian matrix(

∂2f
∂qi∂qj

)
n×n

.

Lemma 3.4. There exists a constant ε2 = ε2(H0) > 0 such that for all ε, |ε| < ε2,
we have the following estimates: There exists a constant λ0 = λ0(H0) ∈ (0, 1) such
that

λ0Id ≤ ∂2Hε(p)

∂p2
≤ 1

λ0
Id, ‖∂

2Hε

∂p∂q
‖C0 ≤ εC(K0), ‖∂

2Hε

∂q2
‖C0 ≤ εC(K0),(3.6)

for all (q, p, t) ∈ T
n × R

n × T, ‖p‖ ≤ K0.

(3.7) λ0Id ≤ ∂2Lε(v)

∂v2
≤ 1

λ0
Id, ‖∂

2Lε

∂v∂q
‖C0 ≤ εC(K0)

λ0
, ‖∂

2Lε

∂q2
‖C0 ≤ 2εC(K0)

λ0
,

for all (q, v, t) ∈ Dε(K0).

Proof. Obviously, there exists a constant λ ∈ (0, 1) such that

λId ≤ ∂2H0(p)

∂p2
≤ 1

λ
Id, ∀(q, p, t) ∈ T

n × R
n × T, ‖p‖ ≤ K0.

Moreover, we have

(λ− εC(K0))Id ≤ ∂2Hε(p)

∂p2
≤ (

1

λ
+ εC(K0))Id,

‖∂
2Hε

∂p∂q
‖C0 ≤ εC(K0), ‖∂

2Hε

∂q2
‖C0 ≤ εC(K0),

for all (q, p, t) ∈ T
n×R

n×T, ‖p‖ ≤ K0. Since C(K0) is fixed, we choose ε2 sufficiently
small and λ0 ∈ (0, 1), such that for all ε, |ε| < ε2,

λ0 ≤ λ− εC(K0),
1

λ
+ εC(K0) ≤

1

λ0
.

Notice that λ0 and ε2 only depend on the function H0. Therefore, (3.6) holds.
On the other hand, it’s not hard to obtain the following:

∂2Lε

∂v2
= (

∂2Hε

∂p2
)−1,

∂2Lε

∂q∂v
= −∂2Hε

∂p∂q

∂2Lε

∂v2
,
∂2Lε

∂q2
= −∂2Hε

∂p∂q

∂2Lε

∂v∂q
− ∂2Hε

∂q2
.

Thus we have

λ0Id ≤ ∂2Lε

∂v2
≤ 1

λ0
Id, ‖ ∂2Lε

∂q∂v
‖Cr−2≤ εC(K0)

λ0
,

‖ ∂2Lε

∂q2
‖Cr−2≤ (εC(K0))

2

λ0
+

εC(K0)

λ0
≤ 2εC(K0)

λ0
,
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for all (q, v, t) ∈ Dε(K0). �

Now, we begin to prove Theorem 1.1.

Proof of Theorem 1.1. For simplicity, we just prove our theorem for c = 0 ∈
H1(Tn,R). Take ε0 = min{ε1, ε2}, where ε1, ε2 are the constants in Lemma 3.2
and Lemma 3.4.

Let uε denote the weak KAM solution of Lε.

Step 1. First we claim that there exists C0 = C0(H0) > 0 such that

(3.8) |uε(x+Δx, t)− uε(x, t)| ≤ C0

√
ε‖Δx‖.

Since uε(x, t) can be viewed as a Z
n+1-periodic function in R

n × R, it’s enough
to prove

|uε(x+Δx, 0)− uε(x, 0)| ≤ C0

√
ε‖Δx‖ for all x ∈ R

n, ‖Δx‖ ≤ 1,

where Δx = (Δx1, · · · ,Δxn). For general t, it can be proved similarly. From now
on, we use the symbol [x] to represent the integer part of x and take

N = [
1√
ε
].

By Proposition 2.2 (1), there exists a C2 minimizer γ0(s) : [0, N ] → R
n with

γ0(N) = x, such that

uε(x, 0) = uε(x,N) = uε(γ0(0), 0) +

∫ N

0

Lε(γ0(s), γ̇0(s), s) + αε(0)ds.

Let η(s) � γ0(s) + sΔx
N , η(N) = x+Δx. So

uε(x+Δx, 0) ≤ uε(η(0), 0) +

∫ N

0

Lε(η(s), η̇(s), s) + αε(0)ds

and

(3.9) uε(x+Δx, 0)− uε(x, 0) ≤
∫ N

0

Lε(η(s), η̇(s), s)− Lε(γ0(s), γ̇0(s), s)ds.

Fix s and use the integral form of the Taylor formula. We have

Lε(η(s), η̇(s), s) = Lε(γ0(s), γ̇0(s), s) + 〈∂Lε

∂q
(γ0(s), γ̇0(s), s),

Δx

N
s〉

+ 〈∂Lε

∂v
(γ0(s), γ̇0(s), s),

Δx

N
〉+R(s),

where

R(s) =

∫ 1

0

(1− t)(
Δx

N
s,

Δx

N
)M(t)(

Δx

N
s,

Δx

N
)Tdt

and M(t) =
∂2Lε

∂q∂v
(tη(s) + (1− t)γ0(s), tη̇(s) + (1− t)γ̇0(s), s).

Because γ0 is a minimizer, by Lemma 3.2 and ‖Δx‖ ≤ 1, we have

‖γ̇0(s)‖ ≤ R0 − 1, ‖η̇(s)‖ ≤ R0, ∀s ∈ [0, N ].

Setting v(t) = (tη(s) + (1− t)γ0(s), tη̇(s) + (1− t)γ̇0(s), s), we have

(3.10) v(t) ∈ {(q, v, t) ∈ R
n × R

n × R : ‖v‖ ≤ R0}.
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Moreover,

(
Δx

N
s,

Δx

N
)M(t)(

Δx

N
s,

Δx

N
)T =

n∑
i,j=1

∂2Lε

∂qi∂qj
(v(t))(

Δxi

N
s)(

Δxj

N
s)

+ 2
n∑

i,j=1

∂2Lε

∂qi∂vj
(v(t))(

Δxi

N
s)(

Δxj

N
)

+

n∑
i,j=1

∂2Lε

∂vi∂vj
(v(t))(

Δxi

N
)(
Δxj

N
).

Thus by (3.10), Lemma 3.2 and Lemma 3.4, we obtain

|R(s)| ≤ n2
(2C(K0)ε

λ0N2
s2 +

1

λ0N2
+

2C(K0)ε

λ0N2
s
)
‖Δx‖2.

Using the Euler-Lagrange equation d
dt (

∂Lε

∂v )(dγ0(s), s) =
∂Lε

∂q (dγ0(s), s),

(3.9) ≤
∫ N

0

〈∂Lε

∂q
(dγ0(s), s), s

Δx

N
〉+ 〈∂Lε

∂v
(dγ0(s), s),

Δx

N
〉ds+

∫ N

0

R(s) ds

≤ 〈∂Lε

∂v
(dγ0(s), s), s

Δx

N
〉|N0 +

∫ N

0

n2(
2C(K0)εs

2 + 1 + 2C(K0)εs

λ0N2
)‖Δx‖2ds

≤ 〈∂Lε

∂v
(x, γ̇0(N), N),Δx〉+

(4n2C(K0)N

3λ0
ε+

n2

λ0N
+

C(K0)ε

λ0

)
‖Δx‖2

≤ 〈∂Lε

∂v
(x, γ̇0(N), N),Δx〉+ C1

√
ε‖Δx‖2.

The last inequality follows from N = [ 1√
ε
]. Notice that C1 only depends on H0.

Therefore,

(3.11) uε(x+Δx, 0)− uε(x, 0) ≤ 〈∂Lε

∂v
(x, γ̇0(N), N),Δx〉+ C1

√
ε‖Δx‖2.

We set �e1 = (1, 0, . . . , 0)T , �ei = (0, . . . , 1, . . . , 0)T ∈ R
n, so by (3.11) we get

0 = uε(x± �ei, 0)− uε(x, 0) ≤ 〈∂Lε

∂v
(x, γ̇0(N), N),±�ei〉+ C1

√
ε‖ ± �ei‖,

|〈∂Lε

∂v
(x, γ̇0(N), N), �ei〉| ≤ C1

√
ε‖ ± �ei‖ = C1

√
ε.

From the Cauchy inequality,

|〈∂Lε

∂v
(x, γ̇0(N), N),Δx〉| = |

n∑
i=1

〈∂Lε

∂v
(x, γ̇0(N), N),Δxi�ei〉| ≤ C1

√
nε‖Δx‖.

Therefore, use (3.11) and we obtain

uε(x+Δx, 0)− uε(x, 0) ≤ C1(
√
n+ 1)

√
ε‖Δx‖, ∀x ∈ R

n, ‖Δx‖ ≤ 1.

Similarly, we can prove

uε(x, 0)− uε(x+Δx, 0) ≤ C1(
√
n+ 1)

√
ε‖ −Δx‖, ∀x ∈ R

n, ‖Δx‖ ≤ 1.

Since uε(x, 0) is periodic in x,

|uε(x+Δx, 0)− uε(x, 0)| ≤ C1(
√
n+ 1)

√
ε‖Δx‖, ∀x ∈ R

n.

For general t, we can prove similarly. Hence (3.8) holds.
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Step 2. uε is a viscosity solution of the following Hamilton-Jacobi equation:

∂tuε +Hε(x, dxuε, t) = αε(0).

Suppose uε is differentiable at (x, t). By (3.8), we have

‖dxuε(x, t)‖ ≤ C1

√
nε.

Then, there exists a constant C2 = C2(H0) > 0 such that

(3.12) |H0(dxuε(x, t))−H0(0)| ≤ C2

√
ε.

On the other hand, by Lemma 3.3 and (3.12), we obtain

|∂tuε(x, t)| = |αε(0)−H0(dxuε(x, t))− εH1(x, dxuε(x, t), t)|
= |αε(0)−H0(0) +H0(0)−H0(dxuε(x, t))− εH1(x, dxuε(x, t), t)|
≤ |αε(0)− α0(0)|+ |H0(0)−H0(dxuε(x, t))|+ |εH1|
≤ εC(K0) + C2

√
ε+ εC(K0).

Combining Step 1 with Step 2, we obtain that, for almost every (x, t) ∈ R
n × R,

‖dxuε(x, t)‖ ≤ C1(
√
n+ 1)

√
ε, |∂tuε(x, t)| ≤ εC(K0) + C2

√
ε+ εC(K0).

Since uε(x, t) is Lipschitz and differentiable almost everywhere, it’s easy to know
that there exists a constant D = D(H0) such that

|uε(x, t)− uε(y, s)| ≤ D
√
ε(‖x− y‖+ ‖t− s‖).

This completes our proof. �

Proof of Theorem 1.2. For simplicity, we just prove our theorem for c = 0 ∈
H1(Tn,R).

(1). Because γε(t) is calibrated by some weak KAM solution uε, by Proposition
2.2, uε must be differentiable at (γε(t), t), ∀ t ∈ (−∞,+∞). Thus,

γ̇ε(t) =
∂Hε

∂p
(γε(t), dγε(t)uε, t) =

∂H0

∂p
(dγε(t)uε) + ε

∂H1

∂p
(γε(t), dγε(t)uε, t),

γ̇ε(0) =
∂Hε

∂p
(γε(0), dγε(0)uε, 0) =

∂H0

∂p
(dγε(0)uε) + ε

∂H1

∂p
(γε(0), dγε(0)uε, 0).

Invoking the Taylor formula, there exists θ ∈ (0, 1) such that

‖γ̇ε(t)− γ̇ε(0)‖ =‖∂
2H0

∂p2
(
θdγε(t)uε + (1− θ)dγε(0)uε

)(
dγε(t)uε − dγε(0)uε

)
+ ε

∂H1

∂p
(γε(t), dγε(t)uε, t)− ε

∂H1

∂p
(γε(0), dγε(0)uε, 0)‖.

In view of Theorem 1.1 and Lemma 3.4, we conclude that

‖γ̇ε(t)− γ̇ε(0)‖ ≤ 1

λ0
‖dγε(t)uε − dγε(0)uε‖+ 2εC(K0)

≤ 2

λ0
D
√
ε+ 2εC(K0) ≤ 2(

D

λ0
+ C(K0))

√
ε.

This completes the proof of (1).
Conclusion (2) can be proved in the same way.
The first part of (3) is similar to (1). Let’s prove the second part. For integrable

systems, one has M̃0 = Ã0 = Ñ0 = T
n×{∂H0

∂p (0)}×T. Each minimal orbit γε(t) in



NEARLY INTEGRABLE HAMILTONIAN SYSTEMS 213

the Mather set Mε is calibrated by some weak KAM solution uε (see, for instance,
[5])

‖γ̇ε(t)−
∂H0

∂p
(0)‖ = ‖∂H0

∂p
(dγε(t)uε) + ε

∂H1

∂p
(γε(t), dγε(t)uε, t)−

∂H0

∂p
(0)‖

≤ D
√
ε

λ0
+ εC(K0) ∼ O(

√
ε), ∀t ∈ (−∞,+∞).

Then,

dH(M̃ε,M̃0) ∼ O(
√
ε),

where dH is the Hausdorff distance. Similarly,

dH(Ãε, Ã0) ∼ O(
√
ε), dH(Ñε, Ñ0) ∼ O(

√
ε).

This completes our proof. �
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